Solution 1

p. 100: 1, 7, 8

1. Prove that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are norms. Which axioms does $\|\cdot\|_p$ fails when $p < 1$?

Solution. Consider the vector space \mathbb{K}^N . Let $\mathbf{x} = (x_1, \ldots, x_N), \mathbf{y} = (y_1, \ldots, y_N) \in$ \mathbb{K}^N and $\alpha \in \mathbb{K}$.

We first show that $\|\mathbf{x}\|_1 := \sum_{i=1}^N |x_i|$ is a norm on \mathbb{K}^N .

- (i) Clearly $\|\mathbf{x}\|_1 \geq 0$. Moreover $\|\mathbf{x}\|_1 = 0 \Leftrightarrow |x_i| = 0 \forall 1 \leq i \leq N \Leftrightarrow x_i = 0 \forall 1 \leq i$ $i \leq N \Leftrightarrow \mathbf{x} = 0.$
- (ii) $\|\alpha \mathbf{x}\|_1 = \sum_{i=1}^N |\alpha x_i| = |\alpha| \sum_{i=1}^N |x_i| = |\alpha| \|\mathbf{x}\|_1.$
- (iii) $\|\mathbf{x} + \mathbf{y}\|_1 = \sum_{i=1}^N |x_i + y_i| \le \sum_{i=1}^N |x_i| + \sum_{i=1}^N |y_i| = \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1.$

Hence $\|\cdot\|_1$ is a norm on \mathbb{K}^N .

Next we show that $\|\mathbf{x}\|_{\infty} := \max_{1 \leq i \leq N} |x_i|$ is a norm on \mathbb{K}^N .

- (i) Clearly $\|\mathbf{x}\|_{\infty} \geq 0$. Moreover $\|\mathbf{x}\|_{\infty} = 0 \Leftrightarrow |x_i| = 0 \forall 1 \leq i \leq N \Leftrightarrow x_i = 0 \forall 1 \leq j$ $i \leq N \Leftrightarrow \mathbf{x} = 0.$
- (ii) $\|\alpha \mathbf{x}\|_{\infty} = \max_{1 \leq i \leq N} |\alpha x_i| = |\alpha| \max_{1 \leq i \leq N} |x_i| = |\alpha| \|\mathbf{x}\|_{\infty}$.
- (iii) $\|\mathbf{x} + \mathbf{y}\|_{\infty} = \max_{1 \leq i \leq N} |x_i + y_i| \leq \max_{1 \leq i \leq N} (|x_i| + |y_i|) \leq \max_{1 \leq i \leq N} |x_i| +$ $\max_{1 \leq j \leq N} |y_j| = ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty}.$

Hence $\|\cdot\|_{\infty}$ is a norm on \mathbb{K}^{N} .

We now show that $\|\cdot\|_p$ fails the triangle inequality, hence is not a norm, when $p < 1$. For example, consider $\mathbf{x} = (1/2, 0), \mathbf{y} = (0, 1/2) \in \mathbb{R}^2$. Then

$$
\|\mathbf{x} + \mathbf{y}\|_{p} = \left(\left(\frac{1}{2}\right)^{p} + \left(\frac{1}{2}\right)^{p}\right)^{1/p} = 2^{\frac{1}{p}-1}
$$

while

$$
\|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p} = \left(\left(\frac{1}{2}\right)^{p}\right)^{1/p} + \left(\left(\frac{1}{2}\right)^{p}\right)^{1/p} = 2.
$$

Now the triangle inequality fails since $2^{\frac{1}{p}-1} > 2$ whenever $p < 1$.

7. The norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are all equivalent on \mathbb{R}^N since (prove!)

$$
\|\cdot\|_{\infty} \le \|\cdot\|_2 \le \|\cdot\|_1 \le N \|\cdot\|_{\infty}.
$$

But they are not equivalent for sequences or functions! Find sequences of functions that converge in $L^1[0,1]$ but not in $L^{\infty}[0,1]$, or vice-versa. Can sequences converge in ℓ^1 but not in ℓ^{∞} ?

Solution. (a) Let $\mathbf{x} = (x_1, \ldots, x_N) \in \mathbb{R}^N$. Using the identity $\left(\sum_{i=1}^N a_i\right)^2$ $\sum_{i=1}^{N} a_i^2 + 2 \sum_{i < j} a_i a_j$, it is easy to see that

$$
\sum_{i=1}^{N} |x_i|^2 \le \left(\sum_{i=1}^{N} |x_i|\right)^2.
$$

Moreover,

$$
\max_{1 \le i \le N} |x_i|^2 \le \sum_{i=1}^N |x_i|^2 \quad \text{ and } \quad \sum_{i=1}^N |x_i| \le \sum_{i=1}^N \max_{1 \le i \le N} |x_i| = N \max_{1 \le i \le N} |x_i|.
$$

Therefore,

$$
\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le N \|\mathbf{x}\|_{\infty}.
$$

(b) Recall that $L^1[0,1] := \{f : [0,1] \to \mathbb{C} : \int_0^1 |f(x)| dx < \infty\}$ with norm defined by

$$
||f||_{L^1} := \int_0^1 |f(x)| dx < \infty,
$$

while $L^{\infty}[0,1] := \{f : [0,1] \to \mathbb{C} : f \text{ is measurable AND } \exists c | f(x)| \leq c \text{ a.e. } x\}$ with norm defined by

$$
||f||_{L^{\infty}} := \sup_{x \text{ a.e.}} |f(x)|.
$$

On one hand, one can easily see that

$$
||f||_{L^{1}} = \int_{0}^{1} |f(x)| dx \le \int_{0}^{1} ||f||_{L^{\infty}} dx = ||f||_{L^{\infty}},
$$

so that convergence in $L^{\infty}[0, 1]$ implies convergence in $L^{1}[0, 1]$. On the other hand, consider the sequence $f_n(x) := \chi_{[0,\frac{1}{n}]}$ for $n \geq 1$. Then

$$
||f_n||_{L^1} = \int_0^{\frac{1}{n}} dx = \frac{1}{n} \to 0 \text{ as } n \to \infty,
$$

while

$$
||f_n||_{L^{\infty}} = \sup_{x \text{ a.e.}} |\chi_{[0, \frac{1}{n}]}| = 1.
$$

Hence $(f_n)_{n\geq 1}$ converges to 0 in $L^1[0,1]$ but does not converge in $L^{\infty}[0,1]$.

(c) Suppose a sequence (\mathbf{x}_n) converges to **x** in ℓ^1 . Write

$$
\mathbf{x}_n = (x_1^n, x_2^n, x_3^n, \dots)
$$
 and $\mathbf{x} = (x_1, x_2, x_3, \dots).$

Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that

$$
\|\mathbf{x}_n - \mathbf{x}\|_{\ell^1} := \sum_{k=1}^{\infty} |x_k^n - x_k| < \varepsilon/2 \text{ whenever } n \ge N.
$$

In particular, for $n \geq N$, we have $|x_k^n - x_k| \leq \sum_{k=1}^{\infty} |x_k^n - x_k| < \varepsilon/2$ for $k = 1, 2, \ldots$, and hence

$$
\|\mathbf{x}_n - \mathbf{x}\|_{\ell^\infty} := \sup_k |x_k^n - x_k| \le \varepsilon/2 < \varepsilon.
$$

Therefore, the sequence (\mathbf{x}_n) must converge to **x** in ℓ^{∞} also.

8. **Minkowski semi-norm*: Let C be a convex set which is balanced, $e^{i\theta}C = C(\forall \theta \in \mathbb{R}),$ and such that $\cup_{r>0}rC=X$. Then

$$
||x|| := \inf\{r > 0 : x \in rC\}
$$

is a semi-norm on X .

- **Solution.** (i) Since $\bigcup_{r>0}rC = X$, $||x||$ is well-defined and non-negative for any $x \in X$.
- (ii) Let $x \in X$ and $\lambda \in \mathbb{C}$. First suppose $\lambda = 0$. Since $\cup_{r>0} rC = X$, we have $0 \in rC$ for some $r > 0$, and in fact $0 \in rC$ for all $r > 0$. Thus

$$
\|0x\| = \|0\| = 0 = 0\|x\|.
$$

Next suppose $\lambda \neq 0$. Since C is balanced, we have

$$
\lambda x \in rC \Leftrightarrow |\lambda| x \in rC \Leftrightarrow x \in \frac{r}{|\lambda|}C, \quad \text{ for all } r > 0.
$$

Then

$$
\{r > 0 : \lambda x \in rC\} = \{r > 0 : x \in \frac{r}{|\lambda|}C\} = |\lambda|\{s > 0 : x \in sC\},\
$$

and taking the infimum on both sides gives $\|\lambda x\| = |\lambda| \|x\|$.

(iii) Let $x, y \in X$. Suppose $x \in sC$ and $y \in tC$. Then

$$
x + y \in sC + tC = (s + t) \left(\frac{s}{s + t} C + \frac{t}{s + t} C \right) \subset (s + t)C,
$$

since C is convex. Therefore $||x + y|| \leq s + t$. Taking the infimum over s and t gives

 $||x + y|| \le ||x|| + ||y||.$

Hence $\|\cdot\|$ is a semi-norm on X.

p. 106: 3

3. When X, Y are Banach spaces over the same field, so is $X \times Y$ (Proposition 4.7).

 \blacktriangleleft

Solution. Recall that $X \times Y$ is a normed space with norm given by

$$
||(x,y)||_{X\times Y} := ||x||_X + ||y||_Y.
$$

It suffices to show that if X and Y are complete then so is $X \times Y$. Let $\{(x_n, y_n)\}_{n=1}^{\infty} \in X \times Y$ be a Cauchy sequence Then

$$
||(x_n, y_n) - (x_m, y_m)||_{X \times Y} = ||x_n - x_m||_X + ||y_n - y_m||_Y \ge ||x_n - x_m||_X.
$$

Since the left-hand sequence converges to 0 as $n, m \to \infty$, we get $||x_n-x_m||_X \to 0$, so that the sequence $\{x_n\}_{n=1}^{\infty}$ is Cauchy in the complete space X. It therefore converges to some point x in X. By similar reasoning, $y_n \to y \in Y$. Consequently,

$$
||(x_n, y_n) - (x, y)||_{X \times Y} = ||x_n - x||_X + ||y_n - y||_Y \to 0 \quad \text{as } n \to \infty,
$$

which is equivalent to $(x_n, y_n) \to (x, y)$ in $X \times Y$. Thus $X \times Y$ is complete, hence a Banach space. \blacksquare