THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH4010 Functional Analysis 2021-22 Term 1

Solution to Homework 3

1. Let $p \in (0,1)$. Define

$$\ell_p := \left\{ (x_k)_{k=1}^{\infty} \in \mathbb{C} \colon \sum_{k=1}^{\infty} |x_k|^p < \infty \right\}.$$

For $x = (x_k)_{k=1}^{\infty}$ and $y = (y_k)_{k=1}^{\infty}$ in ℓ_p , define the metric d by

$$d(x,y) = \sum_{k=1}^{\infty} |x_k - y_k|^p.$$

Then (ℓ_p, d) is a metric vector space. Let $(b_k)_{k=1}^{\infty}$ be a bounded sequence in \mathbb{C} . Show that

$$f(x) = \sum_{k=1}^{\infty} b_k x_k \quad \text{ for } x = (x_k)_{k=1}^{\infty} \in \ell_p$$

is a continuous linear functional on the metric vector space (ℓ_p, d) .

Proof. We begin with a useful fact about convex (concave) functions. Since $\phi(x) = x^p, 0 is concave on <math>[0, +\infty)$ and $\phi(0) \ge 0$, then for xy = 0, $\phi(x+y) \le \phi(x) + \phi(y)$ and for x, y > 0,

$$\phi(x) = \phi\left(\frac{x}{x+y} \cdot (x+y) + \frac{y}{x+y} \cdot 0\right) \ge \frac{x}{x+y}\phi(x+y) + \frac{y}{x+y}\phi(0) \ge \frac{x}{x+y}\phi(x+y);$$

$$\phi(y) = \phi\left(\frac{y}{x+y} \cdot (x+y) + \frac{x}{x+y} \cdot 0\right) \ge \frac{y}{x+y}\phi(x+y) + \frac{x}{x+y}\phi(0) \ge \frac{y}{x+y}\phi(x+y).$$

Combining the above inequalities gives $\phi(x+y) \leq \phi(x) + \phi(y)$ for $x, y \geq 0$ (subadditivity). Then for $(x_k)_{k=1}^{\infty} \in \mathbb{C}$,

$$\sum_{k=1}^{n} |x_k| = \left(\sum_{k=1}^{n} |x_k|\right)^{p \cdot (1/p)} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p},$$

where the last inequality is by the subadditivity of x^p . Letting $n \to \infty$, by monotoneness and continuity we have

$$\sum_{k=1}^{\infty} |x_k| \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}.$$
 (1)

Next we prove f is a continuous linear functional. Denote $b = (b_k)_{k=1}^{\infty}$. Then $||b||_{\infty} < \infty$.

(i) (well-defined) Let $x=(x_k)_{k=1}^{\infty}\in\ell_p$. Then $\sum_{k=1}^{\infty}|x_k|^p<\infty$, thus $\sum_{k=1}^{\infty}|x_k|<\infty$ by (1). Hence

$$|f(x)| = \left| \sum_{k=1}^{\infty} b_k x_k \right| \le \sum_{k=1}^{\infty} |b_k x_k| \le ||b||_{\infty} \sum_{k=1}^{\infty} |x_k| < \infty.$$

(ii) (linear) For $\alpha \in \mathbb{C}$ and $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty} \in \ell_p$,

$$f(\alpha x + y) = \sum_{k=1}^{\infty} b_k (\alpha x_k + y_k) = \alpha \sum_{k=1}^{\infty} b_k x_k + \sum_{k=1}^{\infty} b_k y_k = \alpha f(x) + f(y).$$

(iii) (continuous) For any $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty} \in \ell_p$,

$$|f(x) - f(y)| = \left| \sum_{k=1}^{\infty} b_k (x_k - y_k) \right|$$

$$\leq \sum_{k=1}^{\infty} |b_k| |x_k - y_k|$$

$$\leq ||b||_{\infty} \sum_{k=1}^{\infty} |x_k - y_k|$$

$$\leq ||b||_{\infty} d(x, y)^{1/p},$$

where the last inequality follows from (1). Hence f is continuous at x.

2. Let C[0,1] be the vector space of continuous functions on [0,1]. Define $\delta(x)=x(0)$ for $x\in C[0,1]$.

- (a) Show that δ is a bounded linear functional if C[0,1] is endowed with the sup-norm. Find the norm of δ .
- (b) Show that δ is an unbounded linear functional if C[0,1] is endowed with the norm

$$||x|| = \int_0^1 |x(t)| dt.$$

Proof. For $\alpha \in \mathbb{C}$ and $x, y \in C[0, 1]$, we have

$$\delta(\alpha x + y) = (\alpha x + y)(0) = \alpha x(0) + y(0) = \alpha \delta(x) + \delta(y).$$

Then δ is linear.

- (a) For any $x \in C[0,1]$, we have $|\delta(x)| = |x(0)| \le ||x||_{\infty}$, thus $||\delta|| \le 1$. Let $x_0 \equiv 1$ on [0,1]. Then $x_0 \in C[0,1]$ and $||x_0||_{\infty} = 1$. It follows from $|\delta(x_0)| = |x_0(0)| = 1$ that $||\delta|| \ge 1$. Together we have $||\delta|| = 1$.
- (b) For $n \in \mathbb{N}$, define

$$x_n(t) = \begin{cases} n - n^2 t/2 & t \in [0, 2/n]; \\ 0 & t \in (2/n, 1]. \end{cases}$$

Then $x_n \in C[0,1]$ and $||x_n|| = \int_0^1 |x_n(t)| dt = 1$. It follows from $|\delta(x_n)| = |x_n(0)| = n$ that $||\delta|| \ge n$. Letting $n \to \infty$, we have δ is unbounded.