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Topic 1: Vector space

Let F be a field. In this course we always assume either F = R or F = C, but keep in mind that F
can be other fields, for instance, Q or a finite field Fq.

Definition 1.1. A vector space over a field F is a set V equipped with two operations:

addition: V × V → V, (x,y) 7→ x + y,

scalar multiplication: F × V → V, (a,x) 7→ ax

satisfying the following axioms:

VS 1 (Commutativity of addition) x + y = y + x for any x,y ∈ V .

VS 2 (Associativity of addition) (x + y) + z = x + (y + z) for any x,y, z ∈ V .

VS 3 (Existence of zero vector) There exists a vector 0 ∈ V satisfying x + 0 = x for any x ∈ V .

VS 4 (Existence of additive inverse) For any x ∈ V , there exists −x ∈ V such that x + (−x) = 0.

VS 5 1x = x for any x ∈ V .

VS 6 (ab)x = a(bx) for any a, b ∈ F and x ∈ V .

VS 7 (Distributive law I) a(x + y) = ax + ay for any a ∈ F and x,y ∈ V .

VS 8 (Distributive law II) (a+ b)x = ax + bx for any a, b ∈ F and x ∈ V .

Elements of F are called scalars and elements of V are called vectors.

Remark 1.2. (VS 1) - (VS 4) say that (V,+) is an abelian group.

Here are some examples of vector spaces:

• Basic examples are given by F n (as space of row/column vectors) and Mm×n(F ), which are
vector spaces over F under the usual addition and scalar multiplication of matrices.

• The set P (F ) of polynomials with coefficients in a field F is a vector space over F under the
usual addition and scalar multiplication of polynomials.

• The set F∞ := {(x1, x2, . . .) : xj ∈ F for j = 1, 2, . . .} of sequences of elements in F is a
vector space over F under componentwise addition and scalar multiplication.

• Let S be a nonempty set. Then the set F(S, F ) of functions from S to F is a vector space over
F under the usual addition and scalar multiplication of functions.

• The set of complex numbers C = {a + bi : a, b ∈ R} is a vector space over R, and at the same
time a vector space over C.

Proposition 1.3. Let V be a vector space over a field F . Then
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1. The zero vector 0 ∈ V is unique.

2. The additive inverse −x of any vector x ∈ V is unique.

3. (Cancellation law) If x + z = y + z, then x = y.

4. 0x = 0 for any x ∈ V .

5. (−a)x = −(ax) = a(−x) for any a ∈ F and any x ∈ V .

6. a0 = 0 for any a ∈ F .

Topic 2: Subspace

Definition 2.1. A subset W of a vector space V over a field F is called a subspace of V if W is a
vector space over F under the addition and scalar multiplication inherited from V .

Proposition 2.2. Let V be a vector space over F . A subset W ⊂ V is a subspace if and only if the
following conditions hold for the operations defined on V :

1. 0 ∈ W (i.e. W contains the zero vector of V ).

2. x + y ∈ W for any x,y ∈ W (i.e. W is closed under addition).

3. ax ∈ W for any a ∈ F and any x ∈ W (i.e. W is closed under scalar multiplication).

Examples (and non-examples) of subspaces:

• For any vector space V , the subsets {0} and V are subspaces of V ; {0} is called the zero vector
space or trivial vector space. A subspace {0} $ W ⊂ V is called nontrivial, and a subspace
W $ V is called proper.

• In F n, any hyperplane is defined by a linear equation

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b ∈ F . A hyperplane is a subspace if and only if it passes through the
origin 0 ∈ F n, i.e. when b = 0.

More generally, the solution set of a system of linear equations
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

is a subset in F n, which is a subspace if and only if the system is homogeneous; in this case, the
subspace is nothing but the null space

N(A) := {x ∈ F n : Ax = 0 in Fm}

of the coefficient matrix A = (aij) ∈Mm×n(F ).
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• In V = Mn×n(F ), we have the following subspaces:

W1 := {A ∈Mn×n(F ) : A is diagonal},
W2 := {A ∈Mn×n(F ) : tr(A) = 0},

where the trace of matrix A ∈Mn×n(F ) is defined by tr(A) :=
∑n

i=1Aii.

• Given a positive integer n, let Pn(F ) be the set of all polynomials with coefficients in F and of
degree less than or equal to n. Then Pn(F ) is a vector space over F .

Remark 2.3. Note that the set of polynomials with coefficients in F and a fixed degree n is not
a vector space over F .

• Given an open interval I = (a, b) ⊂ R and n ∈ N ∪ {∞}, let Cn(I) be the set of all functions
f : I → R which have a continuous nth derivative (for n = 0, C0(I) is simply the set of all
continuous real-valued functions on I). Then

C∞(I) ⊂ · · · ⊂ · · · ⊂ Cn(I) ⊂ · · · ⊂ C1(I) ⊂ C0(I) ⊂ F(I,R)

is an infinite chain of subspaces.

Proposition 2.4. Any intersection of subspaces of a vector space V is also a subspace of V .

Topic 3: Span and linear (in)dependence

Definition 3.1. Let V be a vector space over F and S ⊂ V a nonempty subset.

• We say a vector x ∈ V is a linear combination of vectors of S if there exist x1,x2, . . . ,xn ∈ S
and a1, a2, . . . , an ∈ F such that

x = a1x1 + a2x2 + · · ·+ anxn.

In this case, we also say x is a linear combination of x1,x2, . . . ,xn and a1, a2, . . . , an the
coefficients of the linear combination.

• The span of S, denoted as span(S), is the set of all possible linear combinations of vectors of S,
i.e.

span(S) := {a1x1 + a2x2 + · · ·+ anxn : each aj ∈ F, each xj ∈ S, n = 1, 2, · · · }.

By convention, we set span(∅) = {0}.

Proposition 3.2. Let S ⊂ V be a subset of a vector space V over F . Then span(S) is the smallest
subspace of V containing S.

Definition 3.3. We say a subset S of a vector space V spans (or generates) V if span(S) = V . In this
case, we also say S is a spanning set (or generating set) for V .
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Definition 3.4. Let V be a vector space over F . A subset S ⊂ V is said to be linearly dependent if
there exist distinct x1,x2, . . . ,xn ∈ S and scalars a1, a2, . . . , an ∈ F , not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0;

Otherwise, the subset S ⊂ V is said to be linearly independent.

Note: ∅ is linearly independent; if 0 ∈ S then S is linearly dependent, namely, a nonempty linearly
independent subset cannot contain 0; {x} is linearly independent iff x 6= 0; any set containing a
linearly dependent subset is also linearly dependent; any subset of a linearly independent set is also
linearly independent.

Proposition 3.5. Given a nonempty subset S of a vector space V , then the following are equivalent:

1. S is linearly independent.

2. Each x ∈ span(S) can be expressed in a unique way as a linear combination of distinct vectors
of S.

3. The only representation of 0 as a linear combination of distinct vectors of S is trivial, i.e. if

0 = a1x1 + a2x2 + · · ·+ anxn

for some distinct vectors x1,x2, . . . ,xn ∈ S and scalars a1, a2, . . . , an ∈ F , then we must have
a1 = a2 = · · · = an = 0.

Proposition 3.6. Let S be a linearly dependent subset of a vector space V . Then there is x ∈ S such
that span(S) = span(S \ {x}).

Proposition 3.7. Let S be a linearly independent subset of a vector space V , and assume x ∈ V \ S.
Then x ∈ span(S) if and only if the set S ∪ {x} is linearly dependent.

Topic 4: Basis and dimension

Definition 4.1. A basis for a vector space V is a subset β ⊂ V which is linearly independent and
spans V (i.e. V = span(β)).

Proposition 4.2. Let V be a vector space and β = {v1,v2, . . . ,vn} ⊂ V be a finite subset. Then
β is a basis for V if and only if for any x ∈ V , there exist unique a1, a2, . . . , an ∈ F such that
x = a1v1 + a2v2 + · · ·+ anvn.

Theorem 4.3. Suppose S is a finite spanning set for a vector space V . Then there exists a subset
β ⊂ S which forms a basis for V , namely, any finite spanning set can be reduced to a basis.

Theorem 4.4 (Replacement Lemma). Let V be a vector space. Let G ⊂ V be a spanning set for V
consisting of n vectors, and L ⊂ V be a linearly independent subset consisting of m vectors. Then,
m ≤ n and there exists a subset H ⊂ G consisting of exactly n−m vectors such that L∪H spans V .
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Corollary 4.5. (a) Any linearly independent subset of a vector space having a finite spanning set must
be also finite.

(b) Let V be a vector space having a finite basis. Then every basis of V contains the same number of
vectors.

Definition 4.6. (a) A vector space V is called finite-dimensional if it has a finite spanning set; other-
wise, it is called infinite-dimensional.

(b) For a finite-dimensional vector space V , the dimension of V , denoted as dim(V ), is the number of
vectors in a finite basis for V (where the existence of a finite basis is assured by Theorem 4.3, and the
number is well defined in a unique way by Corollary 4.5). For an infinite-dimensional vector space V ,
we write dim(V ) =∞.

Corollary 4.7. Let V be an n-dimensional vector space. Then the following statements hold:

1. Any finite spanning set for V has at least n vectors, and a spanning set with exactly n vectors is
a basis for V .

2. Any linearly independent subset of V consisting of n vectors is a basis for V .

3. Every linearly independent subset of V can be extended to a basis for V .

Theorem 4.8. Let V be a finite-dimensional vector space and W be a subspace of V . Then W is
finite-dimensional with dim(W ) ≤ dim(V ). Moreover, if dim(W ) = dim(V ), then W = V .

Corollary 4.9. If W is a subspace of a finite-dimensional vector space V , then any basis of W can be
extended to a basis of V .

Remark 4.10. This corollary implies that for any subspace W ⊂ V , there exists another subspace
Q ⊂ V such that V = W ⊕ Q; see the definition of the direct sum of two subspaces in Exercises of
Sect 1.3 (page 22 of the textbook).

Examples:

• The standard basis of F n consists of the vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

So F n has dimension n over F .

• The standard basis of Mm×n(F ) is given by

{Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where Eij ∈ Mm×n(F ) is the matrix whose (i, j)-th entry is 1 and all other entries are 0. So
Mm×n(F ) has dimension n ·m over F .

• In Mn×n(F ) (whose dimension is n2), we have the following subspaces:
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– W1 := {A ∈Mn×n(F ) : A is diagonal} is a subspace of Mn×n(F ) of dimension n.

– W2 := {A ∈Mn×n(F ) : tr(A) = 0} is a subspace of Mn×n(F ) of dimension n2 − 1.

– W3 := {A ∈Mn×n(F ) : At = A} is a subspace of Mn×n(F ) of dimension n(n+1)
2

.

• The standard basis of Pn(F ) is given by the subset {1, x, x2, . . . , xn}, so Pn(F ) has dimension
n + 1 over F . Another basis for Pn(F ) is given by {1, x − a, (x − a)2, . . . , (x − a)n} where
a ∈ F is any scalar.

• The set of complex numbers C has dimension 2 as a vector space over R (a basis is given by
{1, i}), but dimension 1 as a vector space over C (any nonzero complex number z gives a basis
{z}).

• The set of real numbers R has dimension 1 as a vector space over R (any nonzero complex
number a gives a basis {a}), but is infinite dimensional as a vector space over Q (because R is
uncountable).

Topic 5: Linear transformation

Definition 5.1. (a) Let V and W be vector spaces over the same field F . A function T : V → W is
linear if T (x + y) = T (x) + T (y) and T (ax) = aT (x) for any x,y ∈ V and a ∈ F .

(b) A function T : V → W which is linear is called a linear transformation from V to W . A linear
transformation T from a vector space V into itself is called a linear operator on V .

(c) We always use L(V,W ) to denote the set of all linear transformations from V to W . In case
W = V , we write L(V ) := L(V, V ) to be the set of all linear operators on V .

Examples of linear transformations:

• Let A ∈Mm×n(F ). Regarding F n and Fm as spaces of column vectors, then the map

LA : F n → Fm, x 7→ Ax

is a linear transformation, called the left multiplication by A.

• The transpose map T : Mm×n(F )→Mn×m(F ), A 7→ At is a linear transformation.

• Differentiation and integration are linear operators, so they define linear maps such as:

T : Pn(R)→ Pn−1(R), f(x) 7→ f ′(x)

and
T : Pn−1(R)→ Pn(R), f(x) 7→

∫ x

0

f(t)dt.

• For any vector space V and W , we have the zero transformation T0 : V → W defined by
T0(x) = 0 for any x ∈ V , and the identity transformation IV : V → V defined by IV (x) = x
for any x ∈ V .
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Proposition 5.2. Let T : V → W be a linear transformation. Then

1. T (0V ) = 0W .

2. T (
∑n

i=1 aixi) =
∑n

i=1 aiT (xi) for any x1,x2, . . . ,xn ∈ V and any a1, a2, . . . , an ∈ F (i.e. T
preserves linear combinations).

Theorem 5.3. Let V and W be vector spaces, and let β = {v1,v2, . . . ,vn} be a basis for V . Then
given any w1,w2, . . . ,wn ∈ W , there exists a unique linear transformation T : V → W such that
T (vi) = wi for i = 1, . . . , n.

Remark:

(a) In the above theorem T is constructed as follows: For v =
∑n

i=1 aivi (where ai are uniquely
defined, since β is a basis for V ), T (v) =

∑n
i=1 aiwi.

(b) Let V be a vector space with a finite basis β = {v1,v2, . . . ,vn}. Then a linear transformation
from V to another vector space W is uniquely determined by its values on β, namely, if U, T :
V → W are linear and U(vi) = T (vi) for i = 1, . . . , n, then U = T .

Topic 6: Null space, range, and dimension theorem

Definition 6.1. Let V and W be vector spaces and T : V → W be a linear transformation. The null
space (or kernel) of T is defined as

N(T ) := {x ∈ V : T (x) = 0}.

The range (or image) of T is defined as

R(T ) := {T (x) ∈ W : x ∈ V }.

Proposition 6.2. Let T : V → W be a linear transformation. Then N(T ) is a subspace of V , and
R(T ) is a subspaces of W .

Proposition 6.3. Let T : V → W be a linear transformation. Then, T maps a spanning set of V
to a spanning set of R(T ), namely, if V = span(S) for a subset S of V then R(T ) = span(T (S)).
Particularly, if β is a basis for V then R(T ) = span(T (β)). Moreover, if β is a basis for V and
N(T ) = {0} then T (β) is a basis for R(T ).

Note: The proposition above implies that if V is finite-dimensional then the range space of a linear
transformation T : V → W is a finite-dimensional subspace of W .

Definition 6.4. Let T : V → W be a linear transformation such that N(T ) and R(T ) are finite-
dimensional. Then we define the nullity of T , denoted nullity(T ), and the rank of T , denoted rank(T ),
to be the dimensions of N(T ) and R(T ) respectively.

Theorem 6.5 (Dimension Theorem). Let V and W be vector spaces such that V is finite-dimensional.
Then for any linear transformation T : V → W , we have

nullity(T ) + rank(T ) = dim(V ).
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Note: The proof of theorem above tells that a basis {v1, v2, · · · , vk} for N(T ) can be extended to a
basis {v1, · · · , vk, vk+1, · · · , vn} for V such that {T (vk+1), · · · , T (vn)} is a basis for R(T ).

Proposition 6.6. A linear transformation T : V → W is one-to-one if and only if N(T ) = {0}.

Remark 6.7. By definition, a linear transformation T : V → W is onto if and only if R(T ) = W .

Corollary 6.8. Let V and W be vector spaces of equal finite dimensions, and let T : V → W be a
linear transformation. Then the following things are equivalent:

(a) T is one-to-one.

(b) T is onto.

(c) rank(T ) = dim(V ).

(d) nullity(T ) = 0.

Remark 6.9. This corollary is not true in the infinite-dimensional case.

Topic 7: Matrix representation of a linear transformation

Definition 7.1. Let V be a finite-dimensional vector space and β = {v1,v2, . . . ,vn} be an or-
dered basis for V (meaning a basis with a specified order). Then for x ∈ V , there exist unique
a1, a2, . . . , an ∈ F such that x =

∑n
i=1 aivi. The coordinate vector of x relative to β, denoted [x]β , is

the column vector

[x]β :=


a1
a2
...
an

 ∈ F n.

Remark 7.2. This defines a map φβ := [·]β : V → F n, which is linear.

Definition 7.3. Let V and W be finite-dimensional vector spaces with ordered bases

β = {v1,v2, . . . ,vn} and γ = {w1,w2, . . . ,wm}

respectively. Let T : V → W be a linear transformation. Then for each 1 ≤ j ≤ n, there exist unique
scalars aij ∈ F for 1 ≤ i ≤ m such that

T (vj) =
m∑
i=1

aijwi for 1 ≤ j ≤ n.

The matrix representation of T in the ordered bases β and γ is defined as the matrix

[T ]γβ := (aij) ∈Mm×n(F ).

If W = V and γ = β, then we can write [T ]β instead of [T ]ββ .
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Note: From the definition above, equivalently we may write

[T (v1)]γ =


a11
a21

...
am1

 ∈ Fm, [T (v2)]γ =


a12
a22

...
am2

 ∈ Fm, · · · , [T (vn)]γ =


a1n
a2n

...
amn

 ∈ Fm,

and
[T ]γβ = ([T (v1)]γ, [T (v2)]γ, · · · , [T (vn)]γ),

meaning that the jth column of [T ]γβ is given by the coordinate vector of T (vj) for the jth vector of β
relative to γ.

Lemma 7.4. Let V andW be finite-dimensional vector spaces with ordered bases β and γ respectively
and let T, U : V → W be linear transformations. Then

1. [T + U ]γβ = [T ]γβ + [U ]γβ .

2. [aT ]γβ = a[T ]γβ .

Proposition 7.5. Let V and W be vector spaces over F . Then the set L(V,W ) of linear transfor-
mations from V to W is a vector space over F equipped with addition and scalar multiplication as
follows:

• For any T, U ∈ L(V,W ), we define T + U ∈ L(V,W ) by (T + U)(x) = T (x) + U(x) for any
x ∈ V .

• For any a ∈ F and T ∈ L(V,W ), we define aT ∈ L(V,W ) by (aT )(x) = aT (x) for any
x ∈ V .

Theorem 7.6. Let V,W,Z be vector spaces over the same field F , and let T : V → W and U : W →
Z be linear transformations.

1. Then the composition function UT : V → Z is a linear transformation.

2. If V,W,Z are all finite-dimensional with ordered bases α, β, γ respectively, then

[UT ]γα = [U ]γβ[T ]βα.

Corollary 7.7. Let V and W be finite-dimensional vector spaces with ordered bases β and γ respec-
tively and let T : V → W be a linear transformation. Then for any x ∈ V , we have

[T (x)]γ = [T ]γβ[x]β.

Topic 8: Invertibility and isomorphism

Definition 8.1. Let V and W be vector spaces over the same field F . A function T : V → W is
invertible if there exists a function U : W → V such that TU = IW and UT = IV .
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Note:

(a) T : V → W is invertible if and only if T : V → W is bijective.

(b) If T is invertible, then such U is unique, called the inverse of T and denoted by T−1.

(c) If dim(V ) = dim(W ) <∞ then a linear transformation T : V → W is invertible if and only if
rank(T ) = dim(V ). You may replace the statement rank(T ) = dim(V ) by any other equivalent
statements in Corollary 6.8.

(d) If T : V → W is invertible then T−1 : W → V is invertible with (T−1)−1 = T .

(e) If T : V → W and U : W → Z are invertible then UT : V → Z is invertible with (UT )−1 =
T−1U−1.

Proposition 8.2. Let the linear transformation T : V → W be invertible, then the inverse T−1 : W →
V is also a linear transformation.

Lemma 8.3. Suppose T : V → W is an invertible linear transformation. Then V is finite-dimensional
if and only if W is finite-dimensional, and in such a case, we have dim(V ) = dim(W ).

Proposition 8.4. Let V and W be finite-dimensional vector spaces with ordered bases β and γ re-
spectively. Let T : V → W be a linear transformation. Then T is invertible if and only if [T ]γβ is an
invertible matrix, and in such a case, [T−1]βγ = ([T ]γβ)−1.

Corollary 8.5. Let V be a finite-dimensional vector space with an ordered basis β. Let T : V → V
be a linear operator on V . Then T is invertible if and only if [T ]β is an invertible matrix, and in such
a case, [T−1]β = ([T ]β)−1.

Corollary 8.6. Let A ∈ Mn×n(F ). Then A is invertible if and only if LA is invertible, and in such a
case, (LA)−1 = LA−1 .

Definition 8.7. Let V and W be vector spaces. We say V is isomorphic to W if there exists an
invertible linear transformation T : V → W . In this case, T is called an isomorphism from V onto
W .

Theorem 8.8. Let V and W be finite-dimensional vector spaces. Then V is isomorphic to W if and
only if dim(V ) = dim(W ).

Corollary 8.9. Let V be a vector space over F . Then V is isomorphic to F n if and only if dim(V ) = n.

Theorem 8.10. Let V and W be finite-dimensional vector spaces over F with dimensions n and m
respectively. Then the map Φ : L(V,W ) → Mm×n(F ) defined by mapping a linear transforma-
tion T ∈ L(V,W ) to its matrix representation [T ]γβ ∈ Mm×n(F ) is an isomorphism. In particular,
dim(L(V,W )) = dim(V ) · dim(W ).

Definition 8.11. Let β be an ordered basis for an n-dimensional vector space V over a field F . The
map φβ : V → F n defined by mapping x ∈ V to its coordinate vector [x]β ∈ F n is called the standard
representation of V with respect to β.

Proposition 8.12. φβ is an isomorphism.
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Given vector spaces V and W of dimensions n and m and equipped with ordered bases β and γ
respectively, we have the following commutative diagram for any linear transformation T : V → W :

V T //

φβ
��

W

φγ
��

F n
LA

// Fm

Topic 9: Change of coordinates

Proposition 9.1. Let β and β′ be two ordered bases for a finite-dimensional vector space V , and let

Q := [IV ]ββ′ ,

i.e. the matrix representation of the identity operator IV on V in the ordered bases β′ and β. Then

1. Q is invertible.

2. For any x ∈ V , [x]β = Q[x]β′ .

Definition 9.2. The matrix Q = [IV ]ββ′ is called the change of coordinate matrix which changes
β′-coordinates into β-coordinates.

To compute Q = [IV ]ββ′ , note that if β = {v1,v2, . . . ,vn} and β′ = {v′1,v′2, . . . ,v′n}, then

Q = ([v′1]β | [v′2]β | · · · | [v′n]β) .

Proposition 9.3. Let T be a linear operator on a finite-dimensional vector space V , and let β and
β′ be two ordered bases for V . Suppose that Q = [IV ]ββ′ is the change of coordinate matrix which
changes β′-coordinates into β-coordinates. Then

[T ]β′ = Q−1[T ]βQ.

Corollary 9.4. Let A ∈Mm×n(F ) and let γ = {x1,x2, . . . ,xn} be an ordered basis for F n. Then

[LA]γ = Q−1AQ,

where Q = [IV ]βγ = (x1 | x2 | · · · | xn) (where β is the standard ordered basis for F n).

Definition 9.5. Given two matrices A,B ∈ Mn×n(F ). We say B is similar to A if there exists an
invertible matrix Q such that B = Q−1AQ.

Topic 10: Eigenvalues and eigenvectors

Definition 10.1. Let T be a linear operator on a vector space V over F . A nonzero vector x ∈ V is
called an eigenvector of T if there exists λ ∈ F such that T (x) = λx; in this case, the scalar λ ∈ F
is called the eigenvalue of T corresponding to the eigenvector x.

For a square matrix A ∈ Mn×n(F ), a nonzero vector x ∈ F n is called an eigenvector of A if it is an
eigenvector of LA, i.e. if there exists λ ∈ F such that Ax = λx, and we call λ ∈ F the eigenvalue of
A corresponding to the eigenvector x.
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Definition 10.2. A linear operator T on a finite-dimensional vector space V is called diagonalizable
if there exists an ordered basis β for V such that [T ]β is a diagonal matrix.

Proposition 10.3. A linear operator T on a finite-dimensional vector space V is diagonalizable if and
only if there exists an ordered basis β for V which consists of eigenvectors of T ; in such a case, if we
write β = {v1,v2, . . . ,vn}, then

[T ]β =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ,

where λj is the eigenvalue of T corresponding to the eigenvector vj (i.e. T (vj) = λjvj).

Proposition 10.4. LetA ∈Mn×n(F ). Then λ ∈ F is an eigenvalue ofA if and only if det(A−λI) = 0.

Definition 10.5. The characteristic polynomial of a square matrix A ∈ Mn×n(F ) is the polynomial
fA(t) := det (A− tIn) ∈ Pn(F ). Let T be a linear operator on an n-dimensional vector space V
over F . Choose an ordered basis β for V . Then the characteristic polynomial of T is defined as the
characteristic polynomial of [T ]β , i.e. fT (t) := det ([T ]β − tIn) ∈ Pn(F ).

Proposition 10.6. The characteristic polynomial fT (t) of a linear operator T on a finite-dimensional
vector space V is well-defined, i.e. independent of the choice of the ordered basis β for V .

Proposition 10.7. Let A ∈Mn×n(F ). Then

1. The characteristic polynomial fA(t) is of degree n and has leading coefficient (−1)n.

2. A has at most n distinct eigenvalues.

Proposition 10.8. Let T be a linear operator on a vector space V , and let λ be an eigenvalue of T .
Then x ∈ V is an eigenvector of T corresponding to λ if and only if v ∈ N(T − λIV ) \ {0}.

Topic 11: Diagonalizability

Theorem 11.1. A linear operator on an n-dimensional vector space having n distinct eigenvalues is
diagonalizable.

The converse of the above theorem may not be true, for instance, the identity operator is diagonalizable
but has only one eigenvalue. The proof of this theorem is based on the following

Lemma 11.2. Let T be a linear operator on a vector space V , and let λ1, λ2, . . . , λk be distinct
eigenvalues of T . If v1,v2, . . . ,vk are eigenvectors of T corresponding to λ1, λ2, . . . , λk respectively,
then {v1,v2, . . . ,vk} is a linearly independent subset of V .

We are going to look for necessary conditions on a diagonalizable linear operator.

Definition 11.3. We say a polynomial f(t) ∈ P (F ) splits over F if there exist c, a1, a2, . . . , an ∈ F
such that f(t) = c(t− a1)(t− a2) · · · (t− an).

13



Proposition 11.4. The characteristic polynomial of a diagonalizable linear operator on a finite-
dimensional vector space V over F splits over F .

Definition 11.5. Let T be a linear operator on a vector space V , and let λ be an eigenvalue of T . The
subspace

Eλ := N(T − λIV ) = {x ∈ V : T (x) = λx}

of V is called the eigenspace of T corresponding to λ. Eigenspaces of a square matrix A ∈Mn×n(F )
are defined as those of the linear operator LA.

Definition 11.6. Let λ be an eigenvalue of a linear operator on a finite-dimensional vector space (or
a square matrix) with characteristic polynomial f(t). The algebraic multiplicity of λ is defined to be
the multiplicity of λ as a zero of f(t), i.e. the largest positive integer j such that (t− λ)j | f(t).

Proposition 11.7. Let T be a linear operator on a finite-dimensional vector space V and let λ be an
eigenvalue of T with algebraic multiplicity m. Then we have

1 ≤ dim(Eλ) ≤ m.

We call dim(Eλ) the geometric multiplicity of λ.

We now may figure out a test for diagonalizability of a linear operator T on a finite-dimensional vector
space, as well as the construction of an ordered basis β of eigenvectors such that [T ]β is diagonal.

Theorem 11.8. Let T be a linear operator on an n-dimensional vector space V whose characteristic
polynomial fT (t) splits. Let λ1, λ2, . . . , λk be all the distinct eigenvalues of T with the algebraic
multiplicities m1,m2, . . . ,mk, respectively, (thus 1 ≤ mi ≤ n, m1 +m2 + · · ·+mk = n). Then

1. T is diagonalizable if and only if mi = dim(Eλi) for each 1 ≤ i ≤ k.

2. If T is diagonalizable and βi is an ordered basis for Eλi for each 1 ≤ i ≤ k, then

β = β1 ∪ β2 ∪ · · · ∪ βk

with a specified order is an ordered basis for V which consists of eigenvectors of T (so that [T ]β
is diagonal).

Remark 11.9. When T is diagonalizable, we have the eigenspace decomposition of V :

V = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk .

The proof of Theorem 11.8 is based on the following

Lemma 11.10. Let T be a linear operator on a vector space V , and let λ1, λ2, . . . , λk be distinct
eigenvalues of T . For each 1 ≤ i ≤ k, let Si ⊂ Eλi be a finite linearly independent subset. Then
S = S1 ∪ S2 ∪ · · · ∪ Sk is a linearly independent subset of V .

An application of Theorem 11.8: Let A ∈ Mn×n(F ) be diagonalizable. Thus the characteristic
polynomial fA(t) splits over F , and one may write that

fA(t) = (−1)n(t− λ1)m1 · · · (t− λk)mk ,

14



where λi are distinct eigenvalues and mi are the associated (algebraic) multiplicities with mi =
dim(Eλi) and m1 + · · · + mk = n. Let β1, · · · , βk be the ordered bases of eigenspaces Eλ1 , · · · , Eλk
respectively, so β := β1 ∪ · · · ∪ βk is an ordered basis of eigenvectors of A for F n. By item 2 of
Theorem 11.8,

[LA]β = diag(λ1, · · · , λ1︸ ︷︷ ︸
m1 terms

, λ2, · · · , λ2︸ ︷︷ ︸
m2 terms

, · · · , λk, · · · , λk︸ ︷︷ ︸
mk terms

).

On the other hand, letting α be the standard ordered basis forF n, it holds that [LA]β = [IFn ]βα[LA]αα[IFn ]αβ ,
where [LA]αα = A, [IFn ]αβ = (β1|β2| · · · |βk), and [IFn ]βα = ([IFn ]αβ)−1. Therefore,

diag(λ1, · · · , λ1︸ ︷︷ ︸
m1 terms

, λ2, · · · , λ2︸ ︷︷ ︸
m2 terms

, · · · , λk, · · · , λk︸ ︷︷ ︸
mk terms

) = Q−1AQ,

with Q := (β1|β2| · · · |βk), or equivalently we may write

A = Qdiag(λ1, · · · , λ1︸ ︷︷ ︸
m1 terms

, λ2, · · · , λ2︸ ︷︷ ︸
m2 terms

, · · · , λk, · · · , λk︸ ︷︷ ︸
mk terms

)Q−1,

which is a very useful form in many applications. For instance, it is convenient to use it to compute Aj

for any integer j ≥ 0, particularly when j is very large. Another example is to solve an ODE system
ẋ = Ax by making a change of variables x = Qy and reducing the system to ẏ = Q−1AQy with the
diagonal coefficient matrix Q−1AQ.

Topic 12: Invariant subspace and Cayley-Hamilton Theorem

Theorem 12.1 (Cayley-Hamilton). Let T be a linear operator on a finite-dimensional vector space V ,
and let f(t) := fT (t) be its characteristic polynomial. Then f(T ) = T0, the zero transformation, so T
is a “zero” of f(t).

Corollary 12.2. Let A ∈ Mn×n(F ) and f(t) be its characteristic polynomial. Then we have f(A) =
O, the zero matrix.

To show the main theorem above, we need to introduce the invariant subspaces.

Definition 12.3. Let T be a linear operator on a vector space V . A subspace W ⊂ V is called
T -invariant if T (W ) ⊂ W (or equivalently, T (w) ∈ W for any w ∈ W ).

Definition 12.4. Given a linear operator T on a vector space V and a nonzero vector x ∈ V , the
subspace

W := span({T k(x) : k ∈ N}) = span({x, T (x), T 2(x), . . .})

is called the T-cyclic subspace of V generated by x.

Proposition 12.5. W is the smallest T -invariant subspace of V containing x.

Note that if W ⊂ V is a T -invariant subspace, then the restriction of T to W gives a linear operator
TW := T |W on W .

Lemma 12.6. fTW (t) divides fT (t).

15



Lemma 12.7. Let T be a linear operator on a finite-dimensional vector space V , and let W ⊂ V be
the T -cyclic subspace of V generated by a nonzero vector x ∈ V . Denote k := dim(W ). Then

1. β := {x, T (x), T 2(x), . . . , T k−1(x)} is a basis for W .

2. Note T k(x) ∈ W = span(β). Then

T k(x) = −(a0x + a1T (x) + a2T
2(x) + · · ·+ ak−1T

k−1(x)),

for some a0, · · · , ak−1 ∈ F , and the characteristic polynomial of TW ∈ L(W ) is given by

fTW (t) = (−1)k(a0 + a1t+ a2t
2 + · · ·+ ak−1t

k−1 + tk).

Topic 13: Inner product space

From this point on, we assume F = R or C.

Definition 13.1. Let V be a vector space over F . An inner product on V is a map

〈·, ·〉 : V × V → F

such that, for any x,y, z ∈ V and c ∈ F , we have

1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

2. 〈cx,y〉 = c〈x,y〉.

3. 〈x,y〉 = 〈y,x〉.

4. 〈x,x〉 ≥ 0 and equality holds only when x = 0.

An inner product space is a vector space V together with an inner product. If F = C, we call V a
complex inner product space; while if F = R, we call V a real inner product space.

Remark 13.2. Properties 1 and 2 together say that the inner product is linear in its first argument.

Remark 13.3. Property 3 reduces to 〈x,y〉 = 〈y,x〉 whenever F = R.

Examples of inner product spaces:

• For x = (a1, a2, . . . , an),y = (b1, b2, . . . , bn) ∈ F n, we have the standard inner product

〈x,y〉 :=
n∑
i=1

aibi.

• If 〈·, ·〉 is an inner product on V and r ∈ R>0, then 〈x,y〉′ = r〈x,y〉 defines another inner
product on V .
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• Let V = C([a, b]) be the vector space of real-valued continuous functions on the interval [a, b].
Then for f, g ∈ V ,

〈f, g〉 :=

∫ b

a

f(t)g(t)dt

defines an inner product on V .

• Let V = Mn×n(F ). For A,B ∈ V ,

〈A,B〉 := tr(B∗A),

where B∗ = B
t

is the conjugate transpose of B, defines an inner product on V .

Proposition 13.4. Let V be an inner product space. Then for any x,y, z ∈ V and c ∈ F , we have

1. 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.

2. 〈x, cy〉 = c〈x,y〉.

3. 〈0,x〉 = 〈x,0〉 = 0 for any x ∈ V .

4. 〈x,x〉 = 0 if and only if x = 0.

5. If 〈x,y〉 = 〈z,y〉 for all y ∈ V , then x = z.

Remark 13.5. Properties 1 and 2 here together say that the inner product is conjugate linear in its
second argument.

Definition 13.6. The norm (or length) of a vector x ∈ V in an inner product space V is defined by
‖x‖ :=

√
〈x,x〉.

Proposition 13.7. Let V be an inner product space. The norm ‖ · ‖ induced by the inner product
satisfies the following three properties:

1. ‖x‖ ≥ 0, ∀x ∈ V ; ‖x‖ = 0 if and only if x = 0.

2. ‖cx‖ = |c|‖x‖, ∀x ∈ V , ∀ c ∈ F .

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈ V (Triangle Inequality).

Note: The above three properties are usually used as a direct definition of a norm in the general
situation. The proof of the triangle inequality is based on the Cauchy-Schwarz inequality: |〈x,y〉| ≤
‖x‖ · ‖y‖, ∀x,y ∈ V .

Definition 13.8. Let V be an inner product space. Two vectors x,y ∈ V are said to be orthogonal
(or perpendicular), denoted as x ⊥ y, if 〈x,y〉 = 0. A subset S ⊂ V is called orthogonal if any two
distinct vectors in S are orthogonal. A unit vector in V is a vector x ∈ V with ‖x‖ = 1. A subset
S ⊂ V is called orthonormal if S is orthogonal and all vectors in S are unit vectors.
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Topic 14: Gram-Schmidt orthogalization

Lemma 14.1. Let S = {v1,v2, . . . ,vk} be an orthogonal subset of V consisting of nonzero vectors.
Then S is linearly independent.

Note: If S = {x1,x2, . . . ,xn} is an orthogonal subset of V consisting of nonzero vectors, then{
x1

‖x1‖2
, . . . ,

xn
‖xn‖2

}
is an orthonormal subset of V ; this process is called normalization.

Theorem 14.2 (Gram-Schmidt Process). Let S = {w1,w2, . . . ,wn} be a linearly independent subset
of an inner product space V . Set v1 = w1 and

vk := wk −
k−1∑
j=1

〈wk,vj〉
‖vj‖2

vj

for 2 ≤ k ≤ n. Then S ′ = {v1,v2, . . . ,vn} is an orthogonal subset of V consisting of nonzero vectors
such that span(S ′) = span(S).

Corollary 14.3. Any finite dimensional inner product space has an orthonormal basis (namely, an
ordered basis which is orthonormal).

Proposition 14.4. Let V be an inner product space and S = {v1,v2, . . . ,vk} be an orthogonal subset
of V consisting of nonzero vectors. Then for any y ∈ span(S),

y =
k∑
i=1

〈y,vi〉
‖vi‖2

vi.

Particularly, whenever S = {v1,v2, . . . ,vk} is an orthonormal subset of V , it holds that for any
y ∈ span(S),

y =
k∑
i=1

〈y,vi〉vi.

Topic 15: Orthogonal complement

Definition 15.1. Let W be a subspace of an inner product space V . The orthogonal complement of
W is defined as the subspace

W⊥ := {v ∈ V : 〈v,w〉 = 0 for all w ∈ W}.

Proposition 15.2. Let V be an inner product space and W ⊂ V be a finite-dimensional subspace.
Then for any y ∈ V , there exist unique u ∈ W and z ∈ W⊥ such that

y = u + z.
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Furthermore, if {v1,v2, . . . ,vk} is an orthonormal basis for W , then

u =
k∑
i=1

〈y,vi〉vi.

The vector u ∈ W is called the orthogonal projection of y on W .

Corollary 15.3. With notations as above, then

‖y − x‖ ≥ ‖y − u‖

for any x ∈ W , and equality holds if and only if x = u. In other words, u is the unique vector in W
which is closest to y.

Proposition 15.4. Suppose S = {v1,v2, . . . ,vk} is an orthonormal subset in an n-dimensional inner
product space V . Then

1. S can be extended to an orthonormal basis {v1, . . . ,vk,vk+1, . . . ,vn} for V .

2. If W = span(S), then S1 := {vk+1, . . . ,vn} is an orthonormal basis for W⊥.

3. For any subspace W of V , we have dim(V ) = dim(W ) + dim(W⊥).

Remark 15.5. We have V = W ⊕W⊥.

Topic 16: Adjoint of a linear operator

Proposition 16.1. Let V be a finite-dimensional inner product space over F . Then for any linear
transformation (or linear functional) g : V → F , there exists a unique y ∈ V such that g(x) = 〈x,y〉
for any x ∈ V .

Theorem 16.2. Let V be a finite-dimensional inner product space, and let T be a linear operator on
V . Then there exists a unique linear operator T ∗ on V such that

〈T (x),y〉 = 〈x, T ∗(y)〉

for any x,y ∈ V . We call T ∗ the adjoint of T .

Remark 16.3. In practice, if β = {v1,v2, . . . ,vn} be an orthonormal basis for V , then T ∗ is com-
puted by the formula

T ∗(y) =
n∑
i=1

〈T (vi),y〉vi

for any y ∈ V .

Proposition 16.4. Let V be a finite-dimensional inner product space, and let β be an orthonormal
basis for V . Then for any T ∈ L(V ), we have [T ∗]β = [T ]∗β .

Corollary 16.5. Let A be an n× n matrix. Then LA∗ = (LA)∗.
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Proposition 16.6. Let V be an inner product space, and let T, U ∈ L(V ). Then

1. (T + U)∗ = T ∗ + U∗.

2. (cT )∗ = cT ∗ for any c ∈ F .

3. (TU)∗ = U∗T ∗.

4. T ∗∗ = T .

5. I∗ = I .

Corollary 16.7. Let A,B be n× n matrices. Then

1. (A+B)∗ = A∗ +B∗.

2. (cA)∗ = cA∗ for any c ∈ F .

3. (AB)∗ = B∗A∗.

4. A∗∗ = A.

5. I∗ = I .

Topic 17: Normal operator and self-adjoint operator

Lemma 17.1. Let T be a linear operator on a finite-dimensional inner product space V . If T has an
eigenvector, then so does T ∗.

Theorem 17.2 (Schur). Let T be a linear operator on a finite-dimensional inner product space V .
Suppose that the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V
such that [T ]β is upper triangular.

Definition 17.3. Let V be an inner product space. We say that a linear operator T on V is normal if
T ∗T = TT ∗. An n× n (real or complex) matrix A is called normal if A∗A = AA∗.

We say that a linear operator T ∈ V is

• unitary if T ∗T = TT ∗ = I;

• self-adjoint (or Hermitian) if T ∗ = T ;

• anti-self-adjoint (or skew-Hermitian) if T ∗ = −T .

All of these are examples of normal operators. For example, the rotation T : R2 → R2 by an angle θ
in the counterclockwise direction, which is represented by

A =

(
cos θ − sin θ
sin θ cos θ

)
,

is unitary, and hence normal.

20



Proposition 17.4. Let V be an inner product space, and let T be a normal operator on V . Then we
have

1. ‖T (x)‖ = ‖T ∗(x)‖ for any x ∈ V .

2. T − cIV is normal for any c ∈ F .

3. If T (x) = λx, then T ∗(x) = λx.

4. If x1 and x2 are eigenvectors of T corresponding to distinct eigenvalues, then x1 and x2 are
orthogonal.

Theorem 17.5 (Spectral Theorem for complex inner product spaces). Let T be a linear operator on
a finite-dimensional complex inner product space V . Then T is normal if and only if there exists an
orthonormal basis for V which consists of eigenvectors of T .

Remark 17.6. This theorem is not true in the infinite-dimensional case.

Definition 17.7. Let T be a linear operator on an inner product space V . We say T is self-adjoint if
T ∗ = T . An n× n (real or complex) matrix A is called self-adjoint if A∗ = A.

Lemma 17.8. Let T be a self-adjoint operator on a finite-dimensional inner product space V . Then

1. Every eigenvalue of T is real.

2. Suppose V is a real inner product space. Then the characteristic polynomial of T splits over R.

Theorem 17.9 (Spectral Theorem for real inner product spaces). Let T be a linear operator on a
finite-dimensional real inner product space V . Then T is self-adjoint if and only if there exists an
orthonormal basis for V which consists of eigenvectors of T .

Topic 18: Unitary (orthogonal) operator

Definition 18.1. Let T be a linear operator on a finite-dimensional inner product space V over F . If
‖T (x)‖ = ‖x‖ for any x ∈ V , we call T a unitary operator (resp. orthogonal operator) when F = C
(resp. F = R).

Lemma 18.2. Let U be a self-adjoint operator on a finite-dimensional inner product space V . If
〈x, U(x)〉 = 0 for all x ∈ V , then U = T0, the zero operator.

Theorem 18.3. For a linear operator T on a finite-dimensional inner product space V , the following
are equivalent

1. T ∗T = TT ∗ = I .

2. T preserves the inner product on V , i.e. 〈T (x), T (y)〉 = 〈x,y〉 for any x,y ∈ V .

3. T (β) is an orthonormal basis for V for any orthonormal basis β for V .

4. There exists an orthonormal basis β for V such that T (β) is an orthonormal basis for V .
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5. ‖T (x)‖ = ‖x‖ for any x ∈ V .

Definition 18.4. A matrix A ∈ Mn×n(R) is called orthogonal if AtA = AAt = In. The set of n × n
orthogonal matrices is denoted by O(n). A matrix A ∈ Mn×n(C) is called unitary if A∗A = AA∗ =
In. The set of n× n unitary matrices is denoted by U(n).

Remark 18.5. A linear operator T on an inner product space V is unitary (resp. orthogonal) if and
only if there exists an orthonormal basis β for V such that [T ]β is unitary (resp. orthogonal).

Remark 18.6. Let v1,v2, . . . ,vn ∈ F n. Then the matrix A = (v1 | v2 | · · · | vn) ∈ Mn×n(F ) is
unitary (resp. orthogonal) if and only if β = {v1,v2, . . . ,vn} is an orthonormal basis for F n = Cn

(resp. F n = Rn).

Theorem 18.7. Let A ∈ Mn×n(C). Then A is normal if and only if A is unitarily equivalent to a
diagonal matrix, i.e. there exists P ∈ U(n) such that P ∗AP is diagonal.

Theorem 18.8. Let A ∈ Mn×n(R). Then A is self-adjoint if and only if A is orthogonally equivalent
to a diagonal matrix, i.e. there exists P ∈ O(n) such that P tAP is diagonal.

Topic 19: Spectral theorem

Proposition 19.1. Let V be an inner product space and W ⊂ V be a finite-dimensional subspace with
an orthonormal basis {v1,v2, . . . ,vk}. Then the orthogonal projection T : V → V defined by

T (y) =
k∑
i=1

〈y,vi〉vi

is a linear operator on V such that

1. N(T ) = W⊥ and R(T ) = W .

2. T 2 = T .

3. T is self-adjoint.

Remark 19.2. Properties 1 and 2 above uniquely determine the orthogonal projection onto W .

Theorem 19.3. Let T be a linear operator on a finite-dimensional inner product space V over F with
distinct eigenvalues λ1, λ2, . . . , λk. Assume that T is normal (resp. self-adjoint) when F = C (resp.
F = R). For 1 ≤ i ≤ k, let Ei = Eλi be the eigenspace of T corresponding to λi and let Ti be the
orthogonal projection onto Ei. Then

1. V = E1 ⊕ E2 ⊕ · · · ⊕ Ek.

2. E⊥i =
⊕

j 6=iEj for 1 ≤ i ≤ k.

3. TiTj = δijTj for 1 ≤ i, j ≤ k.

4. IV = T1 + T2 + · · ·+ Tk (resolution of the identity operator induced by T ).

5. T = λ1T1 + λ2T2 + · · ·+ λkTk (spectral decomposition of T ).

—END—

22


	Topic 1: Vector space
	Topic 2: Subspace
	Topic 3: Span and linear (in)dependence
	Topic 4: Basis and dimension
	Topic 5: Linear transformation
	Topic 6: Null space, range, and dimension theorem
	Topic 7: Matrix representation of a linear transformation
	Topic 8: Invertibility and isomorphism
	Topic 9: Change of coordinates
	Topic 10: Eigenvalues and eigenvectors
	Topic 11: Diagonalizability
	Topic 12: Invariant subspace and Cayley-Hamilton Theorem
	Topic 13: Inner product space
	Topic 14: Gram-Schmidt orthogalization
	Topic 15: Orthogonal complement
	Topic 16: Adjoint of a linear operator
	Topic 17: Normal operator and self-adjoint operator
	Topic 18: Unitary (orthogonal) operator
	Topic 19: Spectral theorem

