
MATH 2050A - HW 3 - Solutions

We would be using the following Lemma.

Lemma 0.1. Let (xn) be a sequence of real numbers and r ∈ R. Suppose (xn) converges and
L := limxn < r. Then xn < r for all sufficiently large n.

Proof. Note that r − L > 0. Hence there exists N ∈ N such that for all n ≥ N , we have |xn − L| <
r − L, that is, −(r − L) < xn − L < r − L. In particular, xn < r for all n ≥ N .

Remark. If < is replaced by >, the result still holds by essentially the same arguement.

Lemma 0.2. Let r > 1. Then limn r
−n = 0.

Proof. This fact appeared in Tutorial 2 Example 6; you can use it without proof. We prove it here
again for your convenience. We make use of the Binomial Theorem, which is true as long as addition
and multiplication are commutative. (That means the Binomial Theorem readily follows from the
Algebraic Axioms of R as a field.)

Define α := r − 1 > 0. Then r = r − 1 + 1 = 1 + α. By the binomial theorem, for all n ∈ N,
rn = (1 + α)n =

∑n
k=0

(
n
k

)
αk. Since α ≥ 0, for any n,m ∈ N with 0 ≤ m ≤ n we have

(1 + α)n =

n∑
k=0

(
n

k

)
αk ≥

(
n

m

)
αm

Let ε > 0. By Archimidean Principle, take N ∈ N with N > 1/αε. Then for all n ≥ N

1

rn
=

1

(1 + α)n
≤ 1(

n
1

)
α1

=
1

nα
≤ 1

Nα
< ε

By the ε−N definition, limn r
−n = 0

Remark. In fact using the same proof technique here, we can show that for all k > 0 (consider only
k ∈ Q at this stage), we have limn n

kr−n = 0 if r > 1
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Solutions

1 (P.69 Q9). Let yn :=
√
n+ 1−

√
n for all n ∈ N. Show that (

√
nyn) converges and find the limit.

Solution. We claim that limn
√
nyn = 1

2 .
Let ε > 0. By Archimedean Principle, take N ∈ N such that 1

4N < ε. Then we have for all n ≥ N∣∣∣∣√nyn − 1

2

∣∣∣∣ =

∣∣∣∣√n(
√
n+ 1−

√
n)− 1

2

∣∣∣∣ =

∣∣∣∣ √
n√

n+ 1 +
√
n
− 1

2

∣∣∣∣ =

∣∣∣∣ √n−√n+ 1

2(
√
n+ 1 +

√
n)

∣∣∣∣ =

∣∣∣∣ 1

2(
√
n+ 1 +

√
n)2

∣∣∣∣
≤ 1

2(2
√
n)2
≤ 1

4n
≤ 1

4N
≤ ε

The second row has made use of the fact that (
√
n) is an increasing sequence, which follows from

that for all real x ≥ 0, x2 ≤ 1 if and only if x ≤ 1 The claim follows by the ε−N definition.

2 (P.69 Q20). Let (xn) be a sequence of positive real numbers such that L := lim(x
1/n
n ) < 1.

i. Show that there exists a real number r ∈ (0, 1) such that xn ∈ (0, rn) for all sufficiently large
n ∈ N.

ii. Hence, show that limxn = 0.

Solution.

i. Take r := (1 + L)/2. Then L < r < 1. Since xn > 0 for all n ∈ N , x
1/n
n > 0. Hence, by order-

preserving property of limit (Proposition 2.9, Lect), we have L = lim(x
1/n
n ) ≥ 0. Therefore,

0 < r < 1.
Note that lim(x

1/n
n ) = L < r. By Lemma 0.1, we have x

1/n
n < r for sufficiently large n.

Hence, xn < rn for sufficiently large n as xn are positive for all n ∈ N. This last note also shows
that 0 < xn < rn for sufficiently large n.

ii. Since 0 < r < 1, r−1 > 1. By Lemma 0.2, limn r
n = 0. Since we have 0 ≤ xn ≤ rn for sufficently

large n, by the sandwich theorem (proposition 2.10, Lect), limxn exists and limxn = 0.

3 (P.69 Q22). Let (xn) be a covergent sequence of real numbers and (yn) be such that for all ε > 0
there exists M ∈ N such that |xn − yn| < ε for all n ≥M . Does it follow that (yn) is convergent?

Solution. Yes. Let L := limxn. We claim that lim yn = L.
Let ε > 0. Then there exists N,M such that

|xn − L| <
ε

2
as n ≥ N

|xn − yn| <
ε

2
as n ≥M

Therefore, when n ≥ max{N,M}, we have by triangle inequality,

|yn − L| ≤ |yn − xn + xn − L| ≤ |xn − yn|+ |xn − L| <
ε

2
+
ε

2
= ε

The claim follows by the ε−N definition.
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