MATH 2050A - HW 4 - Solutions

We would be using the following results. These can be used without proof.

Lemma 0.1. Let $x := (x_n)$ be a converging sequence. Then any subsequence of x is convergent and converges to $\lim_{n \to \infty} x_n$.

Proof. See Lecture Note Proposition 3.3.

Lemma 0.2. [Monotone Convergence Theorem for sequences] Let (x_n) be a sequence of real numbers. Suppose (x_n) is increasing (resp. decreasing) and is bounded above (resp. bounded below), then (x_n) converges. Furthermore, we have $\lim_n x_n = \sup\{x_n\}$ (resp. $\lim_n x_n = \inf\{x_n\}$).

Proof. See Lecture Note Proposition 2.13

Lemma 0.3. Define $x_n := (1+1/n)^n$. Then x_n is increasing and bounded above. We denote $e := \lim_n x_n$ and $e \le 3$.

Proof. See Lecture Note Example 2.14

Lemma 0.4. Let $x := (x_n)$ be a sequence. We call a subsequence a tail of x if it is indexed by $K + \mathbb{N}$ for some $K \in \mathbb{N}$, that is, the subsequence is in the form (x_{n+K}) . Then (x_n) converges if and only if some tail $(x_{n+K}), K \in \mathbb{N}$ of (x_n) converges.

Proof. By now, you should have a sense this statement is true almost by definition of convergence of sequence as sequential convergence concerns only *eventual* behaviour of the sequence. We leave the proof as an Exercise. You may use it without proof. \Box

Lemma 0.5. Let $a \ge 0$ and $n \in \mathbb{N}$. Then $a \ge 1$ if and only if $a^n \ge 1$

Proof. We include the proof here only for completeness. This can be used without proof. (\Rightarrow) . It follows from order compatibility with product.

(\Leftarrow). Suppose not. Then we have $a^n \ge 1$, but a < 1. By order compatibility with product we have $a^n \le 1$. (Note the we only have axioms concerning partial orders, $a \ge 0, b \ge c$ imples $ab \ge ac$.) By symmetry of \le , $a^n = 1$. Therefore for all $k \in \mathbb{N}$, we have $a^{nk} = (a^n)^k = 1$. Since subsequences of a convergent sequence converge to the sequential limit, we have $\lim_k a^{nk} = \lim_k a^k = 0$ as a < 1. (Recall that the proof of $\lim_k a^k = 0$ when $0 \le a < 1$ does not require taking nth roots. Hence, there is no circular reasoning.) However $a^{nk} = 1$ for all $k \in \mathbb{N}$, implying $\lim_k a^{nk} = 1 \ne 0$. Contradiction arise by uniqueness of limit. We must then have $a \ge 1$

Remark. Actually, one can deduce from $a^n = 1$ and $a \ge 0$ that a = 1 (how?), but we deliberately use sequential technique here.

The result is still true if \geq is replaced by \leq .

Remark. Combining both directions yields that $x \mapsto x^q$ is increasing on $\mathbb{R}_{\geq 0}$ for all $q \in \mathbb{Q}$. (How?)

Lemma 0.6. Let (x_n) be a sequence of non-negative real numbers such that. Let $k \in \mathbb{N}$. Then (x_n) converges if and only if (x_n^k) converges.

Proof. We include the proof here only for completeness. This can be used without proof. (\Rightarrow). The result follows by a finite application of the product rule for limit. We indeed have $\lim_{n \to \infty} x_n^k = (\lim_{n \to \infty} x_n)^k$

(\Leftarrow). Note that $x_n^k \ge 0$ by Lemma 0.5. Therefore, $\lim_n x_n^k \ge 0$. Let $L \ge 0$ be such that $L^k = \lim_n x_n^k$. (Case 1: L > 0). Let $\epsilon > 0$. Since (x_n^k) converges, there exists $N \in \mathbb{N}$, such that $|x_n^k - L^k| < \epsilon/L^{k-1}$ as $n \ge N$. Hence as $n \ge N$, we have

$$|x_n - L| = \frac{|x_n^k - L^k|}{x_n^{k-1} + x_n^{k-2}L^1 + \dots + L^{k-1}} \le \frac{|x_n^k - L^k|}{L^{k-1}} < \epsilon$$

where the first equality is just some algebraic manipulation. By the $\epsilon - N$ definition for sequences (x_n) converges.

(Case 2: L = 0). We leave this as an Exercise. The result follows by combining the two cases. \Box

Remark. This result with its proof shows that taking limit can commute with taking rational powers for *non-negative* sequences. Of course, taking integer power can commute with limit for *arbitrary* (convergent) real sequences by finite application of the limit product rule. Suitable caution has to be taking with negative powers for sure.

Solutions

1 (P.84 Q4a). Show that $\left(1 - (-1)^n + \frac{1}{n}\right)$ is divergent.

Solution. Define $x_n := 1 - (-1)^n + 1/n$ for all $n \in \mathbb{N}$. Consider the subsequences $(y_n) := (x_{2n})$ and $(z_n) := (x_{2n-1})$; they are subsequences as $n \mapsto 2n$ and $n \mapsto 2n - 1$ are strictly increasing. Note that $y_n = 1/n$ for all $n \in \mathbb{N}$. Hence $\lim_n y_n = \lim_n 1/n = 0$. Meanwhile, note that $z_n = 2 + 1/n$. Hence, $\lim_n z_n = 2 + \lim_n 1/n = 2$ by the sum law for limit. Since $0 \neq 2$, (y_n) and (z_n) are two subsequences of (x_n) converging to different limit. The result follows by Lemma 0.1.

2 (P.84 Q7a). Establish the convergence for the following sequence and find its limit.

$$\left(\left(1+\frac{1}{n^2}\right)^{n^2}\right)$$

Solution. We show that the sequence converges to e, the natural base.

Define $x_n := (1 + 1/n)^n$ for all $n \in \mathbb{N}$. By Lemma 0.3, we know that $\lim_n x_n = e$. We consider the subsequence $(y_n) = (x_{n^2})$ as $n \mapsto n^2$ is strictly increasing. Since subsequence of a convergent sequence converges to the sequential limit by Lemma 0.1., we have $\lim_n y_n = \lim_n x_n = e$. The result follows by noting that (y_n) is the sequence in question.

3 (P.84 Q8a). Determine the limit of the following sequence. (It it possible that the limit does not exist).

$$\left((3n)^{\frac{1}{2n}}\right)$$

Solution. We proceed by showing that $\lim_n n^{1/n} = 1$. Define $x_n := n^{1/n}$. We first show that (x_n) is decreasing for sufficiently large n, that is, some tail of (x_n) is decreasing.

By the Archimedean Principle, we pick $K \in \mathbb{N}$ such that $e \leq N$ where e is the natural base (or simply take K = 3). Then for all $n \geq K$, we have by Lemma 0.3

$$\left(\frac{x_{n+1}}{x_n}\right)^{n(n+1)} = \left(\frac{(n+1)^{\frac{1}{n+1}}}{n^{\frac{1}{n}}}\right)^{n(n+1)} = \frac{(n+1)^n}{n^{n+1}} = \left(1+\frac{1}{n}\right)^n \frac{1}{n} \le \frac{e}{n} \le \frac{e}{N} \le 1$$

Since taking *rth* root preserves partial order(see Lemma 0.5), taking n(n+1)th root on both sides, we have for all $n \ge K$,

$$\frac{x_{n+1}}{x_n} \le 1$$

that is, the tail (x_{n+K}) is a decreasing sequence. We denote this tail subsequence $(y_n) := (x_{n+K})$. Clearly (y_n) is bounded below since x_n are non-negative for all $n \in \mathbb{N}$. By the monotone convergence theorem for sequences (Lemma 0.2), (y_n) converges and $\lim_n y_n = \inf\{y_n\}$.

We proceed to show that $\inf\{y_n\} = \inf\{x_n\} = 1$. Note that $n \ge 1$ implies $x_n = n^{1/n} \ge 1$ for all $n \in \mathbb{N}$ as *rth* root preserves partial order. So 1 is a lower bound for $\{x_n\}$.

Suppose 1 is not the greatest lower bound, then there exists r > 1 such that $r \le n^{1/n}$ for all $n \in \mathbb{N}$. Hence, $r^n \le n \Longrightarrow 1 \le nr^{-n}$ for all $n \in \mathbb{N}$. By taking limit on both sides, we have $1 \le 0$. (See Lemma 0.2 in HW3 Solution for why the LHS converges to 0).

Therefore, we can conclude $\inf\{x_n\} = 1$ and we have $1 \le \inf\{y_n\} \le \inf\{x_n\} = 1$. So, $\inf\{y_n\} = 1$. Therefore, $\lim_n y_n = \lim_n x_{n+K}$. By Lemma 0.4, we have $\lim_n n^{1/n} = \lim_n x_n = 1$.

Let $(x_n) := (n^{1/n})$. Then the sequence in the question is given by $(x_{3n}^{3/2})$. By considering subsequences and the remark in lemma 0.6, we have $\lim_{n} (x_{3n}^{3/2}) = (\lim_{n} x_{3n})^{3/2} = (\lim_{n} x_n)^{3/2} = 1^{3/2} = 1$.