Binomial theorem exercise

Thomas Chau

August 18, 2021

Quick Review

Binomial Theorem

Let a, b be real numbers, and n be a positive integer. Then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

or equivalently,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Exercise

- 1 Expand the following expressions using binomial theorem.
 - (a) $(a+b)^{3}$ (b) $(3x-4)^{5}$ (c) $(5x^{3}-y^{2})^{4}$ (d) $\left(2x-\frac{1}{x}\right)^{4}$
- 2 Expand the following expressions in ascending power of x up to the term x^3 .
 - (a) $(2x+3)(x-3)^4$
 - (b) $(2-x+x^2)^6$
 - Hint: You may consider $(2 x + x^2)^6$ as $[2 + (-x + x^2)]^6$.

3 Calculate the following values using binomial theorem.

- (a) 101^4
- (b) 98^3

- 4 Estimate the following values using binomial theorem.
 - (a) 1.01^6 up to 3 decimal places.
 - (b) 1.98^4 up to 2 decimal places.
- 5 (a) Expand $(1 2x + 3x^2)^6$ in ascending power of x up to the term x^3 .
 - (b) Solve the equation $1 2x + 3x^2 = 0.9803$.
 - (c) By choosing a suitable value in (b) and using part (a), estimate the value of $0.9803^6.$

6 Consider the expression
$$\left(2x^2 - \frac{1}{x}\right)^{13}$$
, find

(a) the coefficient of the term x^{11} .

(b) the coefficient of the term
$$\frac{1}{x^4}$$
.

- (c) the constant term.
- 7 Consider the expression $(3 x + 2x^2)(5x 1)^8$, find
 - (a) the coefficient of the term x^{10} .
 - (b) the coefficient of the term x.
 - (c) the coefficient of the term x^4 .
- 8 Given that the constant term of the expression $(x^2 2)^n(2x 1)$ is -16, where n is a positive integer.
 - (a) Find the value of n.
 - (b) Hence, find the coefficient of the term x^5 .
- 9 Let a, b be integers, and n be a positive integer.
 - (a) expand $(ax + b)^n$ in ascending power of x up to the term x^3 .
 - (b) Given that the coefficients of the term $\frac{1}{x}$, x, and the constant term of the expression $\left(2x-3+\frac{1}{x}\right)(ax+b)^n$ are -1, -72 and 13 respectively. Find the value of a, b and n.

10 Let n be a positive integer. Explain why

$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$

11 Let a, b be real numbers, and n be a positive integer. Show that

$$(a+b)^{2n+1} = \sum_{k=0}^{n} \binom{2n+1}{k} (a^k b^{2n+1-k} + a^{2n+1-k} b^k)$$

12 In this questions, we are going to prove the binomial theorem using Mathematical Induction.

Let a, b be real numbers, and n be a positive integer.

(a) Let k and i be positive integers. Show that

$$\binom{k}{i-1} + \binom{k}{i} = \binom{k+1}{i}$$

(b) Using the result in part (a), show that for any positive integer n,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

. Hint: You can use the following fact.

$$\sum_{i=0}^{k} \binom{k}{i} a^{i+1} b^{k-i} = \sum_{i=1}^{k+1} \binom{k}{i-1} a^{i} b^{k+1-i}$$