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Recall

Hahn-Banach Theorem(s)

Dominated extension. Let Y be a subspace of a vector space X. Let p be a positive homogeneous

subadditive function on X. For every linear functional f ∈ Y ] with f ≤ p on Y , there exists

F ∈ X] extending f and F ≤ p on X.

Continuous extension. Let Y be a subspace of a normed space X. For every f ∈ Y ∗, there exists

F ∈ X∗ extending f such that ‖F‖ = ‖f‖.

Existence of separating functional. For every x0 in a normed space X, there exists f ∈ X∗ such

that ‖f‖ = 1 and f(x0) = ‖x0‖.

Chosure point checking. Let Y be a subspace of a normed space X. Then x ∈ Y if and only if for

every f ∈ X∗ with f = 0 on Y , we have f(x) = 0.

Hyperplane separation. Let C be a closed convex subset of a normed space X and x0 ∈ X \ C.

Then there exists f ∈ X∗ such that supy∈C f(C) < f(x0).

(Note that we restrict to normed space since the proof in [LN, Prop. 4.16] has used norm

which can be avoided. But hyperplane separation holds for locally convex spaces.)

If the dual space X∗ is separable, then X is separable.

Recall that to apply dominated extension in the proof of hyperplane separation, we have

introduced the Minkowski functional µA defined for a set A. The properties of A determine the

behavior of µA. The way of defining Minkowski functional is useful to construct natural functions

from sets and reveals properties of the space.

Let X, Y be normed spaces and T ∈ B(X, Y ). The adjoint operator T ∗ : Y ∗ → X∗ is (formally)

defined as, for y∗ ∈ Y ∗, x ∈ X,

T ∗y∗(x) := y∗(Tx).

Then T ∗ ∈ B(Y ∗, X∗) and ‖T ∗‖ = ‖T‖. (In symmetric notation, 〈x, T ∗y∗〉 := 〈Tx, y∗〉 := y∗(Tx).)

Dual space of C[a, b]

Let [a, b] be a closed bounded interval in R. Let C[a, b] be the space of R-valued functions on

[a, b] with the sup-norm ‖·‖∞.

Let ρ : [a, b]→ R be a real-valued function and P : {a = x0 < · · · < xn = b} be a partition of

[a, b]. Define the variation of ρ with respect to P by

V (ρ, P ) :=
n∑
k=1

|ρ(xk)− ρ(xk+1)|,

and the total variation by

V (ρ) := sup
P∈P

V (ρ, P )
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where P denotes all the paritions of [a, b]. A function ρ : [a, b]→ R is called bounded variation if

V (ρ) <∞. Let BV [a, b] denote the vector space of all the bounded variations.

Let f ∈ C[a, b] and ρ ∈ BV [a, b]. Let P : a = x0 < · · · < xn = b with tags tk ∈ [xk−1, xk] be a

tagged partition. Define the Riemann-Stieltjes sum with respect to ρ and P by

S(f, ρ, P ) =
n∑
k=1

f(tk)
(
ρ(xk)− ρ(xk−1)

)
.

Then the Riemann-Stieltjes integral is defined by∫ b

a

f(x)dρ(x) := lim
‖P‖→0

S(f, ρ, P ).

where ‖P‖ denotes the diameter of a partition. The Riemann-Stieljes integral exists by the

uniform continuity of f on [a, b].

Observe that V (·) satisfies non-negativity, scaling property and the triangle inequality. How-

ever, V (·) is not non-degenerate since V (ρ) = 0 only implies that ρ is constant on [a, b]. Hence

we restrict to the following subspace (the notation may not be standard)

BV0[a, b] = {ρ ∈ BV [a, b] : ρ(a) = 0} .

Then it is readily checked that BV0[a, b] is a Banach space under the norm V (·).

To justify the injectivity in our proof, we further remove the redundancy and modify the space

to

BV +
0 [a, b] :=

{
ρ ∈ BV0[a, b] : lim

y→x+
ρ(y) = ρ(x), ∀x ∈ (a, b)

}
. (1)

It can be checked that BV +
0 [a, b] is closed in BV0[0, 1] since the right continuity is preserved by

uniform convergence and ‖·‖∞ ≤ V (·) on BV0[a, b].

Remark. The elements in (1) are defined explicitly. They can viewed as representatives of classes

in a quotient space whose definition shares the same purpose to establish the injectivity. The

details are given in the next section.

It follows from Jordan decomposition of ρ ∈ BV [a, b] that ρ = ρ+ − ρ− where ρ+ and ρ− are

increasing. Hence for x ∈ (a, b),

ρ∗ := lim
y→x+

ρ = lim
y→x+

ρ+(x)− lim
y→x+

ρ−(x) (2)

is well defined, i.e., ρ∗ ∈ BV +
0 [a, b]. Since ρ+ and ρ− are monotone, ρ∗ and ρ only differ on the at

most countable discountinuities in (a, b). Moreover, for ρ ∈ BV0[a, b],

V (ρ∗) ≤ V (ρ) and

∫ b

a

fdρ =

∫ b

a

fdρ∗ for all f ∈ C[a, b] (3)

and for ρ1, ρ2 ∈ BV +
0 [a, b],

if

∫ b

a

fdρ1 =

∫ b

a

fdρ2 for all f ∈ C[a, b], then ρ1 = ρ2 ∈ BV +
0 [a, b]. (4)

The proofs of (3) and (4) are given in Appendix. After the above modifications, we are ready

to state the main theorem.
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Theorem 1. Under above notation, C[a, b]∗ = BV +
0 [a, b].

Proof. We first introduce some convenient notation. For f ∈ C[a, b] and ρ ∈ BV0[a, b], denote

〈f, ρ〉 :=

∫ b

a

fdρ.

Then 〈·, ·〉 : C[a, b]× BV0[a, b]→ R is well defined by the existence of Riemann-Stieltjes integral.

It follows from the linearity of summation that for α ∈ R, f, f̃ ∈ C[a, b] and ρ, ρ̃ ∈ BV0[a, b],

〈αf + f̃ , ρ〉 = α〈f, ρ〉+ 〈f̃ , ρ〉 and 〈f, αρ+ ρ̃〉 = α〈f, ρ〉+ 〈f, ρ̃〉. (5)

And since for any partition P , we have∣∣∣∣∣
n∑
k=1

f(tk)
(
ρ(xk)− ρ(xk−1)

)∣∣∣∣∣ ≤ ‖f‖∞
n∑
k=1

|ρ(xk)− ρ(xk−1)| = ‖f‖∞V (ρ, P ) ≤ ‖f‖∞V (ρ).

Then take the limit ‖P‖ → 0 on the LHS, we have

|〈f, ρ〉| ≤ ‖f‖∞V (ρ). (6)

By (5) and (6), for any fixed ρ ∈ BV +
0 [a, b], the map 〈·, ρ〉 : C[a, b]→ R is linear and bounded,

i.e., 〈·, ρ〉 ∈ C[a, b]∗. To complete the proof, we will prove the map

T : BV +
0 [a, b]→ C[a, b]∗

ρ 7→ 〈·, ρ〉

is an isometric isomorphism.

(i) (linear and injective) By (5), T is linear. By (4), T is injective.

(ii) (surjective) For any Λ ∈ C[a, b]∗, we will first find ρ ∈ BV0[a, b] such that Λf = 〈f, ρ〉 for

all f ∈ C[a, b] and then modify ρ to ρ∗ ∈ BV +
0 [a, b].

(Inspired by the ‘formal’ argument that ρ(x) − ρ(a) =
∫ x
a
dρ = 〈χ[a,x], ρ〉 ≈ Λχ[a,x]. But

we can NOT apply Λ directly to χ[a,x], which is where Hahn-Banach comes into the stage.)

Observing that C[a, b] is a subspace in the normed space B[a, b] of bounded functions, we

apply Hahn-Banach to extend Λ to Λ̃ ∈ B[a, b]∗ with ‖Λ̃‖ = ‖Λ‖. Hence we are able to

define ρ(x) := Λ̃χ[a,x] for x ∈ (a, b] and ρ(0) := 0.

First we check ρ ∈ BV0[a, b]. For any partition P , write θk = Sgn(ρ(xk) − ρ(xk−1)). Then

by the linearity and ‖Λ̃‖ = ‖Λ‖,
n∑
k=1

|ρ(xk)− ρ(xk−1)| =
n∑
k=1

θk (ρ(xk)− ρ(xk−1))

= θ1Λ̃χ[a,x1] +
n∑
k=2

θk

(
Λ̃χ[a,xk] − Λ̃χ[a,xk−1]

)
= Λ̃

(
θ1χ[a,x1] +

n∑
k=2

θk(χ[a,xk] − χ[a,xk−1])
)

≤ ‖Λ̃‖‖θ1χ[a,x1] +
n∑
k=2

θkχ(xk−1,xk]‖∞

= ‖Λ‖,

(7)
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where in the last equality we used that the function in ‖·‖∞ is bounded by 1. Take supremum

over partition P on LHS to obtain V (ρ) ≤ ‖Λ‖. Hence ρ ∈ BV0[a, b].

Next we check Λf = 〈f, ρ〉 for all f ∈ C[a, b].

(Inspired by the facts that Riemann-Stieljes integral is contuinous w.r.t. ‖·‖∞ and f can

by uniformly approximated by step functions.) Let ε > 0. By the uniform continuity of f ,

there exists δ1 such that for any partition P with ‖P‖ ≤ δ1, supx∈[xk−1,xk]
|f(x)− f(xk)| ≤ ε

for 1 ≤ k ≤ n. Then define the step function f̃ = f(x1)χ[a,x1] +
∑n

k=2 f(xk)χ(xk−1,xk]

‖f − f̃‖∞ ≤ ε (8)

By the definition of Riemann-Stieltjes integral, there exists δ2 > 0, such that for any partition

P with ‖P‖ ≤ δ2 and the tags tk = xk, 1 ≤ k ≤ n, we have

|〈f, ρ〉 − S(f, ρ, P )| ≤ ε. (9)

It follows from a similar check in (7) that S(f, ρ, P ) = Λ̃f̃ . Hence when ‖P‖ < min{δ1, δ2},
by (8) and (9),

|〈f, ρ〉 − Λf | =
∣∣∣〈f, ρ〉 − Λ̃f

∣∣∣
≤
∣∣∣〈f, ρ〉 − Λ̃f̃

∣∣∣+ |Λ̃f̃ − Λ̃f |

≤ |〈f, ρ〉 − S(f, ρ, P )|+ ‖Λ̃‖‖f − f̃‖∞
≤ (1 + ‖Λ‖)ε.

Letting ε→ 0, we have 〈f, ρ〉 = Λf .

Replace ρ with ρ∗ defined in (2). It follows from (3) that 〈f, ρ∗〉 = 〈f, ρ〉 = Λf and

V (ρ∗) ≤ V (ρ) ≤ ‖Λ‖.

(iii) (isometric) Let ρ ∈ BV +
0 [a, b]. It follows from (6), that ‖Tρ‖ ≤ V (ρ). By (ii), there exists

ρ̃ ∈ BV +
0 [a, b] with V (ρ̃) ≤ ‖Tρ‖ and 〈f, ρ̃〉 = 〈f, ρ〉. By (i), ρ = ρ̃ ∈ BV +

0 [a, b]. Hence

V (ρ) ≤ ‖Tρ‖, thus V (ρ) = ‖Tρ‖.

Remark. A similar proof shows Theorem 1 also holds when the scalar field is C. These results are

the special cases of Riesz representation of C0(X)∗ via Borel regular measures when X is locally

compact Hausdorff.

It’s good to stop here.

Remark. Actually the explicit candidate in (1) is found in a ‘cheated’ way. We can reason as

following, for Λ ∈ C[a, b]∗, by the general Riesz representation, there exists a unique Borel regular

measure µ ∈ M [a, b] such that Λf =
∫ b
a
fdµ (the integral is defined in Lebesgue way). Then

the cumulative distribution function Fµ(t) := µ[a, t] is right countinuous (by the continuity of

measure) and of bounded variation. Moreover, µ is the measure extension of the premeasure

induced by Fµ on semiring {a, ∅, (c, d], a ≤ c < d ≤ b}. However, notice that for the Dirac measure

δa (representing the evaluation Λf = f(a)), the Riemann-Stieljes integral w.r.t. Fδa = χ[a,b]
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identically vanish on C[a, b] ! Then we realize the Riemann-Stieltjies integral will ‘forget’ the jump

at a if the ρ is right-continuous at a. Hence we made the following modification for µ ∈M [a, b],

Λf =

∫ b

a

fdµ = µ{a}f(a) +

∫ b

a

fdFµ =

∫ b

a

fd(Fµ +Gµ{a})

where Gµ{a}(a) := −µ{a}χ{a}. Hence F̃µ := Fµ +Gµ{a} ∈ BV +
0 [a, b].

Then there comes a natural follow-up question that why we don’t have to modify the distribu-

tion function in the ‘Stieljes’ integral defined in probability theory (e.g. MATH3280). One reason

is that F (−∞) = 0 and the integration is on the whole real line.

A quotient space perspective

Instead of explicitly finding the representatives like (1), another natural way to achieve the injec-

tivity is to define the quotient space. Define a subspace of BV0[a, b] as

H := {ρ ∈ BV0[a, b] : 〈f, ρ〉 = 0, ∀ f ∈ C[a, b]}. (10)

By (6), H is closed as the intersection of the kernels of continuous function 〈f, ·〉. Explicitly, H

is exactly the subspace of BV0[a, b] consisting of the functions differing from 0 only on at most

countable points on (a, b). Hence BV0[a, b]/H is well-defined. Let π be the natural projection.

Define T : BV0[a, b]/H → C[a, b]∗ by T (π(ρ)) = 〈·, ρ〉. Recall for any π(ρ) ∈ BV0[a, b], the

quotient norm ‖π(ρ)‖ ≤ ‖ρ‖ and for any h ∈ H, |〈f, ρ〉| = |〈f, ρ + h〉| ≤ ‖f‖∞‖ρ + h‖, we have

‖Tρ‖ ≤ ‖π(ρ)‖. The linear and injectivity follows as we expected. The surjectivity is obtained

in the same way in the proof of Theorem 1. Thus C[a, b]∗ = BV0[a, b]/H also holds.

Appendix

In this Appendix, we will establish the intuition that with respect to 〈f, ·〉,∀ f ∈ C[a, b], a change

at the countable interior discountinuites of ρ ∈ BV0[a, b] doesn’t matter.

Lemma 2. Let c ∈ (a, b) and α ∈ K. The Riemann-Stieljes integral
∫ b
a
fd(αχ{c}) = 0 for all

f ∈ C[a, b].

Proof. Let f ∈ C[a, b] and P be any tagged partition of [a, b]. If c is in the interior of some

[xk, xk−1], then S(f, χ{c}, P ) = 0. If c = xk for some xk ∈ (a, b), then by choosing the tag

c = xk at both [xk−1, xk] and [xk, xk+1], we have S(f, χ{c}, P ) = αf(c) − αf(c) = 0. Hence∫ b
a
fd(αχ{c}) = 0.

Lemma 3. Let ρ ∈ BV0[a, b]. Denote (cn)∞n=1 the discountinuous points of ρ in (a, b) and (αn)∞n=1

the oscillations of ρ, more precisely, αn = |limy→cn− ρ(y) − limy→cn+ ρ(y)|. For any sequence

(βn)∞n=1 such that |βn| ≤ αn for all n ∈ N, define η =
∑∞

n=1 βnχ{cn}. Then η ∈ BV0[a, b] and∫ b
a
fdη = 0 for all f ∈ C[a, b].

If ρ has only finitely many discontinuities, Lemma 2 finishes the proof.
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Proof. Since ρ ∈ BV0[a, b],
∑∞

n=1|βn| ≤
∑∞

n=1 αn ≤ V (ρ) <∞. Hence for any ε > 0, there exists

N ∈ N such that
∑∞

n=N+1|βn| ≤ ε/2. Then

V (
∞∑

n=N+1

βnχ{cn}) ≤ 2
∞∑

n=N+1

|βn| ≤ ε.

Let f ∈ C[a, b]. By Lemma 2 and (6),

|〈f, η〉| =

∣∣∣∣∣〈f,
N∑
n=1

βnχ{cn}〉+ 〈f,
∞∑

n=N+1

βnχ{cn}〉

∣∣∣∣∣ ≤ 0 + ‖f‖∞ε.

Letting ε→ 0, we have 〈f, η〉 = 0.

Proof of (3). Let ρ ∈ BV0[a, b]. Define ρn :=

{
ρ(x+ 1/n) if x ∈ [a, b− 1/n]

ρ(b) if x ∈ (b− 1/n, b].
Then it is readily

checked that V (ρn) ≤ V (ρ) and ρ∗ = limn→∞ ρn. By the lower semi-continuity of V (·) (see e.g.

[Royden-Fitzpatrick Real Analysis, Sec 6.3 Problem 33]), V (ρ∗) ≤ V (ρ).

By the definition of ρ∗, we have ρ∗ − ρ =
∑∞

n=1 βnχ{cn} for some sequence (βn)∞n=1 satisfying

the condition in Lemma 3. Hence 〈f, ρ∗〉 = 〈f, ρ〉 for all f ∈ C[a, b].

Proof of (4). It suffices to prove that if ρ ∈ BV +
0 [a, b] and 〈f, ρ〉 = 0 for all f ∈ C[a, b],

then ρ = 0. Let µ be the measure extended from by ρ∗. Then for any c ∈ (a, b], ρ∗(c) =

µ[a, c] = limn→∞
∫
fndµ = limn→∞

(
ρ∗(a)fn(a) +

∫ b
a
fndρ+

∫ b
a
fndρ

∗(a)χ{a}

)
= 0 where the

second equality follows from Lebesgue dominated convergence theorem for sequence fn(x) :=
1 [a, c]

linear (c, c+ 1/n]

0 (c+ 1/n, b].

Hence ρ∗ = 0 on (a, b] and ρ = 0 on [a, b].
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