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1. Show that

‖x‖ =
n∑

k=0

sup
t∈[0,1]

|x(k)(t)| (1)

is a norm on Cn[0, 1].

Proof. Recall that for any function x ∈ Cn[0, 1], we have for each 1 ≤ k ≤ n, x(k) exists and is
continuous. It follows from the continuity of x(k), the compactness of [0, 1], and the finiteness
of the summation that ‖x‖ <∞.

Next we check ‖ · ‖ is indeed a norm.

(i) By definition, ‖ · ‖ is non-negative. If ‖x‖ = 0, then supt∈[0,1] |x(t)| ≤ ‖x‖ = 0, thus x = 0
on [0, 1].

(ii) For any α ∈ K and x ∈ Cn[0, 1],

‖αx‖ =
n∑

k=0

sup
t∈[0,1]

|αx(k)(t)| = |α|
n∑

k=0

sup
t∈[0,1]

|x(k)(t)| = |α|‖x‖.

(iii) For any x, y ∈ Cn[0, 1], by the triangle inequality of | · | in K and the definition of sup,

‖x+ y‖ =
n∑

k=0

sup
t∈[0,1]

|x(k)(t) + y(k)(t)|

≤
n∑

k=0

sup
t∈[0,1]

(
|x(k)(t)|+ |y(k)(t)|

)
≤

n∑
k=0

sup
t∈[0,1]

|x(k)(t)|+ sup
t∈[0,1]

|y(k)(t)|

=
n∑

k=0

sup
t∈[0,1]

|x(k)(t)|+
n∑

k=0

sup
t∈[0,1]

|y(k)(t)| = ‖x‖ + ‖y‖.

2. Let K be a compact topological space. Prove that the spaces C(K) with sup-norm and Cn[0, 1]
with the norm defined in (1) are Banach spaces.

Proof. Denote the sup-norm on C(K) by ‖ · ‖∞ and the norm defined in (1) by ‖ · ‖. By
similar arguments in the previous question ‖ · ‖∞ and ‖ · ‖ are norms. It suffices to check the
completeness of the norms.

(a) Let (xn)∞n=1 be any Cauchy sequence in C(K).

We first find the candidate of the limit. Take any point t ∈ K. By the definition of
Cauchy sequence, for any ε > 0, when m,n ∈ N large enough, we have

|xm(t)− xn(t)| ≤ sup
s∈K
|xm(s)− xn(s)| ≤ ε. (2)
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Hence (xn(t))∞n=1 is a Cauchy sequence in K. By the completeness of K, there exists
x(t) = limn→∞ xn(t) for any t ∈ K. Define a function x : K → K by assigning x(t) to
each point t ∈ K. Letting m→∞ in (2), we have supt∈K |x(t)− x(t)| ≤ ε when n large
enough.

Next we check x ∈ C(K). Take any t ∈ K. For any ε > 0. Let N be large enough
such that sups∈K |x(s)− xN(s)| ≤ ε/3. On the other hand, by the continuity of xN , there
exists an neighborhood O of t such that for all s ∈ O, |xN(t) − xN(s)| ≤ ε/3. Hence for
all s ∈ O,

|x(t)− x(s)| ≤ |x(t)− xN(t)|+ |xN(t)− xN(s)|+ |xN(s)− x(s)| ≤ ε

3
+
ε

3
+
ε

3
= ε.

Hence x ∈ C(K) by the arbitrariness of t. Together we have xn
‖·‖∞−−→ x ∈ C(K) as n→∞

(b) Let (xi)
∞
i=1 be any Cauchy sequence in Cn[0, 1]. Since for any i, j ∈ N,

‖xi − xj‖∞ ≤ ‖xi − xj‖ and ‖x(1)i − x
(1)
j ‖∞ ≤ ‖xi − xj‖,

by (a), there exist x ∈ C[0, 1] such that xi
‖·‖∞−−→ x and y1 ∈ C[0, 1] such that x

(1)
i

‖·‖∞−−→ y1
as i→∞. By the uniform convergence of (x

(1)
i )∞i=1 and the convergence of (xi)

∞
i=1, we have

x(1) = y1 (see e.g. MATH2060). Similarly for k = 2, . . . , n, we find yk = limi→∞ x
(k)
i ∈

C[0, 1] in ‖ · ‖∞. Then sequentially apply the uniform convergence to conclude x(k) = yk.
Hence x ∈ Cn[0, 1]. Since n is finite, write y0 = x,

lim
i→∞
‖x− xi‖ = lim

i→∞

n∑
k=0

‖yk − x(k)i ‖∞ =
n∑

k=0

lim
i→∞
‖yk − x(k)i ‖∞ = 0.

Thus xn
‖·‖−→ x ∈ Cn[0, 1] as n→∞.

— THE END —

2


