THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2021-22 Term 1 Solution to Homework 2

1. Show that vectors (e_n) , where e_n is the sequence whose *n*-th term is 1 and all other terms are zero,

$$e_1 = (1, 0, 0, \ldots),$$

 $e_2 = (0, 1, 0, \ldots),$
...

form a Schauder basis in ℓ^p for every $p \in [1, +\infty)$ and in the spaces c_0 and c_{00} .

Proof. Let $x = (x(i))_{i=1}^{\infty}$ be a sequence in \mathbb{R} or \mathbb{C} . For every $n \in \mathbb{N}$, define $s_n = \sum_{i=1}^n x(i)e_i$. Then $s_n \in c_{00} \subset \ell^{1 \leq p < \infty} \subset c_0$ for all $n \in \mathbb{N}$. Note that $x - s_n = (0, \ldots, 0, x(n+1), \ldots)$.

Convergence of the series

(a) If $x \in \ell^p$, $1 \leq p < \infty$, then $(\sum_{i=1}^{\infty} |x(i)|^p)^{1/p} = ||x||_p < \infty$. For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \geq N$, $(\sum_{i=n+1}^{\infty} |x(i)|^p)^{1/p} \leq \varepsilon$, thus

$$||x - s_n||_p = (\sum_{i=n+1}^{\infty} |x(i)|^p)^{1/p} \le \varepsilon$$

Hence s_n converges to x in $\|\cdot\|_p$, i.e., $x = \lim_{n \to \infty} s_n = \sum_{i=1}^{\infty} x(i)e_i$ in ℓ^p .

(b) If $x \in c_{00}$ or c_0 , then for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \ge N$, $\sup_{i \ge n+1} |x(i)| \le \varepsilon$, thus

$$|x - s_n||_{\infty} = \sup_{i \ge n+1} |x(i)| \le \varepsilon.$$

Hence s_n converges to x in $\|\cdot\|_{\infty}$, i.e., $x = \lim_{n \to \infty} s_n = \sum_{i=1}^{\infty} x(i)e_i$ in c_{00} or c_0 . Uniqueness of the expansion

Let $(\alpha(i))_{i=1}^{\infty}$ be a sequence of scalars such that $\sum_{i=1}^{\infty} \alpha(i)e_i = 0 \in \ell^p, 1 \leq p < \infty$ or c_{00} or c_0 . It suffices prove that $\alpha(i) = 0$ for all $i \in \mathbb{N}$.

Suppose on the contrary that there exists $n_0 \in \mathbb{N}$ such that $\alpha(n_0) \neq 0$. Let $\|\cdot\|$ denote $\|\cdot\|_{\infty}$ or $\|\cdot\|_p$. Since $\|\cdot\|_p \geq \|\cdot\|_{\infty}$, we have $\|\cdot\| \geq \|\cdot\|_{\infty}$. By the convergence of $\sum_{i=1}^{\infty} \alpha(i)e_i$ in $\|\cdot\|$, there exists $N \geq n_0$ such that $\|\sum_{i=N+1}^{\infty} \alpha(i)e_i\| < |\alpha(n_0)|/2$. It follows from the triangle inequality that

$$0 = \|\sum_{i=1}^{\infty} \alpha(i)e_i\| \ge \|\sum_{i=1}^{N} \alpha(i)e_i\| - \|\sum_{i=N+1}^{\infty} \alpha(i)e_i\| \\ \ge \|\sum_{i=1}^{N} \alpha(i)e_i\|_{\infty} - \frac{|\alpha(n_0)|}{2} \\ \ge |\alpha(n_0)| - \frac{|\alpha(n_0)|}{2} > 0,$$

which is a contradiction. Hence $\alpha(n) = 0$ for all $n \in \mathbb{N}$.

2. Let $X = \{x \in C[0,1] : x(0) = 0\}$ with the sup-norm, and let f be a linear functional on X defined by

$$f(x) = \int_0^1 x(t)dt.$$

Show that ||f|| = 1.

Proof. Since $|f(x)| = \left| \int_0^1 x(t) dt \right| \le \int_0^1 |x(t)| dt \le ||x||_{\infty}$, we have $||f|| \le 1$. For any $\varepsilon > 0$ small, define

$$x_{\varepsilon}(t) = \begin{cases} \frac{t}{\varepsilon} & \text{if } t \in [0, \varepsilon], \\ 1 & \text{if } t \in (\varepsilon, 1]. \end{cases}$$

Then $x_{\varepsilon} \in X$ with $||x_{\varepsilon}||_{\infty} = 1$ and $|f(x_{\varepsilon})| = |\int_{0}^{1} x_{\varepsilon}(t)dt| = 1 - \varepsilon/2$. Hence $||f|| \ge 1 - \varepsilon/2$. Letting $\varepsilon \to 0$, we have $||f|| \ge 1$, thus ||f|| = 1.

- The end -