Recall

Hahn-Banach Theorem(s)

- Dominated extension. Let Y be a subspace of a vector space X. Let p be a positive homogeneous subadditive function on X. For every linear functional $f \in Y^{\sharp}$ with $f \leq p$ on Y, there exists $F \in X^{\sharp}$ extending f and $F \leq p$ on X.
- Continuous extension. Let Y be a subspace of a normed space X. For every $f \in Y^*$, there exists $F \in X^*$ extending f such that ||F|| = ||f||.
- Existence of separating functional. For every x_0 in a normed space X, there exists $f \in X^*$ such that ||f|| = 1 and $f(x_0) = ||x_0||$.
- Chosure point checking. Let Y be a subspace of a normed space X. Then $x \in \overline{Y}$ if and only if for every $f \in X^*$ with f = 0 on Y, we have f(x) = 0.
- Hyperplane separation. Let C be a closed convex subset of a normed space X and $x_0 \in X \setminus C$. Then there exists $f \in X^*$ such that $\sup_{y \in C} f(C) < f(x_0)$.

(Note that we restrict to normed space since the proof in [LN, Prop. 4.16] has used norm which can be avoided. But *hyperplane separation* holds for locally convex spaces.)

If the dual space X^* is separable, then X is separable.

Recall that to apply *dominated extension* in the proof of *hyperplane separation*, we have introduced the *Minkowski functional* μ_A defined for a set A. The properties of A determine the behavior of μ_A . The way of defining Minkowski functional is useful to construct natural functions from sets and reveals properties of the space.

Let X, Y be normed spaces and $T \in B(X, Y)$. The adjoint operator $T^* \colon Y^* \to X^*$ is (formally) defined as, for $y^* \in Y^*, x \in X$,

$$T^*y^*(x) \coloneqq y^*(Tx).$$

Then $T^* \in B(Y^*, X^*)$ and $||T^*|| = ||T||$. (In symmetric notation, $\langle x, T^*y^* \rangle \coloneqq \langle Tx, y^* \rangle \coloneqq y^*(Tx)$.)

Dual space of C[a, b]

Let [a, b] be a closed bounded interval in \mathbb{R} . Let C[a, b] be the space of \mathbb{R} -valued functions on [a, b] with the sup-norm $\|\cdot\|_{\infty}$.

Let $\rho: [a, b] \to \mathbb{R}$ be a real-valued function and $P: \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. Define the variation of ρ with respect to P by

$$V(\rho, P) := \sum_{k=1}^{n} |\rho(x_k) - \rho(x_{k+1})|,$$

and the *total variation* by

$$V(\rho) \coloneqq \sup_{P \in \mathcal{P}} V(\rho, P)$$

Prepared by Zhou Feng

where \mathcal{P} denotes all the paritions of [a, b]. A function $\rho: [a, b] \to \mathbb{R}$ is called *bounded variation* if $V(\rho) < \infty$. Let BV[a, b] denote the vector space of all the bounded variations.

Let $f \in C[a, b]$ and $\rho \in BV[a, b]$. Let $P : a = x_0 < \cdots < x_n = b$ with tags $t_k \in [x_{k-1}, x_k]$ be a tagged partition. Define the *Riemann-Stieltjes sum* with respect to ρ and P by

$$S(f, \rho, P) = \sum_{k=1}^{n} f(t_k) \Big(\rho(x_k) - \rho(x_{k-1}) \Big).$$

Then the *Riemann-Stieltjes integral* is defined by

$$\int_a^b f(x)d\rho(x) \coloneqq \lim_{\|P\| \to 0} S(f,\rho,P).$$

where ||P|| denotes the diameter of a partition. The Riemann-Stieljes integral exists by the uniform continuity of f on [a, b].

Observe that $V(\cdot)$ satisfies non-negativity, scaling property and the triangle inequality. However, $V(\cdot)$ is not non-degenerate since $V(\rho) = 0$ only implies that ρ is constant on [a, b]. Hence we restrict to the following subspace (the notation may not be standard)

$$BV_0[a, b] = \{ \rho \in BV[a, b] \colon \rho(a) = 0 \}$$

Then it is readily checked that $BV_0[a, b]$ is a Banach space under the norm $V(\cdot)$.

To justify the injectivity in our proof, we further remove the redundancy and modify the space to

$$BV_0^+[a,b] \coloneqq \left\{ \rho \in BV_0[a,b] \colon \lim_{y \to x+} \rho(y) = \rho(x), \ \forall x \in (a,b) \right\}.$$

$$\tag{1}$$

It can be checked that $BV_0^+[a, b]$ is closed in $BV_0[0, 1]$ since the right continuity is preserved by uniform convergence and $\|\cdot\|_{\infty} \leq V(\cdot)$ on $BV_0[a, b]$.

Remark. The elements in (1) are defined explicitly. They can viewed as representatives of classes in a quotient space whose definition shares the same purpose to establish the injectivity. The details are given in the next section.

It follows from Jordan decomposition of $\rho \in BV[a, b]$ that $\rho = \rho_+ - \rho_-$ where ρ_+ and ρ_- are increasing. Hence for $x \in (a, b)$,

$$\rho^* \coloneqq \lim_{y \to x+} \rho = \lim_{y \to x+} \rho_+(x) - \lim_{y \to x+} \rho_-(x) \tag{2}$$

is well defined, i.e., $\rho^* \in BV_0^+[a, b]$. Since ρ_+ and ρ_- are monotone, ρ^* and ρ only differ on the at most countable discountinuities in (a, b). Moreover, for $\rho \in BV_0[a, b]$,

$$V(\rho^*) \le V(\rho)$$
 and $\int_a^b f d\rho = \int_a^b f d\rho^*$ for all $f \in C[a, b]$ (3)

and for $\rho_1, \rho_2 \in BV_0^+[a, b]$,

if
$$\int_{a}^{b} f d\rho_{1} = \int_{a}^{b} f d\rho_{2}$$
 for all $f \in C[a, b]$, then $\rho_{1} = \rho_{2} \in BV_{0}^{+}[a, b]$. (4)

The proofs of (3) and (4) are given in Appendix. After the above modifications, we are ready to state the main theorem.

Theorem 1. Under above notation, $C[a, b]^* = BV_0^+[a, b]$.

Proof. We first introduce some convenient notation. For $f \in C[a, b]$ and $\rho \in BV_0[a, b]$, denote

$$\langle f, \rho \rangle \coloneqq \int_{a}^{b} f d\rho.$$

Then $\langle \cdot, \cdot \rangle \colon C[a, b] \times BV_0[a, b] \to \mathbb{R}$ is well defined by the existence of Riemann-Stieltjes integral. It follows from the linearity of summation that for $\alpha \in \mathbb{R}$, $f, \tilde{f} \in C[a, b]$ and $\rho, \tilde{\rho} \in BV_0[a, b]$,

$$\langle \alpha f + \tilde{f}, \rho \rangle = \alpha \langle f, \rho \rangle + \langle \tilde{f}, \rho \rangle \text{ and } \langle f, \alpha \rho + \tilde{\rho} \rangle = \alpha \langle f, \rho \rangle + \langle f, \tilde{\rho} \rangle.$$
 (5)

And since for any partition P, we have

$$\left|\sum_{k=1}^{n} f(t_k) \left(\rho(x_k) - \rho(x_{k-1}) \right) \right| \le \|f\|_{\infty} \sum_{k=1}^{n} |\rho(x_k) - \rho(x_{k-1})| = \|f\|_{\infty} V(\rho, P) \le \|f\|_{\infty} V(\rho).$$

Then take the limit $||P|| \to 0$ on the LHS, we have

$$|\langle f, \rho \rangle| \le ||f||_{\infty} V(\rho). \tag{6}$$

By (5) and (6), for any fixed $\rho \in BV_0^+[a, b]$, the map $\langle \cdot, \rho \rangle \colon C[a, b] \to \mathbb{R}$ is linear and bounded, i.e., $\langle \cdot, \rho \rangle \in C[a, b]^*$. To complete the proof, we will prove the map

$$T \colon BV_0^+[a,b] \to C[a,b]^*$$
$$\rho \mapsto \langle \cdot, \rho \rangle$$

is an isometric isomorphism.

- (i) (linear and injective) By (5), T is linear. By (4), T is injective.
- (ii) (surjective) For any $\Lambda \in C[a, b]^*$, we will first find $\rho \in BV_0[a, b]$ such that $\Lambda f = \langle f, \rho \rangle$ for all $f \in C[a, b]$ and then modify ρ to $\rho^* \in BV_0^+[a, b]$.

(Inspired by the 'formal' argument that $\rho(x) - \rho(a) = \int_a^x d\rho = \langle \chi_{[a,x]}, \rho \rangle \approx \Lambda \chi_{[a,x]}$. But we can NOT apply Λ directly to $\chi_{[a,x]}$, which is where *Hahn-Banach* comes into the stage.) Observing that C[a,b] is a subspace in the normed space B[a,b] of bounded functions, we apply *Hahn-Banach* to extend Λ to $\tilde{\Lambda} \in B[a,b]^*$ with $\|\tilde{\Lambda}\| = \|\Lambda\|$. Hence we are able to define $\rho(x) \coloneqq \tilde{\Lambda} \chi_{[a,x]}$ for $x \in (a,b]$ and $\rho(0) \coloneqq 0$.

First we check $\rho \in BV_0[a, b]$. For any partition P, write $\theta_k = \text{Sgn}(\rho(x_k) - \rho(x_{k-1}))$. Then by the linearity and $\|\tilde{\Lambda}\| = \|\Lambda\|$,

$$\sum_{k=1}^{n} |\rho(x_{k}) - \rho(x_{k-1})| = \sum_{k=1}^{n} \theta_{k} \left(\rho(x_{k}) - \rho(x_{k-1})\right)$$

$$= \theta_{1} \widetilde{\Lambda} \chi_{[a,x_{1}]} + \sum_{k=2}^{n} \theta_{k} \left(\widetilde{\Lambda} \chi_{[a,x_{k}]} - \widetilde{\Lambda} \chi_{[a,x_{k-1}]}\right)$$

$$= \widetilde{\Lambda} \left(\theta_{1} \chi_{[a,x_{1}]} + \sum_{k=2}^{n} \theta_{k} (\chi_{[a,x_{k}]} - \chi_{[a,x_{k-1}]})\right)$$

$$\leq \|\widetilde{\Lambda}\| \|\theta_{1} \chi_{[a,x_{1}]} + \sum_{k=2}^{n} \theta_{k} \chi_{(x_{k-1},x_{k}]}\|_{\infty}$$

$$= \|\Lambda\|,$$
(7)

Prepared by Zhou Feng

where in the last equality we used that the function in $\|\cdot\|_{\infty}$ is bounded by 1. Take supremum over partition P on LHS to obtain $V(\rho) \leq \|\Lambda\|$. Hence $\rho \in BV_0[a, b]$.

Next we check $\Lambda f = \langle f, \rho \rangle$ for all $f \in C[a, b]$.

(Inspired by the facts that Riemann-Stieljes integral is containous w.r.t. $\|\cdot\|_{\infty}$ and f can by uniformly approximated by step functions.) Let $\varepsilon > 0$. By the uniform continuity of f, there exists δ_1 such that for any partition P with $\|P\| \leq \delta_1$, $\sup_{x \in [x_{k-1}, x_k]} |f(x) - f(x_k)| \leq \varepsilon$ for $1 \leq k \leq n$. Then define the step function $\tilde{f} = f(x_1)\chi_{[a,x_1]} + \sum_{k=2}^n f(x_k)\chi_{(x_{k-1},x_k]}$

$$\|f - \tilde{f}\|_{\infty} \le \varepsilon \tag{8}$$

By the definition of Riemann-Stieltjes integral, there exists $\delta_2 > 0$, such that for any partition P with $||P|| \leq \delta_2$ and the tags $t_k = x_k, 1 \leq k \leq n$, we have

$$|\langle f, \rho \rangle - S(f, \rho, P)| \le \varepsilon.$$
(9)

It follows from a similar check in (7) that $S(f, \rho, P) = \widetilde{\Lambda} \widetilde{f}$. Hence when $||P|| < \min\{\delta_1, \delta_2\}$, by (8) and (9),

$$\begin{split} |\langle f, \rho \rangle - \Lambda f| &= \left| \langle f, \rho \rangle - \widetilde{\Lambda} f \right| \\ &\leq \left| \langle f, \rho \rangle - \widetilde{\Lambda} \widetilde{f} \right| + |\widetilde{\Lambda} \widetilde{f} - \widetilde{\Lambda} f| \\ &\leq |\langle f, \rho \rangle - S(f, \rho, P)| + \|\widetilde{\Lambda}\| \|f - \widetilde{f}\|_{\infty} \\ &\leq (1 + \|\Lambda\|)\varepsilon. \end{split}$$

Letting $\varepsilon \to 0$, we have $\langle f, \rho \rangle = \Lambda f$.

Replace ρ with ρ^* defined in (2). It follows from (3) that $\langle f, \rho^* \rangle = \langle f, \rho \rangle = \Lambda f$ and $V(\rho^*) \leq V(\rho) \leq ||\Lambda||$.

(iii) (isometric) Let $\rho \in BV_0^+[a, b]$. It follows from (6), that $||T\rho|| \leq V(\rho)$. By (ii), there exists $\tilde{\rho} \in BV_0^+[a, b]$ with $V(\tilde{\rho}) \leq ||T\rho||$ and $\langle f, \tilde{\rho} \rangle = \langle f, \rho \rangle$. By (i), $\rho = \tilde{\rho} \in BV_0^+[a, b]$. Hence $V(\rho) \leq ||T\rho||$, thus $V(\rho) = ||T\rho||$.

Remark. A similar proof shows Theorem 1 also holds when the scalar field is \mathbb{C} . These results are the special cases of Riesz representation of $C_0(X)^*$ via Borel regular measures when X is locally compact Hausdorff.

It's good to stop here.

Remark. Actually the explicit candidate in (1) is found in a 'cheated' way. We can reason as following, for $\Lambda \in C[a, b]^*$, by the general Riesz representation, there exists a unique Borel regular measure $\mu \in M[a, b]$ such that $\Lambda f = \int_a^b f d\mu$ (the integral is defined in Lebesgue way). Then the cumulative distribution function $F_{\mu}(t) := \mu[a, t]$ is right countinuous (by the continuity of measure) and of bounded variation. Moreover, μ is the measure extension of the premeasure induced by F_{μ} on semiring $\{a, \emptyset, (c, d], a \leq c < d \leq b\}$. However, notice that for the Dirac measure δ_a (representing the evaluation $\Lambda f = f(a)$), the Riemann-Stieljes integral w.r.t. $F_{\delta_a} = \chi_{[a,b]}$ identically vanish on C[a, b] ! Then we realize the Riemann-Stieltjies integral will 'forget' the jump at a if the ρ is right-continuous at a. Hence we made the following modification for $\mu \in M[a, b]$,

$$\Lambda f = \int_{a}^{b} f d\mu = \mu\{a\}f(a) + \int_{a}^{b} f dF_{\mu} = \int_{a}^{b} f d(F_{\mu} + G_{\mu\{a\}})$$

where $G_{\mu\{a\}}(a) \coloneqq -\mu\{a\}\chi_{\{a\}}$. Hence $\widetilde{F_{\mu}} \coloneqq F_{\mu} + G_{\mu\{a\}} \in BV_0^+[a,b]$.

Then there comes a natural follow-up question that why we don't have to modify the distribution function in the 'Stieljes' integral defined in probability theory (e.g. MATH3280). One reason is that $F(-\infty) = 0$ and the integration is on the whole real line.

A quotient space perspective

Instead of explicitly finding the representatives like (1), another natural way to achieve the injectivity is to define the quotient space. Define a subspace of $BV_0[a, b]$ as

$$H \coloneqq \{\rho \in BV_0[a,b] \colon \langle f,\rho \rangle = 0, \ \forall f \in C[a,b] \}.$$

$$(10)$$

By (6), *H* is closed as the intersection of the kernels of continuous function $\langle f, \cdot \rangle$. Explicitly, *H* is exactly the subspace of $BV_0[a, b]$ consisting of the functions differing from 0 only on at most countable points on (a, b). Hence $BV_0[a, b]/H$ is well-defined. Let π be the natural projection. Define $T: BV_0[a, b]/H \to C[a, b]^*$ by $T(\pi(\rho)) = \langle \cdot, \rho \rangle$. Recall for any $\pi(\rho) \in BV_0[a, b]$, the quotient norm $\|\pi(\rho)\| \leq \|\rho\|$ and for any $h \in H$, $|\langle f, \rho \rangle| = |\langle f, \rho + h \rangle| \leq \|f\|_{\infty} \|\rho + h\|$, we have $\|T\rho\| \leq \|\pi(\rho)\|$. The linear and injectivity follows as we expected. The surjectivity is obtained in the same way in the proof of Theorem 1. Thus $C[a, b]^* = BV_0[a, b]/H$ also holds.

Appendix

In this Appendix, we will establish the intuition that with respect to $\langle f, \cdot \rangle, \forall f \in C[a, b]$, a change at the countable **interior** discountinuities of $\rho \in BV_0[a, b]$ doesn't matter.

Lemma 2. Let $c \in (a, b)$ and $\alpha \in \mathbb{K}$. The Riemann-Stieljes integral $\int_a^b fd(\alpha\chi_{\{c\}}) = 0$ for all $f \in C[a, b]$.

Proof. Let $f \in C[a, b]$ and P be any tagged partition of [a, b]. If c is in the interior of some $[x_k, x_{k-1}]$, then $S(f, \chi_{\{c\}}, P) = 0$. If $c = x_k$ for some $x_k \in (a, b)$, then by choosing the tag $c = x_k$ at both $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$, we have $S(f, \chi_{\{c\}}, P) = \alpha f(c) - \alpha f(c) = 0$. Hence $\int_a^b fd(\alpha\chi_{\{c\}}) = 0$.

Lemma 3. Let $\rho \in BV_0[a, b]$. Denote $(c_n)_{n=1}^{\infty}$ the discountinuous points of ρ in (a, b) and $(\alpha_n)_{n=1}^{\infty}$ the oscillations of ρ , more precisely, $\alpha_n = |\lim_{y \to c_n -} \rho(y) - \lim_{y \to c_n +} \rho(y)|$. For any sequence $(\beta_n)_{n=1}^{\infty}$ such that $|\beta_n| \leq \alpha_n$ for all $n \in \mathbb{N}$, define $\eta = \sum_{n=1}^{\infty} \beta_n \chi_{\{c_n\}}$. Then $\eta \in BV_0[a, b]$ and $\int_a^b f d\eta = 0$ for all $f \in C[a, b]$.

If ρ has only finitely many discontinuities, Lemma 2 finishes the proof.

Proof. Since $\rho \in BV_0[a, b]$, $\sum_{n=1}^{\infty} |\beta_n| \leq \sum_{n=1}^{\infty} \alpha_n \leq V(\rho) < \infty$. Hence for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} |\beta_n| \leq \varepsilon/2$. Then

$$V(\sum_{n=N+1}^{\infty}\beta_n\chi_{\{c_n\}}) \le 2\sum_{n=N+1}^{\infty}|\beta_n| \le \varepsilon.$$

Let $f \in C[a, b]$. By Lemma 2 and (6),

$$|\langle f,\eta\rangle| = \left|\langle f,\sum_{n=1}^N \beta_n \chi_{\{c_n\}}\rangle + \langle f,\sum_{n=N+1}^\infty \beta_n \chi_{\{c_n\}}\rangle\right| \le 0 + ||f||_\infty \varepsilon.$$

Letting $\varepsilon \to 0$, we have $\langle f, \eta \rangle = 0$.

 $\begin{array}{ll} \textit{Proof of (3). Let } \rho \in BV_0[a,b]. \text{ Define } \rho_n \coloneqq \begin{cases} \rho(x+1/n) & \text{if } x \in [a,b-1/n] \\ \rho(b) & \text{if } x \in (b-1/n,b]. \end{cases} \text{ Then it is readily checked that } V(\rho_n) \leq V(\rho) \text{ and } \rho^* = \lim_{n \to \infty} \rho_n. \text{ By the lower semi-continuity of } V(\cdot) \text{ (see e.g. } P_n) \end{cases}$

[Royden-Fitzpatrick Real Analysis, Sec 6.3 Problem 33]), $V(\rho^*) \leq V(\rho)$.

By the definition of ρ^* , we have $\rho^* - \rho = \sum_{n=1}^{\infty} \beta_n \chi_{\{c_n\}}$ for some sequence $(\beta_n)_{n=1}^{\infty}$ satisfying the condition in Lemma 3. Hence $\langle f, \rho^* \rangle = \langle f, \rho \rangle$ for all $f \in C[a, b]$.

Proof of (4). It suffices to prove that if $\rho \in BV_0^+[a,b]$ and $\langle f,\rho\rangle = 0$ for all $f \in C[a,b]$, then $\rho = 0$. Let μ be the measure extended from by ρ^* . Then for any $c \in (a, b], \rho^*(c) =$ $\mu[a,c] = \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \left(\rho^*(a) f_n(a) + \int_a^b f_n d\rho + \int_a^b f_n d\rho^*(a) \chi_{\{a\}} \right) = 0 \text{ where the}$ second equality follows from Lebesgue dominated convergence theorem for sequence $f_n(x) :=$

linear (c, c+1/n] Hence $\rho^* = 0$ on (a, b] and $\rho = 0$ on [a, b]. 0 (c+1/n, b].