Solution 2

p. 113: 8, 9, 13

8. The Weierstrass M-test (comparison test for L^{∞}): if $||f_n||_{L^{\infty}} \leq M_n$ where $\sum_n M_n$ converges, then $\sum_n f_n$ converges in $L^{\infty}(A)$ (i.e., uniformly). Use it to show that the function $f(x) := \sum_{n=1}^{\infty}$ $\frac{x^n}{n^2}$ converges uniformly on [-1, 1].

Solution. Clearly,

$$
\left| \frac{x^n}{n^2} \right| = \frac{|x|^n}{n^2} \le \frac{1}{n^2}
$$
 for any $x \in [-1, 1]$,

and hence $\left\|\frac{x^n}{n^2}\right\|$ $\left\| \frac{x^n}{n^2} \right\|_{L^\infty} \leq \frac{1}{n^2}$ $\frac{1}{n^2}$. Since $\sum_{n=1}^{\infty}$ $\frac{1}{n^2}$ converges, it follows from the Weierstrass M-test that $f(x) := \sum_{n=1}^{\infty}$ $\frac{x^n}{n^2}$ converges uniformly on [−1, 1]. \triangleleft

9. Let $f_n(x) := e^{-nx}/n$, then $||f_n||_{L^1[0,1]} \leq 1/n^2$, and so $\sum_n f_n$ converges in $L^1[0,1]$.

Solution.

$$
||f_n||_{L^1[0,1]} = \int_0^1 |f_n(x)| dx = \int_0^1 \frac{e^{-nx}}{n} dx
$$

= $-\frac{e^{-nx}}{n^2}\Big|_0^1$
= $\frac{1 - e^{-n}}{n^2}$
 $\leq \frac{1}{n^2}.$

Hence $\sum_{n} ||f_n|| \leq \sum_{n}$ $\frac{1}{n^2} < \infty$. As mentioned in p.106 Example 7.16.1, $L^1[0,1]$ is a Banach space. Therefore, the absolutely convergent series $\sum_n f_n$ converges in L^1 $[0, 1]$.

13. Cesáro limit: A sequence (x_n) is said to converge in the sense of Cesáro when $x_1+\cdots x_n$ $\frac{m \cdot x_n}{n}$ converges. Show that if $a = \lim_{n \to \infty} x_n$ exists then the Cesaro limit is also a. Show that the divergent sequence $(-1)^n$ is Cesáro convergent to 0.

Solution. Since (x_n) is convergent, it is bounded. Thus there exists $M > 0$ such that $|x_n| \leq M$ for all n.

Let $\varepsilon > 0$. Since $a = \lim_{n \to \infty} x_n$, there exists $N_1 \in \mathbb{N}$ so that

$$
|x_n - a| < \varepsilon/2 \quad \text{whenever } n \ge N_1.
$$

Choose $N_2 \in \mathbb{N}$ so large such that $N_2 \geq 2N_1(M + |a|)/\varepsilon$.

Let
$$
s_n := \frac{x_1 + \dots + x_n}{n}
$$
. Then, for all $n \ge N := \max\{N_1, N_2\} + 1$,
\n
$$
|s_n - a| = \left| \frac{(x_1 - a) + (x_2 - a) + \dots + (x_n - a)}{n} \right|
$$
\n
$$
\le \left| \frac{(x_1 - a) + \dots + (x_{N_1} - a)}{n} \right| + \left| \frac{(x_{N_1 + 1} - a) + \dots + (x_n - a)}{n} \right|
$$
\n
$$
\le \frac{|x_1| + |a| + \dots + |x_{N_1}| + |a|}{n} + \frac{|x_{N_1 + 1} - a| + \dots + |x_n - a|}{n}
$$
\n
$$
\le \frac{N_1(M + |a|)}{n} + \frac{(n - N_1)\varepsilon/2}{n}
$$
\n
$$
= \varepsilon.
$$

Hence (x_n) converges to a in the sense of Cesáro. Clearly, $x_n := (-1)^n$ is divergent. Note that

$$
s_n := \frac{x_1 + \dots + x_n}{n} = \begin{cases} -\frac{1}{n} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}
$$

Hence $s_n \to 0$ as $n \to \infty$, that is $(-1)^n$ is Cesáro convergent to 0.