Recall

Hahn-Banach Theorem(s)

- Dominated extension. Let Y be a subspace of a vector space X. Let p be a positive homogeneous subadditive function on X. For every linear functional $f \in Y^{\sharp}$ with $f \leq p$ on Y, there exists $F \in X^{\sharp}$ extending f and $F \leq p$ on X.
- Continuous extension. Let Y be a subspace of a normed space X. For every $f \in Y^*$, there exists $F \in X^*$ extending f such that $||F|| = ||f||$.
- Existence of separating functional. For every x_0 in a normed space X, there exists $f \in X^*$ such that $||f|| = 1$ and $f(x_0) = ||x_0||$.
- Chosure point checking. Let Y be a subspace of a normed space X. Then $x \in \overline{Y}$ if and only if for every $f \in X^*$ with $f = 0$ on Y, we have $f(x) = 0$.
- Hyperplane separation. Let C be a closed convex subset of a normed space X and $x_0 \in X \setminus C$. Then there exists $f \in X^*$ such that $\sup_{y \in C} f(C) < f(x_0)$.

(Note that we restrict to normed space since the proof in [LN, Prop. 4.16] has used norm which can be avoided. But *hyperplane separation* holds for locally convex spaces.)

If the dual space X^* is separable, then X is separable.

Recall that to apply *dominated extension* in the proof of *hyperplane separation*, we have introduced the *Minkowski functional* μ_A defined for a set A. The properties of A determine the behavior of μ_A . The way of defining Minkowski functional is useful to construct natural functions from sets and reveals properties of the space.

Let X, Y be normed spaces and $T \in B(X, Y)$. The adjoint operator $T^* \colon Y^* \to X^*$ is (formally) defined as, for $y^* \in Y^*, x \in X$,

 $T^*y^*(x) \coloneqq y^*(Tx).$

Then $T^* \in B(Y^*, X^*)$ and $||T^*|| = ||T||$. (In symmetric notation, $\langle x, T^*y^* \rangle := \langle Tx, y^* \rangle := y^*(Tx)$.)

Dual space of $C[a, b]$

Let [a, b] be a closed bounded interval in R. Let $C[a, b]$ be the space of R-valued functions on [a, b] with the sup-norm $\lVert \cdot \rVert_{\infty}$.

Let $\rho: [a, b] \to \mathbb{R}$ be a real-valued function and $P: \{a = x_0 < \cdots < x_n = b\}$ be a partition of [a, b]. Define the variation of ρ with respect to P by

$$
V(\rho, P) := \sum_{k=1}^{n} |\rho(x_k) - \rho(x_{k+1})|,
$$

and the total variation by

$$
V(\rho) \coloneqq \sup_{P \in \mathcal{P}} V(\rho, P)
$$

1 Prepared by Zhou Feng

where P denotes all the paritions of [a, b]. A function $\rho: [a, b] \to \mathbb{R}$ is called bounded variation if $V(\rho) < \infty$. Let $BV[a, b]$ denote the vector space of all the bounded variations.

Let $f \in C[a, b]$ and $\rho \in BV[a, b]$. Let $P : a = x_0 < \cdots < x_n = b$ with tags $t_k \in [x_{k-1}, x_k]$ be a tagged partition. Define the Riemann-Stieltjes sum with respect to ρ and P by

$$
S(f, \rho, P) = \sum_{k=1}^{n} f(t_k) (\rho(x_k) - \rho(x_{k-1})).
$$

Then the *Riemann-Stieltjes integral* is defined by

$$
\int_a^b f(x)d\rho(x) := \lim_{\|P\| \to 0} S(f, \rho, P).
$$

where $||P||$ denotes the diameter of a partition. The Riemann-Stieljes integral exists by the uniform continuity of f on $[a, b]$.

Observe that $V(\cdot)$ satisfies non-negativity, scaling property and the triangle inequality. However, $V(\cdot)$ is not non-degenerate since $V(\rho) = 0$ only implies that ρ is constant on [a, b]. Hence we restrict to the following subspace (the notation may not be standard)

$$
BV_0[a, b] = \{ \rho \in BV[a, b] : \rho(a) = 0 \} .
$$

Then it is readily checked that $BV_0[a, b]$ is a Banach space under the norm $V(\cdot)$.

To justify the injectivity in our proof, we further remove the redundancy and modify the space to

$$
BV_0^+[a,b] := \left\{ \rho \in BV_0[a,b] : \lim_{y \to x+} \rho(y) = \rho(x), \ \forall x \in (a,b) \right\}.
$$
 (1)

It can be checked that $BV_0^+[a, b]$ is closed in $BV_0[0, 1]$ since the right continuity is preserved by uniform convergence and $\lVert \cdot \rVert_{\infty} \leq V(\cdot)$ on $BV_0[a, b]$.

Remark. The elements in [\(1\)](#page-1-0) are defined explicitly. They can viewed as representatives of classes in a quotient space whose definition shares the same purpose to establish the injectivity. The details are given in the next section.

It follows from Jordan decomposition of $\rho \in BV[a, b]$ that $\rho = \rho_+ - \rho_-$ where ρ_+ and ρ_- are increasing. Hence for $x \in (a, b)$,

$$
\rho^* := \lim_{y \to x+} \rho = \lim_{y \to x+} \rho_+(x) - \lim_{y \to x+} \rho_-(x) \tag{2}
$$

is well defined, i.e., $\rho^* \in BV_0^+[a, b]$. Since ρ_+ and ρ_- are monotone, ρ^* and ρ only differ on the at most countable discountinuities in (a, b) . Moreover, for $\rho \in BV_0[a, b]$,

$$
V(\rho^*) \le V(\rho) \text{ and } \int_a^b f d\rho = \int_a^b f d\rho^* \text{ for all } f \in C[a, b]
$$
 (3)

and for $\rho_1, \rho_2 \in BV_0^+[a, b],$

if
$$
\int_{a}^{b} f d\rho_{1} = \int_{a}^{b} f d\rho_{2}
$$
 for all $f \in C[a, b]$, then $\rho_{1} = \rho_{2} \in BV_{0}^{+}[a, b]$. (4)

The proofs of [\(3\)](#page-1-1) and [\(4\)](#page-1-2) are given in Appendix. After the above modifications, we are ready to state the main theorem.

Theorem 1. Under above notation, $C[a, b]^* = BV_0^+[a, b]$.

Proof. We first introduce some convenient notation. For $f \in C[a, b]$ and $\rho \in BV_0[a, b]$, denote

$$
\langle f, \rho \rangle := \int_a^b f d\rho.
$$

Then $\langle \cdot, \cdot \rangle$: $C[a, b] \times BV_0[a, b] \to \mathbb{R}$ is well defined by the existence of Riemann-Stieltjes integral. It follows from the linearity of summation that for $\alpha \in \mathbb{R}$, $f, \tilde{f} \in C[a, b]$ and $\rho, \tilde{\rho} \in BV_0[a, b],$

$$
\langle \alpha f + \tilde{f}, \rho \rangle = \alpha \langle f, \rho \rangle + \langle \tilde{f}, \rho \rangle \text{ and } \langle f, \alpha \rho + \tilde{\rho} \rangle = \alpha \langle f, \rho \rangle + \langle f, \tilde{\rho} \rangle. \tag{5}
$$

And since for any partition P , we have

$$
\left|\sum_{k=1}^n f(t_k) \left(\rho(x_k) - \rho(x_{k-1})\right)\right| \le ||f||_{\infty} \sum_{k=1}^n |\rho(x_k) - \rho(x_{k-1})| = ||f||_{\infty} V(\rho, P) \le ||f||_{\infty} V(\rho).
$$

Then take the limit $||P|| \rightarrow 0$ on the LHS, we have

$$
|\langle f, \rho \rangle| \le ||f||_{\infty} V(\rho). \tag{6}
$$

By [\(5\)](#page-2-0) and [\(6\)](#page-2-1), for any fixed $\rho \in BV_0^+[a, b]$, the map $\langle \cdot, \rho \rangle : C[a, b] \to \mathbb{R}$ is linear and bounded, i.e., $\langle \cdot, \rho \rangle \in C[a, b]^*$. To complete the proof, we will prove the map

$$
T: BV_0^+[a, b] \to C[a, b]^*
$$

$$
\rho \mapsto \langle \cdot, \rho \rangle
$$

is an isometric isomorphism.

- (i) (linear and injective) By (5) , T is linear. By (4) , T is injective.
- (ii) (surjective) For any $\Lambda \in C[a,b]^*$, we will first find $\rho \in BV_0[a,b]$ such that $\Lambda f = \langle f, \rho \rangle$ for all $f \in C[a, b]$ and then modify ρ to $\rho^* \in BV_0^+[a, b]$.

(Inspired by the 'formal' argument that $\rho(x) - \rho(a) = \int_a^x d\rho = \langle \chi_{[a,x]}, \rho \rangle \approx \Lambda \chi_{[a,x]}$. But we can NOT apply Λ directly to $\chi_{[a,x]}$, which is where Hahn-Banach comes into the stage.) Observing that $C[a, b]$ is a subspace in the normed space $B[a, b]$ of bounded functions, we apply $Hahn-Banach$ to extend Λ to $\Lambda \in B[a, b]^*$ with $\|\tilde{\Lambda}\| = \|\Lambda\|$. Hence we are able to define $\rho(x) \coloneqq \Lambda \chi_{[a,x]}$ for $x \in (a, b]$ and $\rho(0) \coloneqq 0$.

First we check $\rho \in BV_0[a, b]$. For any partition P, write $\theta_k = \text{Sgn}(\rho(x_k) - \rho(x_{k-1}))$. Then by the linearity and $\|\tilde{\Lambda}\| = \|\Lambda\|$,

$$
\sum_{k=1}^{n} |\rho(x_k) - \rho(x_{k-1})| = \sum_{k=1}^{n} \theta_k (\rho(x_k) - \rho(x_{k-1}))
$$

= $\theta_1 \widetilde{\Lambda} \chi_{[a,x_1]} + \sum_{k=2}^{n} \theta_k (\widetilde{\Lambda} \chi_{[a,x_k]} - \widetilde{\Lambda} \chi_{[a,x_{k-1}]})$
= $\widetilde{\Lambda} (\theta_1 \chi_{[a,x_1]} + \sum_{k=2}^{n} \theta_k (\chi_{[a,x_k]} - \chi_{[a,x_{k-1}]}))$
 $\leq ||\widetilde{\Lambda}|| ||\theta_1 \chi_{[a,x_1]} + \sum_{k=2}^{n} \theta_k \chi_{(x_{k-1},x_k]} ||_{\infty}$
= $||\Lambda||$, (7)

3 Prepared by Zhou Feng

where in the last equality we used that the function in $\|\cdot\|_{\infty}$ is bounded by 1. Take supremum over partition P on LHS to obtain $V(\rho) \leq ||\Lambda||$. Hence $\rho \in BV_0[a, b]$.

Next we check $\Lambda f = \langle f, \rho \rangle$ for all $f \in C[a, b]$.

(Inspired by the facts that Riemann-Stieljes integral is contuinous w.r.t. $\|\cdot\|_{\infty}$ and f can by uniformly approximated by step functions.) Let $\varepsilon > 0$. By the uniform continuity of f, there exists δ_1 such that for any partition P with $||P|| \leq \delta_1$, $\sup_{x \in [x_{k-1}, x_k]} |f(x) - f(x_k)| \leq \varepsilon$ for $1 \leq k \leq n$. Then define the step function $\tilde{f} = f(x_1)\chi_{[a,x_1]} + \sum_{k=2}^{n} f(x_k)\chi_{(x_{k-1},x_k]}$

$$
||f - \tilde{f}||_{\infty} \le \varepsilon \tag{8}
$$

By the definition of Riemann-Stieltjes integral, there exists $\delta_2 > 0$, such that for any partition P with $||P|| \leq \delta_2$ and the tags $t_k = x_k, 1 \leq k \leq n$, we have

$$
|\langle f, \rho \rangle - S(f, \rho, P)| \le \varepsilon. \tag{9}
$$

It follows from a similar check in [\(7\)](#page-2-2) that $S(f, \rho, P) = \tilde{\Lambda} \tilde{f}$. Hence when $||P|| < \min{\delta_1, \delta_2}$, by (8) and (9) ,

$$
|\langle f, \rho \rangle - \Lambda f| = \left| \langle f, \rho \rangle - \widetilde{\Lambda} f \right|
$$

\n
$$
\leq \left| \langle f, \rho \rangle - \widetilde{\Lambda} \widetilde{f} \right| + |\widetilde{\Lambda} \widetilde{f} - \widetilde{\Lambda} f|
$$

\n
$$
\leq |\langle f, \rho \rangle - S(f, \rho, P)| + ||\widetilde{\Lambda}|| ||f - \widetilde{f}||_{\infty}
$$

\n
$$
\leq (1 + ||\Lambda||)\varepsilon.
$$

Letting $\varepsilon \to 0$, we have $\langle f, \rho \rangle = \Lambda f$.

Replace ρ with ρ^* defined in [\(2\)](#page-1-3). It follows from [\(3\)](#page-1-1) that $\langle f, \rho^* \rangle = \langle f, \rho \rangle = \Lambda f$ and $V(\rho^*) \leq V(\rho) \leq ||\Lambda||.$

(iii) (isometric) Let $\rho \in BV_0^+[a, b]$. It follows from [\(6\)](#page-2-1), that $||T\rho|| \le V(\rho)$. By [\(ii\),](#page-2-3) there exists $\tilde{\rho} \in BV_0^+[a, b]$ with $V(\tilde{\rho}) \leq ||T\rho||$ and $\langle f, \tilde{\rho} \rangle = \langle f, \rho \rangle$. By [\(i\),](#page-2-4) $\rho = \tilde{\rho} \in BV_0^+[a, b]$. Hence $V(\rho) \leq ||T\rho||$, thus $V(\rho) = ||T\rho||$.

Remark. A similar proof shows [Theorem 1](#page-2-5) also holds when the scalar field is C. These results are the special cases of Riesz representation of $C_0(X)^*$ via Borel regular measures when X is locally compact Hausdorff.

It's good to stop here.

Remark. Actually the explicit candidate in [\(1\)](#page-1-0) is found in a 'cheated' way. We can reason as following, for $\Lambda \in C[a, b]^*$, by the general Riesz representation, there exists a unique Borel regular measure $\mu \in M[a, b]$ such that $\Lambda f = \int_a^b f d\mu$ (the integral is defined in Lebesgue way). Then the cumulative distribution function $F_{\mu}(t) := \mu[a, t]$ is right countinuous (by the continuity of measure) and of bounded variation. Moreover, μ is the measure extension of the premeasure induced by F_μ on semiring $\{a, \emptyset, (c, d], a \leq c < d \leq b\}$. However, notice that for the Dirac measure δ_a (representing the evaluation $\Lambda f = f(a)$), the Riemann-Stieljes integral w.r.t. $F_{\delta_a} = \chi_{[a,b]}$

 \Box

identically vanish on $C[a, b]$! Then we realize the Riemann-Stieltjies integral will 'forget' the jump at a if the ρ is right-continuous at a. Hence we made the following modification for $\mu \in M[a, b],$

$$
\Lambda f = \int_{a}^{b} f d\mu = \mu \{a\} f(a) + \int_{a}^{b} f dF_{\mu} = \int_{a}^{b} f d(F_{\mu} + G_{\mu \{a\}})
$$

where $G_{\mu{a}}(a) := -\mu{a}\chi_{\{a\}}$. Hence $\widetilde{F}_{\mu} := F_{\mu} + G_{\mu{a}} \in BV_0^+[a, b]$.

Then there comes a natural follow-up question that why we don't have to modify the distribution function in the 'Stieljes' integral defined in probability theory (e.g. MATH3280). One reason is that $F(-\infty) = 0$ and the integration is on the whole real line.

A quotient space perspective

Instead of explicitly finding the representatives like [\(1\)](#page-1-0), another natural way to achieve the injectivity is to define the quotient space. Define a subspace of $BV_0[a, b]$ as

$$
H \coloneqq \{ \rho \in BV_0[a, b] : \langle f, \rho \rangle = 0, \ \forall \, f \in C[a, b] \}. \tag{10}
$$

By [\(6\)](#page-2-1), H is closed as the intersection of the kernels of continuous function $\langle f, \cdot \rangle$. Explicitly, H is exactly the subspace of $BV_0[a, b]$ consisting of the functions differing from 0 only on at most countable points on (a, b) . Hence $BV_0[a, b]/H$ is well-defined. Let π be the natural projection. Define $T: BV_0[a, b]/H \to C[a, b]^*$ by $T(\pi(\rho)) = \langle \cdot, \rho \rangle$. Recall for any $\pi(\rho) \in BV_0[a, b]$, the quotient norm $\|\pi(\rho)\| \leq \|\rho\|$ and for any $h \in H$, $|\langle f, \rho \rangle| = |\langle f, \rho + h \rangle| \leq \|f\|_{\infty} \|\rho + h\|$, we have $||T\rho|| \le ||\pi(\rho)||$. The linear and injectivity follows as we expected. The surjectivity is obtained in the same way in the proof of [Theorem 1.](#page-2-5) Thus $C[a, b]^* = BV_0[a, b]/H$ also holds.

Appendix

In this Appendix, we will establish the intuition that with respect to $\langle f, \cdot \rangle$, $\forall f \in C[a, b]$, a change at the countable **interior** discountinuites of $\rho \in BV_0[a, b]$ doesn't matter.

Lemma 2. Let $c \in (a, b)$ and $\alpha \in \mathbb{K}$. The Riemann-Stieljes integral $\int_a^b f d(\alpha \chi_{\{c\}}) = 0$ for all $f \in C[a, b].$

Proof. Let $f \in C[a, b]$ and P be any tagged partition of [a, b]. If c is in the interior of some $[x_k, x_{k-1}]$, then $S(f, \chi_{\{c\}}, P) = 0$. If $c = x_k$ for some $x_k \in (a, b)$, then by choosing the tag $c = x_k$ at both $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$, we have $S(f, \chi_{\{c\}}, P) = \alpha f(c) - \alpha f(c) = 0$. Hence $\int_a^b f d(\alpha \chi_{\{c\}}) = 0.$ \Box

Lemma 3. Let $\rho \in BV_0[a, b]$. Denote $(c_n)_{n=1}^{\infty}$ the discountinuous points of ρ in (a, b) and $(\alpha_n)_{n=1}^{\infty}$ the oscillations of ρ , more precisely, $\alpha_n = \lim_{y \to c_n-} \rho(y) - \lim_{y \to c_n+} \rho(y)$. For any sequence $(\beta_n)_{n=1}^{\infty}$ such that $|\beta_n| \leq \alpha_n$ for all $n \in \mathbb{N}$, define $\eta = \sum_{n=1}^{\infty} \beta_n \chi_{\{c_n\}}$. Then $\eta \in BV_0[a, b]$ and $\int_a^b f d\eta = 0$ for all $f \in C[a, b]$.

If ρ has only finitely many discontinuities, [Lemma 2](#page-4-0) finishes the proof.

Proof. Since $\rho \in BV_0[a, b], \sum_{n=1}^{\infty} |\beta_n| \leq \sum_{n=1}^{\infty} \alpha_n \leq V(\rho) < \infty$. Hence for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} |\beta_n| \leq \varepsilon/2$. Then

$$
V(\sum_{n=N+1}^{\infty} \beta_n \chi_{\{c_n\}}) \le 2 \sum_{n=N+1}^{\infty} |\beta_n| \le \varepsilon.
$$

Let $f \in C[a, b]$. By [Lemma 2](#page-4-0) and [\(6\)](#page-2-1),

$$
|\langle f, \eta \rangle| = \left| \langle f, \sum_{n=1}^N \beta_n \chi_{\{c_n\}} \rangle + \langle f, \sum_{n=N+1}^\infty \beta_n \chi_{\{c_n\}} \rangle \right| \leq 0 + \|f\|_\infty \varepsilon.
$$

Letting $\varepsilon \to 0$, we have $\langle f, \eta \rangle = 0$.

Proof of [\(3\)](#page-1-1). Let $\rho \in BV_0[a, b]$. Define $\rho_n :=$ $\int \rho(x+1/n) \quad \text{if } x \in [a, b-1/n]$ $\rho(b)$ if $x \in (b - 1/n, b].$ Then it is readily

checked that $V(\rho_n) \leq V(\rho)$ and $\rho^* = \lim_{n \to \infty} \rho_n$. By the lower semi-continuity of $V(\cdot)$ (see e.g. [Royden-Fitzpatrick Real Analysis, Sec 6.3 Problem 33]), $V(\rho^*) \le V(\rho)$.

By the definition of ρ^* , we have $\rho^* - \rho = \sum_{n=1}^{\infty} \beta_n \chi_{\{c_n\}}$ for some sequence $(\beta_n)_{n=1}^{\infty}$ satisfying the condition in [Lemma 3.](#page-4-1) Hence $\langle f, \rho^* \rangle = \langle f, \rho \rangle$ for all $f \in C[a, b]$. \Box

Proof of [\(4\)](#page-1-2). It suffices to prove that if $\rho \in BV_0^+[a, b]$ and $\langle f, \rho \rangle = 0$ for all $f \in C[a, b]$, then $\rho = 0$. Let μ be the measure extended from by ρ^* . Then for any $c \in (a, b]$, $\rho^*(c) =$ $\mu[a,c] = \lim_{n\to\infty} \int f_n d\mu = \lim_{n\to\infty} \left(\rho^*(a) f_n(a) + \int_a^b f_n d\rho + \int_a^b f_n d\rho^*(a) \chi_{\{a\}} \right) = 0$ where the \mathcal{L}_{1} second equality follows from Lebesgue dominated convergence theorem for sequence $f_n(x) \coloneqq$

$$
\begin{cases}\n1 & [a, c] \\
\text{linear} & (c, c + 1/n] \\
0 & (c + 1/n, b].\n\end{cases}
$$
\nHence $\rho^* = 0$ on $[a, b]$ and $\rho = 0$ on $[a, b]$.

 \Box