1

Solution 4

p. 126: 5, 8, 18

5. The mapping $D: \ell_1^1 \to \ell^1$, defined by $D(a_n) := (na_n)$, is linear and invertible, but not continuous.

Solution. Clearly D is linear. To see that D is invertible, we show that it is 1-1 and onto.

Suppose $D(a_n) = D(b_n)$. Then $(na_n) = (nb_n)$, that is $na_n = nb_n$ for all $n \ge 0$. Thus $a_n = b_n$ for all $n \ge 0$, and hence D is 1-1.

For any $(y_n) \in \ell_1$, let $(x_n) := T(y_n) \in \ell_1^1$, where $T : \ell_1 \to \ell_1^1$, $T(a_n) = (a_n/n)$ is defined in Q4. Then clearly, $(y_n) = D(x_n)$. Hence D is onto.

To see that D is not continuous, consider the sequence \mathbf{e}_n which has 1 in the *n*-th position and zero otherwise. Then, clearly $\mathbf{e}_n/n \to 0$ as $n \to \infty$ while $D(\mathbf{e}_n/n) = \mathbf{e}_n \neq 0$ as $n \to \infty$. Therefore D is not continuous.

8. $T\overline{\llbracket A \rrbracket} \subseteq \overline{\llbracket TA \rrbracket}$ for a continuous linear operator T.

Solution. Let $x \in \llbracket A \rrbracket$. Then there is a sequence (x_n) in $\llbracket A \rrbracket$ such that $x_n \to x$. Since T is linear, it is clear that $T(x_n) \in \llbracket TA \rrbracket$. Now, it follows from the continuity of T and the definition of closure that

$$T(x) = \lim_{n \to \infty} T(x_n) \in \overline{\llbracket TA \rrbracket}.$$

Therefore $T\overline{\llbracket A \rrbracket} \subseteq \overline{\llbracket TA \rrbracket}$.

18. If $T_n x_n \to 0$ for any choice of unit vectors x_n , then $T_n \to 0$.

Solution. Recall that $||T|| = \sup_{||x||=1} ||Tx||$. For each *n*, choose a unit vector x_n such that

$$||T_n x_n|| \ge ||T_n|| - \frac{1}{2^n}$$

Since $T_n x_n \to 0$ for any choice of unit vectors x_n , we have, by letting $n \to \infty$,

$$0 \ge \lim_{n \to \infty} \|T_n\|.$$

Thus $\lim_{n\to\infty} ||T_n|| = 0$, which means $T_n \to 0$.

•