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1 ±∞ as Limits

We will be mainly investigating sequences that diverge in this note.

Definition 1.1. Let (xn) be a sequence of real numbers. Then we say that

• (xn) diverges to +∞, or limxn = +∞, if for all M > 0 there exists N ∈ N such that xn ≥ M
for all n ≥ N (that is xn ≥ M eventually)

• (xn) diverges to −∞, or limxn = −∞, if for all M > 0 there exists N ∈ N such that xn ≤ −M
for all n ≥ N (that is xn ≤ −M eventually)

Example 1.2. Let xn := n/
√
1 + n for all n ∈ N. Show that limxn = ∞.

Solution. Let M > 0. Let N ∈ N such that N > M by Archimedean Property. Suppose n ≥ 4N2.

We have xn =
n√
1 + n

≥ n√
3n+ n

=

√
n

2
≥

√
4N2

2
= N ≥ M . We conclude by definition.

Example 1.3 (Generalized Monotone Convergence). Let (xn) be an increasing sequence. Show that
it either converges or diverges to ∞.

Solution. We split the question to two cases. First, suppose (xn) is unbounded. Let M > 0. By
unboundedness, there exists N ∈ N such that xN ≥ M . Note that (xn) is increasing; therefore
xn ≥ xN ≥ M for all n ≥ N . By definition, limxn = ∞.
We leave the bounded part to the readers.

Example 1.4 (Generalized Compactness Theorem). Let (xn) be a sequence. Show that it either
has a subsequence that converges, a subsequence that diverges to ∞ or one that diverges to −∞
Solution. We leave it to the readers.

Example 1.5. Let (xn) be a sequence of positive real numbers. Show that lim 1/xn = 0 if and only
if limxn = ∞.

Solution. (⇒). Let M > 0. Then there exists N ∈ N such that 1/xn < 1/M for all n ∈ N. This
imples that xn ≥ M for all n ≥ N .
(⇐). Let ϵ > 0. Then there exists N ∈ N such that xn ≥ 1/ϵ for all n ≥ N . This imples that
0 ≤ 1/xn ≤ ϵ for all n ≥ N .

Remark. The requirement of positivity (or negativity) in this example is important. Consider xn :=
(−1)nn for all n ∈ N. Then clearly lim 1/xn = 0, but neither limxn = ∞ nor limxn = −∞.

Example 1.6. Let xn := 2n for all n ∈ N. Show that it is unbounded.

Solution. Note that lim 1/xn = (1/2)n = 0 by considering subsequences. Therefore limxn = ∞.
Note that (xn) is increasing. By the generalized monotone convergence, it must be the case that
(xn) is unbounded.

Of course the above argument seems to be too much: the unboundedness of (2n) can be shown using
the binomial theorem. This is because we have for all n ∈ N.

2n = (1 + 1)n =

(
n

0

)
+

(
n

1

)
+ · · ·

(
n

n

)
≥ 1 + n

Quick Practice.

1. Let (fn) and (gn) be two sequences of positive numbers. We write fn = O(gn) if there exists
C > 0 such that fn ≤ Cgn eventually. (This is the big-O notation.)

a). Show that if lim fn = ∞ then lim gn = ∞.

b). Is the converse of part (a) true?

c). Show that fn = O(gn) if and only if lim fn/gn < ∞

2. Let (fn) and (gn) be two sequences of positive numbers. We write fn = o(gn) if for all c > 0
we have that fn ≤ cgn eventually. (This is the small-o notation.)

a). Show that fn = o(gn) if and only if limn gn/fn = ∞
b). Suppose fn = o(gn) and gn = o(hn) where f, g, h are sequences of positive numbers. Show

that fn = o(hn).

c). If fn = o(gn) and gn = o(fn), what can we say about the sequences?

d). Let xn := 2n, yn := n! zn := nn and wn := n3 for all n ∈ N. Determine all possible
asymptotic (big O, small o) among the sequences.
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2 Some other Ways of Assigning Limits

Definition 2.1 (Cesáro Summability). Let (xn) be a sequence of real numbers. Define

c(xn) =
1

n
(x1 + · · ·+ xn)

for all n ∈ N. Then we say that (xn) is Cesáro summable if lim c(xn) exists.

Remark. The terminology here may be a bit different from those in existing literature.

Example 2.2. Consider xn := (−1)n. Then it is a divergent sequence. However (xn) is Cesáro
summable. In fact it is not hard to see that lim c(xn) = 0.

Proposition 2.3. Let (xn) be a sequence of real numbers. Suppose limxn = x ∈ N. Then (xn) is
Cesáro summable and lim c(xn) = x

Proof. It suffices to consider the case where x = 0 (why?). Suppose limxn = 0. Let ϵ > 0. Then
there exists N ∈ N such that n ≥ N would imply |xn| < ϵ. Furthermore, let J ∈ N such that

1/J < ϵ/
∑N

i=1 |xi| (we can safely suppose that
∑N

i=1 |xi| ≠ 0 (why?)).Now suppose n ≥ J,N . Then
we have

|c(xn)| =

∣∣∣∣∣ 1n
n∑

i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣ 1n

N∑
i=1

xi +
1

n

n∑
i=N+1

xi

∣∣∣∣∣
≤ 1

n

N∑
i=1

|xi|+
1

n

n∑
i=N+1

|xi|

≤ 1

J

N∑
i=1

|xi|+
n−N

n
ϵ ≤ ϵ+ ϵ = 2ϵ

It follows that lim c(xn) = 0 = limxn.

Quick Practice.

1. Let (xn) be a sequence. Define c(xn) := (x1 + · · ·+ xn)/n.

a). Show that if (c(xn)) converge, then limxn/n = 0.

b). Construct a sequence such that lim c(xn) does not exist.

2. Let A ⊂ N be a subset of natural numbers. Then for all n ∈ N, we define

dn(A) :=
|A ∩ [1, n]|

n
=

number of elements in A ∩ [1, n]

n

the probability of occurence of A in first n natural numbers. Clearly dn(A) ∈ [0, 1] for all
n ∈ N. If (dn(A)) converges, we say that A has natural density d(A) := lim dn(A).

a). Let E := {2n : n ∈ N} be the set of even numbers. Show that d(E) = 1/2.

b). Let S := {n2 : n ∈ N} be the set of square numbers. Show that d(S) = 0.

c). Let (xn) be a sequence of real numbers. We say that (xn) converges statistically to
x ∈ R if for all ϵ > 0 that set

Aϵ := {n ∈ N : |xn − x| ≥ ϵ}

has natural density d(Aϵ) = 0.

i. Show that if (xn) converges in the ordinary sense to x ∈ R, than (xn) converges to x
statistically.

ii. Find an example of a sequence (xn) that diverges in the ordinary sense but converges
statistically.
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