THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2021-22 Term 1 Solution to Homework 3

1. Let $p \in (0,1)$. Define

$$
\ell_p := \left\{ (x_k)_{k=1}^{\infty} \in \mathbb{C} \colon \sum_{k=1}^{\infty} |x_k|^p < \infty \right\}.
$$

For $x = (x_k)_{k=1}^{\infty}$ and $y = (y_k)_{k=1}^{\infty}$ in ℓ_p , define the metric d by

$$
d(x, y) = \sum_{k=1}^{\infty} |x_k - y_k|^p.
$$

Then (ℓ_p, d) is a metric vector space. Let $(b_k)_{k=1}^{\infty}$ be a bounded sequence in \mathbb{C} . Show that

$$
f(x) = \sum_{k=1}^{\infty} b_k x_k \quad \text{for } x = (x_k)_{k=1}^{\infty} \in \ell_p
$$

is a continuous linear functional on the metric vector space (ℓ_p, d) .

Proof. We begin with a useful fact about convex (concave) functions. Since $\phi(x) = x^p, 0$ $p < 1$ is concave on $[0, +\infty)$ and $\phi(0) \geq 0$, then for $xy = 0$, $\phi(x + y) \leq \phi(x) + \phi(y)$ and for $x, y > 0$,

$$
\phi(x) = \phi\left(\frac{x}{x+y} \cdot (x+y) + \frac{y}{x+y} \cdot 0\right) \ge \frac{x}{x+y} \phi(x+y) + \frac{y}{x+y} \phi(0) \ge \frac{x}{x+y} \phi(x+y);
$$

$$
\phi(y) = \phi\left(\frac{y}{x+y} \cdot (x+y) + \frac{x}{x+y} \cdot 0\right) \ge \frac{y}{x+y} \phi(x+y) + \frac{x}{x+y} \phi(0) \ge \frac{y}{x+y} \phi(x+y).
$$

Combining the above inequalities gives $\phi(x + y) \leq \phi(x) + \phi(y)$ for $x, y \geq 0$ (subadditivity). Then for $(x_k)_{k=1}^{\infty} \in \mathbb{C}$,

$$
\sum_{k=1}^{n} |x_k| = \left(\sum_{k=1}^{n} |x_k|\right)^{p \cdot (1/p)} \leq \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p},
$$

where the last inequality is by the subadditivity of x^p . Letting $n \to \infty$, by monotoneness and continuity we have

$$
\sum_{k=1}^{\infty} |x_k| \le (\sum_{k=1}^{\infty} |x_k|^p)^{1/p}.
$$
 (1)

Next we prove f is a continuous linear functional. Denote $b = (b_k)_{k=1}^{\infty}$. Then $||b||_{\infty} < \infty$.

(i) (well-defined) Let $x = (x_k)_{k=1}^{\infty} \in \ell_p$. Then $\sum_{k=1}^{\infty} |x_k|^p < \infty$, thus $\sum_{k=1}^{\infty} |x_k| < \infty$ by [\(1\)](#page-0-0). Hence

$$
|f(x)| = \left|\sum_{k=1}^{\infty} b_k x_k\right| \le \sum_{k=1}^{\infty} |b_k x_k| \le ||b||_{\infty} \sum_{k=1}^{\infty} |x_k| < \infty.
$$

(ii) (linear) For $\alpha \in \mathbb{C}$ and $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty} \in \ell_p$,

$$
f(\alpha x + y) = \sum_{k=1}^{\infty} b_k(\alpha x_k + y_k) = \alpha \sum_{k=1}^{\infty} b_k x_k + \sum_{k=1}^{\infty} b_k y_k = \alpha f(x) + f(y).
$$

(iii) (continuous) For any $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty} \in \ell_p$,

$$
|f(x) - f(y)| = \left| \sum_{k=1}^{\infty} b_k (x_k - y_k) \right|
$$

\n
$$
\leq \sum_{k=1}^{\infty} |b_k| |x_k - y_k|
$$

\n
$$
\leq ||b||_{\infty} \sum_{k=1}^{\infty} |x_k - y_k|
$$

\n
$$
\leq ||b||_{\infty} d(x, y)^{1/p},
$$

where the last inequality follows from (1) . Hence f is continuous at x.

- \Box
- 2. Let $C[0,1]$ be the vector space of continuous functions on [0,1]. Define $\delta(x) = x(0)$ for $x \in C[0,1].$
	- (a) Show that δ is a bounded linear functional if $C[0, 1]$ is endowed with the sup-norm. Find the norm of δ .
	- (b) Show that δ is an unbounded linear functional if $C[0, 1]$ is endowed with the norm

$$
||x|| = \int_0^1 |x(t)| dt.
$$

Proof. For $\alpha \in \mathbb{C}$ and $x, y \in C[0, 1]$, we have

$$
\delta(\alpha x + y) = (\alpha x + y)(0) = \alpha x(0) + y(0) = \alpha \delta(x) + \delta(y).
$$

Then δ is linear.

- (a) For any $x \in C[0,1]$, we have $|\delta(x)| = |x(0)| \le ||x||_{\infty}$, thus $||\delta|| \le 1$. Let $x_0 \equiv 1$ on [0, 1]. Then $x_0 \in C[0, 1]$ and $||x_0||_{\infty} = 1$. It follows from $|\delta(x_0)| = |x_0(0)| = 1$ that $\|\delta\| \geq 1$. Together we have $\|\delta\| = 1$.
- (b) For $n \in \mathbb{N}$, define

$$
x_n(t) = \begin{cases} n - n^2 t/2 & t \in [0, 2/n]; \\ 0 & t \in (2/n, 1]. \end{cases}
$$

Then $x_n \in C[0,1]$ and $||x_n|| = \int_0^1 |x_n(t)| dt = 1$. It follows from $|\delta(x_n)| = |x_n(0)| = n$ that $\|\delta\| \geq n$. Letting $n \to \infty$, we have δ is unbounded.

 \Box

 $-$ THE END $-$