MATH 2058 - HW 1 - Solutions

Comments.

- *i.* Do NOT skip writing quantifies (for all, for some, there exists, etc) when writing statements. Otherwise, it would be hard for both me and (more importantly) yourself to read the answers.
- ii. Inf, Sup are operations for neither functions nor numbers, but sets. Beware of how you take infimums/supremums. In general, make it clear to yourself the kind of objects, for example, sets, functions or numbers, you are dealing with,

1 (P.44-45 Q8). Let $X \subset \mathbb{R}$ be a non-empty subset. Let $f, g : X \to \mathbb{R}$ be functions of bounded ranges.

- a. Show that
 - i. $\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$ ii. $\inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\} \le \inf\{f(x) + g(x) : x \in X\}$
- b. Give examples to show that each of the above inequalities can either be strict or equal.

Solution. Since f, g are functions of bounded ranges, by the Axiom of Completeness, all the supremums and infimums in questions are finite and well-defined.

a. i. (Method 1: By Definition of Supremum) Let $x \in X$. Then $f(x) \le \sup\{f(x) : x \in X\}$ and $g(x) \le \sup\{g(x) : x \in X\}$ as supremums are upper bounds. Therefore, we have

$$f(x) + g(x) \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

for all $x \in X$. In other words, $\sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$ is an upper bound for the set $\{f(x) + g(x) : x \in X\}$. By definition of supremum as the *least* upper bound, we have

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

(Method 2: Using an ϵ -argument) Let $\epsilon > 0$. Then by the ϵ -characterization of supremum, there exists $x_0 \in X$ such that

$$\sup\{f(x) + g(x) : x \in X\} - \epsilon < f(x_0) + g(x_0) \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

As the above inequalities holds for arbitrary $\epsilon > 0$, it follows that

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

ii. The structure of arguments is basically the same as that of the case of supremums. We present here only the one using an ϵ -argument.

Let $\epsilon > 0$. Then by the ϵ -characterization of infimum, there exists $x_0 \in X$ such that

$$\inf\{f(x) + g(x) : x \in X\} + \epsilon > f(x_0) + g(x_0)$$

Note that $f(x_0) \ge \inf\{f(x) : x \in X\}$ and $g(x_0) \ge \inf\{g(x) : x \in X\}$ as infimums are lower bounds. Hence, we have

$$\inf\{f(x) + g(x) : x \in X\} + \epsilon > f(x_0) + g(x_0) \ge \inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\}$$

As the above inequalities holds for arbitrary $\epsilon > 0$, it follows that

$$\inf\{f(x) + g(x) : x \in X\} \ge \inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\}$$

- b. Take $X = \{0, 1\}$. Define $f : X \to \mathbb{R}$ by f(0) := 0 and f(1) := 1; define $g : X \to \mathbb{R}$ by g(0) := 1and g(1) := 0. It is not hard to see that we have
 - $\inf\{f(x): x \in X\} = 0$, $\sup\{f(x): x \in X\} = 1$
 - $\inf\{g(x): x \in X\} = 0, \sup\{g(x): x \in X\} = 1$
 - $\inf\{f(x) + f(x) : x \in X\} = 0, \sup\{f(x) + f(x) : x \in X\} = 2$
 - $\inf\{f(x) + g(x) : x \in X\} = 1$, $\sup\{f(x) + g(x) : x \in X\} = 1$

Therefore we have

- Equality: $\sup\{f(x) + f(x) : x \in X\} = \sup\{f(x) : x \in X\} + \sup\{f(x) : x \in X\}$
- Equality: $\inf\{f(x) : x \in X\} + \inf\{f(x) : x \in X\} = \inf\{f(x) + f(x) : x \in X\}$
- Strict Inequality: $\sup\{f(x) + g(x) : x \in X\} < \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$
- Strict Inequality: $\inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\} > \inf\{f(x) + g(x) : x \in X\}$

2 (P.44-45 Q11). Let $X, Y \subset \mathbb{R}$ be nonempty subsets. Let $h: X \times Y \to \mathbb{R}$ be of bounded range. Let $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$, defined by

$$f(x) := \sup\{h(x, y) : y \in Y\} \qquad \qquad g(y) := \inf\{h(x, y) : x \in X\}$$

for all $x \in X$ and $y \in Y$ respectively. Show that

$$\sup\{g(y): y \in Y\} \le \inf\{f(x): x \in X\}$$

Solution. First, $\sup\{g(y) : y \in Y\}$ and $\inf\{f(x) : x \in X\}$ exist as the respective sets are clearly bounded. Next we present two ways to proceed.

(Method 1: Using an ϵ -argument). Let $\epsilon > 0$. Then there exists $y_0 \in Y$ and $x_0 \in X$ such that $\sup\{g(y) : y \in Y\} - \epsilon/2 < g(y_0)$ and $f(x_0) < \inf\{f(x) : x \in X\} + \epsilon$ by the ϵ -characterizations of supremums and infimums respectively. Note that by definition of g, f, we have

$$g(y_0) = \inf\{h(x, y_0) : x \in X\} \le h(x_0, y_0) \le \sup\{h(x_0, y) : y \in Y\} = f(x_0)$$

It follows that

$$\sup\{g(y): y \in Y\} - \epsilon/2 < g(y_0) \le f(x_0) < \inf\{f(x): x \in X\} + \epsilon/2$$

and so

$$\sup\{g(y): y \in Y\} < \inf\{f(x): x \in X\} + \epsilon$$

As ϵ is arbitrary, it follows that $\sup\{g(y) : y \in Y\} \le \inf\{f(x) : x \in X\}.$

(Method 2: By Definitions) . We claim that for all $x \in X$ and $y \in Y$, we have $g(y) \leq f(x)$. It is because for all $x \in X$ and $y \in Y$, we have by definitions of infimums and supremums as lower and upper bounds that

$$g(y) = \inf\{h(x, y) : x \in X\} \le h(x, y) \le \sup\{h(x, y) : y \in Y\} = f(x)$$

Hence, fixing $x \in X$, we have $g(y) \leq f(x)$ for all $y \in Y$. This implies f(x) is an upper bound for $\{g(y) : y \in Y\}$. Therefore, we have $\sup\{g(y) : y \in Y\} \leq f(x)$ by the definition of supremum as the least upper bound. As x is arbitrary, we now have that $\sup\{g(y) : y \in Y\}$ to be a lower bound for $\{f(x) : x \in X\}$. Therefore, by the definition of infimum as the greatest lower bounds, we have

$$\sup\{g(y): y \in Y\} \le \inf\{f(x): x \in X\}$$