THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2021-22 Term 1 Solution to Homework 1

1. Show that

$$
||x|| = \sum_{k=0}^{n} \sup_{t \in [0,1]} |x^{(k)}(t)| \tag{1}
$$

is a norm on $C^n[0,1]$.

Proof. Recall that for any function $x \in Cⁿ[0,1]$, we have for each $1 \leq k \leq n$, $x^{(k)}$ exists and is continuous. It follows from the continuity of $x^{(k)}$, the compactness of [0, 1], and the finiteness of the summation that $||x|| < \infty$.

Next we check $\|\cdot\|$ is indeed a norm.

- (i) By definition, $\|\cdot\|$ is non-negative. If $||x|| = 0$, then $\sup_{t\in[0,1]} |x(t)| \le ||x|| = 0$, thus $x = 0$ on [0, 1].
- (ii) For any $\alpha \in \mathbb{K}$ and $x \in C^n[0,1],$

$$
\|\alpha x\| = \sum_{k=0}^{n} \sup_{t \in [0,1]} |\alpha x^{(k)}(t)| = |\alpha| \sum_{k=0}^{n} \sup_{t \in [0,1]} |x^{(k)}(t)| = |\alpha| \|x\|.
$$

(iii) For any $x, y \in Cⁿ[0, 1]$, by the triangle inequality of $|\cdot|$ in K and the definition of sup,

$$
||x + y|| = \sum_{k=0}^{n} \sup_{t \in [0,1]} |x^{(k)}(t) + y^{(k)}(t)|
$$

\n
$$
\leq \sum_{k=0}^{n} \sup_{t \in [0,1]} (|x^{(k)}(t)| + |y^{(k)}(t)|)
$$

\n
$$
\leq \sum_{k=0}^{n} \sup_{t \in [0,1]} |x^{(k)}(t)| + \sup_{t \in [0,1]} |y^{(k)}(t)|
$$

\n
$$
= \sum_{k=0}^{n} \sup_{t \in [0,1]} |x^{(k)}(t)| + \sum_{k=0}^{n} \sup_{t \in [0,1]} |y^{(k)}(t)| = ||x|| + ||y||.
$$

2. Let K be a compact topological space. Prove that the spaces $C(K)$ with sup-norm and $Cⁿ[0,1]$ with the norm defined in (1) are Banach spaces.

Proof. Denote the sup-norm on $C(K)$ by $\|\cdot\|_{\infty}$ and the norm defined in [\(1\)](#page-0-0) by $\|\cdot\|$. By similar arguments in the previous question $\|\cdot\|_{\infty}$ and $\|\cdot\|$ are norms. It suffices to check the completeness of the norms.

(a) Let $(x_n)_{n=1}^{\infty}$ be any Cauchy sequence in $C(K)$. We first find the candidate of the limit. Take any point $t \in K$. By the definition of Cauchy sequence, for any $\varepsilon > 0$, when $m, n \in \mathbb{N}$ large enough, we have

$$
|x_m(t) - x_n(t)| \le \sup_{s \in K} |x_m(s) - x_n(s)| \le \varepsilon. \tag{2}
$$

Hence $(x_n(t))_{n=1}^{\infty}$ is a Cauchy sequence in K. By the completeness of K, there exists $x(t) = \lim_{n \to \infty} x_n(t)$ for any $t \in K$. Define a function $x \colon K \to \mathbb{K}$ by assigning $x(t)$ to each point $t \in K$. Letting $m \to \infty$ in [\(2\)](#page-0-1), we have $\sup_{t \in K} |x(t) - x(t)| \leq \varepsilon$ when n large enough.

Next we check $x \in C(K)$. Take any $t \in K$. For any $\varepsilon > 0$. Let N be large enough such that $\sup_{s\in K} |x(s)-x_N(s)| \leq \varepsilon/3$. On the other hand, by the continuity of x_N , there exists an neighborhood O of t such that for all $s \in O$, $|x_N(t) - x_N(s)| \leq \varepsilon/3$. Hence for all $s \in O$,

$$
|x(t) - x(s)| \le |x(t) - x_N(t)| + |x_N(t) - x_N(s)| + |x_N(s) - x(s)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$

Hence $x \in C(K)$ by the arbitrariness of t. Together we have $x_n \xrightarrow{|| \cdot ||_{\infty}} x \in C(K)$ as $n \to \infty$ (b) Let $(x_i)_{i=1}^{\infty}$ be any Cauchy sequence in $Cⁿ[0, 1]$. Since for any $i, j \in \mathbb{N}$,

$$
||x_i - x_j||_{\infty} \le ||x_i - x_j||
$$
 and $||x_i^{(1)} - x_j^{(1)}||_{\infty} \le ||x_i - x_j||$,

by [\(a\),](#page-0-2) there exist $x \in C[0,1]$ such that $x_i \xrightarrow{\|\cdot\|_{\infty}} x$ and $y_1 \in C[0,1]$ such that $x_i^{(1)}$ $x_i^{(1)} \xrightarrow{\|\cdot\|_{\infty}} y_1$ as $i \to \infty$. By the uniform convergence of $(x_i^{(1)})$ $\binom{1}{i}\}_{i=1}^{\infty}$ and the convergence of $(x_i)_{i=1}^{\infty}$, we have $x^{(1)} = y_1$ (see e.g. MATH2060). Similarly for $k = 2, \ldots, n$, we find $y_k = \lim_{i \to \infty} x_i^{(k)} \in$ $C[0, 1]$ in $\|\cdot\|_{\infty}$. Then sequentially apply the uniform convergence to conclude $x^{(k)} = y_k$. Hence $x \in C^n[0,1]$. Since *n* is finite, write $y_0 = x$,

$$
\lim_{i \to \infty} ||x - x_i|| = \lim_{i \to \infty} \sum_{k=0}^{n} ||y_k - x_i^{(k)}||_{\infty} = \sum_{k=0}^{n} \lim_{i \to \infty} ||y_k - x_i^{(k)}||_{\infty} = 0.
$$

Thus $x_n \xrightarrow{\|\cdot\|} x \in C^n[0,1]$ as $n \to \infty$.

 $-$ THE END $-$