Exercise

- 1. Solve the following inequalities, using appropriate methods as needed:
- (a) (2x-1)(x-3)(3-2x) > 0(b) $(x+1)(x-2)(x^2+2x+4) > 0$ (c) $x^3 + x^2 - x - 1 > 0$ (d) $(x-3)(x^2-13x+13) < 51-17x$ (e) $\frac{4}{x-6} < 6$ (f) $\frac{6}{x^2+6x+10} \ge 3$ (g) $\frac{x+1}{2-x} > 1$ (h) $x + 3 < \frac{10}{r}$ (i) $\sec(x) > \sqrt{2}$ (j) $(\log_3(x))^2 + 2\log_9(3x) > 7$ (k) $\log_x(4) \ge \log_3(2)$ (l) $5^{\sin(x)} < 5^{\cos(x)}$ (m) $\tan(e^x) < 0$ (n) $2\sin(x) \le 1 \le \tan(x)$ (o) $x\sin(x) < 0$ (p) $\sin(x) + \sqrt{3}\cos(x) \le 1$ and $0 \le x < 2\pi$ (Hint: Assume $\sin(x) + \sqrt{3}\cos(x) = A\cos(x+B)$) (q) $(x - \pi)\cos(2x)e^x > 0$ and $0 \le x < 2\pi$ (r) 3x - 4 < 8 and $x^2 - 8 > 1$ (s) $\frac{2}{x+3} \ge 1$ and $\ln(x) > 6$ (t) $\log_2(x) > \log_3(x)$ and $x^2 - 2x - 3 \le 0$ (u) (2x+6<0 or 3x+5>2) and $x^2 \le 16$ (v) $(xe^x < 0 \text{ and } -6 \le 2x - 2 \le -4) \text{ or } \frac{1}{x} < 1$ (w) $(\sin(2^x) > 0 \text{ and } \log_2(5) < x < \log_2(6)) \text{ or } (\log_x(4) < 1 \text{ and } x > 0)$

- 2. Determine whether each of the following statement is true or false:
 - (a) For any real number $x, \frac{1}{x^2} \ge 0$.
- (b) The inequality $\cos(x) > 1$ has no real solution.
- (c) If x > y then $x^2 > y^2$.
- (d) If c < 0 and x > y then cx < cy.
- (e) $\sec(x) \ge \cos(x)$ for all real number x.
- (f) If $\sin(x) < \sin(y)$ then x < y.
- (g) $x^3 + \frac{1}{x^3} \ge x + \frac{1}{x}$ for all x > 0.
- (h) If a, b, x > 0 and $\log_a(x) > \log_b(x)$ then a < b.
- (i) If $\log_x(2) < 5$ then $x > \sqrt[5]{2}$ or 0 < x < 1.
- (j) $2020^{2021} > 2021^{2020}$.
- (k) The maximum value for $\sin(x) + \cos(2x)$ is 2.
- (l) An increasing function cannot be decreasing.
- (m) If f(x) is strictly decreasing, then there is one and only one solution to f(x) = 0.
- (n) If both f(x), g(x) are strictly increasing then f(x)g(x) is strictly increasing.
- (o) If both f(x), g(x) are strictly decreasing then f(g(x)) is strictly increasing.

3. Find the range of the following expressions:

- (a) $x^2 4x + 5, -4 \le x \le 4$
- (b) $(\frac{1}{3})^{x^2+5x+6}, -1 \le x \le 1$
- (c) $\log_2(\sin(x) + 3)$
- (d) $\frac{x^2+6x+4}{x^2-3x+4}$ (Hint: Divide both numerator and denominator by x)
- (e) $\frac{(x+3)^2}{x-1}$, x > 1 (Hint: Transform the expression into $A(x-1) + B + \frac{C}{x-1}$)
- (f) $\frac{\sin(2x)}{1+\cos(2x)}, -\frac{\pi}{4} \le x \le \frac{\pi}{4}$
- (g) $\frac{\cos(x) \sin(x)}{\cos(x) + \sin(x)}$, $0 \le x \le \frac{\pi}{3}$

(h)
$$\frac{4-\sin(x)}{\cos^2(x)+\sin(x)+11}$$

- (i) $\log_{\frac{1}{x}}(\frac{x}{4}), 2 \le x \le 4$
- 4. Prove the following inequalities (Variables are real unless otherwise specified):

(a)
$$|\sin(x)| \le |\tan(x)|, x \ne n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$$

(b) $\log_2(3) < \log_3(5)$
(c) $e^{x^2 + 5x + 6} > \sin(x)$
(d) $2\sqrt{x + 1} - 2\sqrt{x} < \frac{1}{\sqrt{x}} < 2\sqrt{x} - 2\sqrt{x - 1}, x > 1$ (Hint: Take reciprocal)
(e) $\frac{a}{b} + \frac{b}{a} \ge 2$, where $a, b > 0$
(f) $3(a^2 + b^2 + c^2) \ge (a + b + c)^2 \ge 3(ab + bc + ca)$ (Hint: Show $a^2 + b^2 + c^2 \ge ab + bc + ca)$
(g) $a^3 + b^3 + c^3 + d^3 \le 27$, where $a^2 + b^2 + c^2 + d^2 = 9$ (Hint: Show $a^3 \le 3a^2$)
(h) $a^2 + 4b^4 + c^2 + 1 \ge b(4ab - b - 2c) - a(ac^2 + c)$
(i) $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$, where $a, b, c, d \ge 0$ (Hint: $\sqrt[4]{abcd} = \sqrt{\sqrt{ab}\sqrt{cd}}$. Let $u = \sqrt{ab}, v = \sqrt{cd}$.)
(j) $\frac{u+v+w}{3} \ge \sqrt[3]{uvw}$, where $u, v, w \ge 0$ (Hint: Use previous result with $a = u, b = v, c = w$,
 $d = \frac{u+v+w}{3}$. So $d = \frac{a+b+c+d}{4}$. Now show $d \ge \sqrt[3]{abc}$)
(k) $(ab^2 + bc^2 + ca^2)(a^2b + b^2c + c^2a) \ge 9(abc)^2$, where $a, b, c \ge 0$ (Hint: Use previous result)
(l) $(a + \frac{1}{b})(b + \frac{1}{c})(c + \frac{1}{a}) \ge 8$, where $a, b, c > 0$ (Hint: Use $\frac{a+b}{2} \ge \sqrt{ab}$)

5. Let $f(x) = c(x-a_1)(x-a_2)...(x-a_8)$, where $a_1, a_2, ..., a_8$ are real numbers with $a_1 < a_2 < ... < a_8$ and $c \neq 0$. Suppose $a_5 < r < a_6$ and f(r) > 0.

- (a) Is c positive or negative?
- (b) Show that if $a_2 < m < a_3$ then f(m) < 0.
- (c) Solve $f(x) \ge 0$.
- (d) Sketch the graph of y = f(x).

6. In this question, we will talk about local maximum and minimum:

Let f(x) be a function. f(x) is said to attain local maximum at x = a if there exists $\delta > 0$ such that $f(x) \leq f(a)$ whenever $a - \delta < x < a + \delta$.

Similarly, f(x) is said to attain local minimum at x = a if there exists $\delta > 0$ such that $f(x) \ge f(a)$ whenever $a - \delta < x < a + \delta$.

Conceptually, it means you can find a small neighbourhood near a such that f(a) is larger than (or smaller than) all f(x) within that neighbourhood.

- (a) Find an example such that the function attains local minimum but not global minimum.
- (b) Identify the local maximum and local minimum of $y = \csc(x)$ for $0 < x < 2\pi$.
- (c) Show that $f(x) = x^4 x^2$ attains local maximum at x = 0.
- (d) Show that $f(x) = |\ln(x)|$ attains local minimum at x = 1.
- (e) Show that $f(x) = \frac{1}{x}$ attains neither local maximum nor local minimum for x > 0.
- (f) Show that if f(x) does not attain local maximum, then it does not attain global maximum.
- (g) Show that if f(x) attains local minimum at x = a, then there exists $\delta > 0$ such that f(x) is decreasing on $(a \delta, a]$ and increasing on $[a, a + \delta)$.
- 7. Let $f(x) = x^2 + (n-2)x + (n-5)$, where n is a real number. Suppose α, β are the roots of f(x).
 - (a) Show that α and β are real and $\alpha \neq \beta$.
- (b) Express $(\alpha 3)(\beta 3)$ in terms of n.
- (c) Assume $\alpha < 3 < \beta$. Using the previous result, show that $n < \frac{1}{2}$.
- (d) Further suppose $\beta \alpha < \sqrt{44}$. Show that $-2 < n < \frac{1}{2}$.

8. In this question, we will introduce hyperbolic functions. Define:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

These functions are useful in physics calculations.

- (a) Show that $\sinh(x)$ is strictly increasing.
- (b) Show that $\cosh(x)$ is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$.

- (c) Hence, or otherwise, show that $\cosh(x) \ge 1$ for all x.
 - (Hint: Reduce amount of variables)
- (e) Show that $|\sinh(x)| < |\cosh(x)|$ for all x.

(d) Show that tanh(x) is strictly increasing.

(f) Hence, or otherwise, show that $-1 < \tanh(x) < 1$ for all x.

9. In this question, we will introduce another proof to the inequality " $x^2 + \frac{1}{x^2} > x + \frac{1}{x}$ for any $1 \neq x > 0$ ". Let $1 \neq x > 0$, and $y = x + \frac{1}{x}$

- (a) By splitting cases for 0 < x < 1 and x > 1, prove that $\sqrt{x} \neq \frac{1}{\sqrt{x}}$.
- (b) By (a), show that y > 2. Hence, show that $y^2 y 2 > 0$.
- (c) Hence, show that $x^2 + \frac{1}{x^2} > x + \frac{1}{x}$.