
MATH 2058 - Home Project - Suggested Solutions (in brief)

1. (30 marks)

(a) Let S be a countably infinite bounded subset of R. Let D be the set of all limit points of S. Show that there
exists a family of infinite subsets of N, indexed by D, say F := {Nα : |Nα| = ∞, α ∈ D}, such that Nα ∩Nβ

is a finite set for all α ̸= β ∈ D.

(b) Using part (a), show that there is an uncountable familiy of infinite subsets of N, {Ni}i∈I where I uncountable,
such that Nα ∩Nβ is a finite set when α ̸= β ∈ I

(c) Let U be a non-empty collection of subsets of N such that

(i). For all A,B ∈ U , we have A ∩B ∈ U and A ∩B ̸= ϕ

(ii). For all A ⊂ N we have A ∈ U or Ac ∈ U
Let (xn) be a bounded sequene of real numbers. Show that there exists L such that for all ϵ > 0 such that
{n :∈ N : |xn − L| < ϵ} ∈ U . Is such L unique?

Solution.

(a) (cf. Tutorial 4 P. 2 Q3). We first construct a family of infinite subsets of S instead of N that has the given
property.
Note that x ∈ D, a limit point of S, if and only if there exists a sequence (sn) in S\{x} such that lim sn = x.
Now for all d ∈ D, let (sd,n) be a sequence in S\{d} ⊂ S such that limn sd,n = d. Define Nd := {sd,n} ⊂ S
for all d ∈ D. Note that Nd are infinite subsets. Suppose not, that is, if Nd is a finite set for some d, then the
sequence (sd,n) is finite-valued. It follows that some value must attain infinitely many times, and so there is
a subsequence converging to that value. However sd,n ̸= d for all n ∈ N. Therefore, that subsequence does
not converge to d, which is not possible. It must be the case that Nd is infinite.
Next, we show that {Nd}d∈D satisfies that Nd ∩Nc to be finite for all d ̸= c.

Method 1: Direct Proof. Note that c ̸= d, take ϵ := |c− d|/4. It follows that there exists K1,K2 such
that

|sd,n − d| < ϵ, n ≥ K1 |sc,n − c| < ϵ, n ≥ K2

Hence, for all n ≥ K1 and m ≥ K2, we have

|sd,n − sc,m| = |sd,n − d+ d− c+ c− sc,m| ≥ |d− c| − |sd,n − d+ c− sc,m|
≥ |c− d| − |sd,n − d| − |c− sc,m| ≥ |c− d| − |c− d|/4− |c− d|/4
= |c− d|/2 > 0

Hence, sd,n ̸= sc,m for all n ≥ K1 and m ≥ K2. It follows that at most K2 terms in (sd,n)n≥K1 ⊂ Nd are in
Nc ∩ Nd while at most K1 terms in (sc,n)n≥K2 are in Nc ∩ Nd since the two tails share no common value.
Hence Nc ∩Nd is a finite set.

Method 2: Proof by Contradiction. Suppose not. Then Nd ∩ Nc is infinite for some d ̸= c. We claim
that there is a sequence, say (yn) in Nd∩Nc, that is both a subsequence of (sd,n) and (sc,n). The construction
is similar to that in the solution to Q2a in midterm 1:

Enumerate Nd∩Nc = (α1, · · · , αn, · · · ). Then take j(1) := min s−1
d,n(α1) and k(1) := min s−1

c,n(α1) (we consider
the sequences as a function from natural numbers). Then we consider a tail of (αn), say (αn)n≥ℓ(1) such that
(αn) does not contain any value in (sd,n)n≤j(1) and (sc,n)n≤k(1) (such tail exists since we are omitting only

finitely many values). Next we take j(2) := min s−1
d,n(αn1

) and k(2) := min s−1
c,n(αn1

). We again consider a tail
of (αn)n≥ℓ(1), say (αn)n≥ℓ(2) such that the tail does not contain any value in (sd,n)n≤j(2) and (sc,n)n≤k(2).
Repeating the process, we have the strictly increasing sequences of natural numbers, (ℓ(n)), (j(n)) and (k(n))
such that the sequence (αℓ(n)), which is a subsequence of (αn), can be written as both (sd,j(n)) and (sc,k(n)).
(In this brief solution, we leave it for the readers to verify the last statement in details.)

As Nc ∩ Nd is bounded, there exists a subsequence of the just-constructed sequence (yn) that converges by
B-W theorem. Since sub-sub sequences are sub-sequences, it follows that the subsequence converges to both
the limits of (sd,n) and (sc,n), which are d, c respectively. However c ̸= d but limits are unique. Contradiction
arises.
It follows that there exists a collection of subsets of S that satisfies the given property.

Lastly, since S is countably infinite, by considering a bijection from S to N, we have a collection of subsets of
N that satisfies the given property by considering the image of {Nd} under the bijection.
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(b) Take S = Q ∩ [0, 1]. Then the set of limit points is [0, 1], which is uncountable. The collection of subsets
constructed in (a) yield the required uncountable family.

(c) We first show that such L is unique. This can give hints to what L should be. Suppose not. Let L1, L2 be
different numbers satisfying the property. Let ϵ > 0. Then the set Si := {n ∈ N : |xn − Li| < ϵ/2} ∈ U
for i = 1, 2. By (i), it follows that S1 ∩ S2 ̸= ϕ. Hence, there exists n ∈ N such that |xn − Li| < ϵ/2 for
i = 1, 2. It follows from triangle inequality that |L1 − L2| < ϵ. Hence, L1 = L2 as ϵ is arbitrary. This shows
the uniqueness of L.

We proceed to show the existence of L by an explicit construction. (Note that the uniqueness of L implies that
we cannot pick arbitrary subsequential limits of (xn) as a candidate.) We first prove the following property
(iii) for the collection U :
(iii). For all A ∈ U , if B ⊃ A then B ∈ U .
We have the property because if B /∈ U and B ⊃ A ∈ U , then by (ii), we have Bc ∈ U . Hence, by (i), we
have A ∩Bc = A\B ∈ U . However, A ∩Bc = ϕ as A ⊂ B, which contradicts to the other part of (i).
We are now ready to perform the construction, which is analog to the bisection method. First suppose (xn)
are in I1 := [a1, b1] as (xn) is bounded. Let c1 be the midpoint of a1, b1. Now write L1 := [a1, c1] and
R1 := (c1, b1] and so I1 = L1 ⊔R1. Now define

F1 := {n ∈ N : xn ∈ L1}, F c
1 = {n ∈ N : xn ∈ R1}

By property (ii), either F1, F
c
1 ∈ U . If F1 ∈ U , take I2 := L1; otherwise if F c

1 ∈ U take I2 := R1. In any case
I2 is a compact interval with the property that {n ∈ N : xn ∈ I2} ∈ U (for the case I2 := R1, use the just
proved property (iii).) Next we consider c2 to be the midpoint of I2 and proceed similarly.
In the end, we obtain a decreasing sequence of compact interval (In) with lim ℓ(In) = 0 where ℓ(·) denots
the length of an interval. Furthermore {n ∈ N : xn ∈ Ik} ∈ U for all k ≥ 2. By the nested interval theorem,⋂
In = {L} for some L ∈ R. We finally show that L is the required number (ultra-limit) with respect to (the

ultra-filter) U .
Let ϵ > 0. Then there exists N ∈ N such that ℓ(In) < ϵ for all n ≥ N . It follows that {n ∈ N : xn ∈ IN} ⊂
{n ∈ N : |xn − L| < ϵ} as L ∈ IN . It follows from property (iii) that {n ∈ N : |xn − L| < ϵ} ∈ U .
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2. (20 marks)

(a) Let f : [a, b] → R be a function. We say c ∈ [a, b] a jumping point of f if c is a discontinuous point and either
f(c) = limx→c+ f(x) or f(c) = limx→c− f(x). Now suppose f is continuous on [a, b] except for finitely many
jumping points. Show that f is a point-wise limit of continuous functions, that is, there exist a sequence of
continuous functions (fn : [a, b] → R) such that f(x) = limn fn(x) for all x ∈ [a, b].

(b) Let g : [a, b] → R be a real-valued function. Suppose g is a point-wise limit of continuous functions, that is,
there exists a sequence of continuous functions (gn) on [a, b] such that g(x) = limn gn(x) for all x ∈ [a, b].
Show that for all m,M ∈ R with m < M the set F := {x ∈ [a, b] : m < g(x) < M} is a countable union of
compact sets, that is, there exists a sequence of compact sets (Kn) such that F =

⋃∞
n=1 Kn

Solution.

(a) First we consider the case where f is continuous on [a, b] except for 1 jump point c ∈ [a, b]. Note that c ̸= a, b
as end-points cannot be jump points since one-sided limits exist. Now pick a sequence of decreasing positive
number (rn) with lim rn = 0 such that In := [an, bn] := [−rn + c, c + rn] ⊂ [a, b], for example we can take
some tail subsequence of the sequence (1/n). Now we define the sequence of continuous functions as follows:

gn(x) :=

{
f(x) x /∈ In ∩ [a, b]

hn(x) x ∈ In ∩ [a, b]

where hn : In → R are some continuous functions agreeing with f on an, c, bn, for example, we can take
the unique piecewise linear function connecting these three points. It is easy to see that (gn) are continuous
functions on [a, b], for example by considering two-sided limits. (A little care may be needed when considering
end-points of In). Now we are showing that g(x) = lim gn(x) for all x ∈ [a, b]. If x ̸= c, it is clear as gn
is eventually the same as f due to the fact that (In) is shrinking. When x = c, then by construction
gn(x) = gn(c) = hn(c) = f(c) for all n ∈ N. It is clear that lim gn(c) = lim f(c) = f(c). It follows that
lim gn(x) = f(x) for all x ∈ [a, b]

Next we consider the case where f is continuous except for finitely many jump points. In fact, the proof is
similar to the case with a single discontinuity except that now the sequence of continuous functions are defined
piecewise in more regions whose number equals to the number of discontinuity points (plus 1). Furthermore,
we choose the radii of neighborhoods of the discontinuity points to be small enough such that they are disjoint.
This is possible due to finiteness of the discontinuity points. We skip the detailed proof in this brief solution.

(b) First note that the set F := {x ∈ [a, b] : m < g(x) < M} ⊂ [a, b] is bounded. It suffcies to show that F
is a countable union of closed sets (as compact sets are equivalent to closed and bounded subsets on R by
Heine-Borel Theorem). Next we claim that

• For t ∈ [a, b], we have m < g(t) < M if and only if there exists ϵ > 0 and there exists N ∈ N such that
for all n ≥ N , we have m+ ϵ ≤ gn(t) ≤ M − ϵ.

(⇒). First, we take arbitrary ϵ > 0 such that m + ϵ < g(t) < M − ϵ, for example, we can choose to take
ϵ < min{g(t)−m,M−g(t)}. Now we have m+ϵ < limn gn(t) < M−ϵ. By limit property on strict inequality,
we have m + ϵ < gn(t) < M − ϵ eventually, that is, there exists N ∈ N such that for all n ≥ N , we have
m+ϵ < gn(t) < M−ϵ. The result follows by considering the partial inequalities, that is, m+ϵ ≤ gn(t) ≤ M−ϵ.
(⇐). Now suppose the condition holds. Then m+ ϵ ≤ gn(t) ≤ M − ϵ eventually (respect to n). As it is given
that g(t) = limn gn(t), we have m+ ϵ ≤ g(t) ≤ M − ϵ as n → ∞. This implies that we can have the inequality
m < m+ ϵ ≤ g(t) ≤ M − ϵ < M .

With this characterization, it follows that we have

{t ∈ [a, b] : g(t) ∈ (m,M)} =
⋃
ϵ>0

⋃
N∈N

⋂
n≥N

g−1
n ([m+ ϵ,M − ϵ])

by translating ”there exists” to unions and ”for all” to intersections. In fact by density of rational numbers,
we can replace ϵ > 0 by considering only the positive rational numbers, hence, we have

{t ∈ [a, b] : g(t) ∈ (m,M)} =
⋃

q>0,q∈Q

⋃
N∈N

⋂
n≥N

g−1
n ([m+ q,M − q])

and leave the verification for the readers by slight modifying the proof of the above claim.
After that, we show that g−1

n (M + q,M − q) for all q > 0, q ∈ Q and n ∈ N is a closed set. This follows from
continuity of gn’s as continuous preimages of closed sets are closed (cf. taking complement in Tutorial 8, P.
1, QP1). Furthermore as arbitrary intersection of closed sets is closed (see Tutorial 8 again), it follows that
the set in question is a countable union of closed sets. Precisely, we have

{t ∈ [a, b] : g(t) ∈ (m,M)} =
⋃

q>0,q∈Q

⋃
N∈N︸ ︷︷ ︸

Countable Union

⋂
n≥N

g−1
n ([m+ q,M − q])︸ ︷︷ ︸

Closed set
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