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Summary. In this paper, we consider the finite element methods for solving

second order elliptic and parabolic interface problems in two-dimensional

convex polygonal domains. Nearly the same optimal L2-norm and energy-

norm error estimates as for regular problems are obtained when the interfaces

are of arbitrary shape but are smooth, though the regularities of the solu-

tions are low on the whole domain. The assumptions on the finite element

triangulation are reasonable and practical.
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1. Introduction

Numerical solutions of second order elliptic and parabolic problems with

discontinuous coefficients are often encountered in material sciences and

fluid dynamics. It is the case when two distinct materials or fluids with

different conductivities or densities or diffusions are involved. When the in-

terface is smooth enough, the solution of the interface problem is also very

smooth in individual regions occupied by materials or fluids, but the global

regularity is usually very low, see Littman et al. [22], Kellogg [15,16], La-

dyzenskaja et al. [17]. Because of the low global regularity and the irregular
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geometry of the interface, achieving the high order of accuracy seems dif-

ficult with finite element methods (cf. Babuska [1]), whose elements could

not fit with the interface of general shape.

Babuska [1] studied the elliptic interface problem defined on a smooth

domain with a smooth interface. The interface problem was formulated as

an equivalent minimization problem with all the boundary and jump con-

ditions incorporated in the cost functions. The finite element methods were

then used to solve the minimization problems. Under some approximation

assumptions on finite element spaces, the energy-norm error estimates were

obtained. Xu [25] considered solving the elliptic interface problem assum-

ing its solution and the normal derivatives of the solution continuous across

the interface, by the standard finite element method. The algorithms in [1]

and [25] require the exact calculation of line integrals on the boundary of the

domain and on the interface, and exact integrals on interface finite elements

are also needed. Han [12] proposed an infinite element method, which may

be considered as a certain scheme of mesh refinement, for elliptic interface

problems with interfaces consisting of straight lines, not suitable for curved

interfaces. The energy-norm error estimates were achieved both in [12] and

[25].

LeVeque-Li [19] proposed an immersed interface method for elliptic

interface problems defined on a regular domain for which a uniform rect-

angular grid can be used. Then finite difference methods were constructed

based on the uniform grid and the jump conditions on the interface. The au-

thors applied their methods also for other interface problems, e.g. the Stokes

flow problem [18], the one-dimensional moving interface problem [20] and

Hele-Shaw flow [21]. The resultant linear systems from these methods are

non-symmetric and indefinite even the original problems are self-adjoint

and uniformly elliptic. The convergence proofs of these methods are still

open.

In this paper, we propose the finite element method for solving second or-

der both elliptic and parabolic interface problems and prove that the method

converges nearly in the same optimal way as the usual non-interface elliptic

and parabolic problems, both for the energy-norm and L2-norm. In fact,

the energy-norm error estimate can be shown to be optimal. The interface

is allowed to be of arbitrary shape but is smooth. The resultant linear sys-

tems are always symmetric and positive definite when the original PDEs are

self-adjoint and uniformly elliptic. And in particular, the domain decom-

position methods, which have been investigated widely in recent years (cf.

Chan-Zou [5] and Xu-Zou [26]), can be applied here to construct efficient

preconditioned iterative methods for solving these large scale and sparse

linear systems of equations. And different from the previous finite element

methods, the calculations of the stiffness matrix and the interface integral re-
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Finite element methods for interface problems 177

lated to the jumps of normal derivatives are much simpler and more practical

here.

Considering we approximate the smooth interface by a polygon and the

interface function by its interpolant, the approximation problem here seems

similar to the classical finite element methods using straight triangles for

solving elliptic problems with Neumann boundary conditions on smooth

domains (see, for example, [3,2,8,9] and the references therein). But there

are some differences. In the classical case, one can assume full regularities

(or even more) about solutions, coefficients, boundary value function etc.

But for the current interface problems, we usually have very low global

regularities about the solutions, coefficients and interface functions. So the

classical analysis is difficult to apply for the convergence analysis in the in-

terface problem. Among crucial technical tools used here are some Sobolev

embedding inequality, Sobolev extension theorem, parabolic dual arguments

in both L2-norm and energy-norm error estimates, interface energy-norm

projection and discrete L2 projection etc.

Let us now end this section with some notation to be used in the paper.

For each integer m ≥ 0 and real p with 1 ≤ p ≤ ∞, Wm,p(Ω) denotes

the standard Sobolev space of real functions with their weak derivatives of

order up to m in the Lebesgue space Lp(Ω). When p = 2, we use Hm(Ω)
to stand for Wm,2(Ω). For a given Banach space B, we define

Wm,p(0, T ;B) =
{

u(t) ∈ B for a.e. t ∈ (0, T ) and

m
∑

k=0

∫ T

0
‖u(k)(t)‖p

B dt < ∞
}

equipped with the norm

‖u‖W m,p(0,T ;B) =
[

m
∑

k=0

∫ T

0
‖u(k)(t)‖p

B dt
]1/p

.

As usual, we let

Lp(0, T ;B) = W 0,p(0, T ;B) and H1(0, T ;B) = W 1,2(0, T ;B).

Throughout the paper, the generic constant C is always independent of the

finite element mesh parameter h and the time step size τ .

2. Elliptic interface problems

Let Ω be a convex polygon in R
2 and Ω1 ⊂ Ω be an open domain with C2

boundary Γ = ∂Ω1 ⊂ Ω. Let Ω2 = Ω \ Ω1 (see Fig. 1). We consider the

following elliptic interface problem

−∇ · (β∇u) = f in Ω(2.1)
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Ω

Γ

n

Ω2

Ω1

Fig. 1. Domain Ω, its subdomains Ω1, Ω2 and interface Γ

with Dirichlet boundary condition

u = 0 on ∂Ω(2.2)

and jump conditions on the interface

[u] = 0,
[

β
∂u

∂n

]

= g across Γ,(2.3)

where [v] is the jump of a quantity v across the interface Γ and n the unit

outward normal to the boundary ∂Ω1. For definiteness, we let [v](x) =
v1(x) − v2(x), x ∈ Γ , with v1 and v2 the restrictions of v on Ω1 and

Ω2, respectively. For the ease of exposition, we assume that the coefficient

function β is positive and piecewise constant, i.e.

β(x) = β1 for x ∈ Ω1; β(x) = β2 for x ∈ Ω2.

But the results of this section can be easily extended to more general elliptic

interface problems (see Sect. 4).

For the later analysis, we need the following space

X = H1(Ω) ∩ H2(Ω1) ∩ H2(Ω2)

equipped with the norm

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2), ∀ v ∈ X.

By the Sobolev embedding theorem, for any v ∈ X , we have v ∈
W 1,p(Ω), ∀ p > 2.

Regarding the regularity for the solution of the interface problem (2.1)-

(2.3), we have the following results:

Theorem 2.1 Assume that f ∈ L2(Ω) and g ∈ H1/2(Γ ). Then the problem

(2.1)-(2.3) has a unique solution u ∈ X and u satisfies the a priori estimate

‖u‖X ≤ C (‖f‖L2(Ω) + ‖g‖H1/2(Γ )).(2.4)
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Proof. In the case of g = 0, the results are well-known (cf. Babuska [1] and

Kellogg [14]). Let us consider the general case g ∈ H1/2(Γ ). As Γ is of

class C2, we can find a function ũ ∈ X ∩ H1
0 (Ω) such that

[ũ] = 0,
[

β
∂ũ

∂n

]

= g on Γ and ‖ũ‖X ≤ C ‖g‖H1/2(Γ ).

Then Theorem 2.1 follows by observing that v = u − ũ solves the problem

(2.1)-(2.3) with f replaced by f + ∇ · (β∇ũ) and g = 0. ⊓⊔

Remark 2.1 One way to construct the function ũ ∈ X ∩H1
0 (Ω) used in the

proof of Theorem 2.1 is as follows. First, let ũ1 ∈ H1(Ω1) solve

−∆ũ1 + ũ1 = 0 in Ω1; β1
∂ũ1

∂n

= g on Γ.

We know ũ1 exists uniquely and ũ1 ∈ H2(Ω1) satsifying (cf. Grisvard [11])

‖ũ1‖H2(Ω1) ≤ C ‖g‖H1/2(Γ ).

Then we solve the following biharmonic problem of the first kind in Ω2 to

get ũ2:

−∆2ũ2 = 0 in Ω2,

ũ2 = ũ1,
∂ũ2

∂n

= 0 on Γ,

ũ2 = 0,
∂ũ2

∂ν
= 0 on ∂Ω

where ν is the unit outward normal to the boundary ∂Ω.

It is well-known that there exists a unique ũ2 ∈ H2(Ω2) to the above

biharmonic problem satisfying the estimate (cf. Girault-Raviart [10], pp.

15-17)

‖ũ2‖H2(Ω2) ≤ C ‖ũ1‖H3/2(Γ ) ≤ C ‖ũ1‖H2(Ω1) ≤ C‖g‖H1/2(Γ ).

Thus the desired function ũ can be taken to be ũ = ũi in Ωi for i = 1, 2.

To present the finite element method for the interface problem (2.1)-

(2.3), we now introduce its weak formulation. We define a bilinear form

a(·, ·) : H1(Ω) × H1(Ω) 7→ R by

a(u, v) =

∫

Ω
β(x)∇u · ∇v dx, ∀u, v ∈ H1(Ω).

Then it is immediate to derive the weak formulation of the interface problem

(2.1)-(2.3):
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Ω

Γh

Ω
h
2

Ω
h
1

Fig. 2. The domain Ω, its approximate subdomains Ω
h
1 , Ω

h
2 and interface Γh

Problem (P). Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) + 〈g, v〉 , ∀ v ∈ H1
0 (Ω).(2.5)

Here and later, the notation (·, ·) and 〈·, ·〉 are used to denote the scalar

products of the L2(Ω) space and the interface space L2(Γ ), respectively.

We now describe the triangulation Th of the domain Ω. We first approx-

imate the domain Ω1 by a domain Ωh
1 with a polygonal boundary Γh whose

vertices all lie on the interface Γ . Let Ωh
2 stand for the domain with ∂Ω and

Γh as its exterior and interior boundaries, respectively (see Fig. 2).

Now we triangulate Ω by a finite set of closed triangles Th = {K} which

satisfies the following conditions:

(A1) Ω̄ = ∪K∈Th
K,

(A2) if K1, K2 ∈ Th and K1 /= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2

is a common vertex or edge of both triangles,

(A3) each K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two vertices lying

on Γh.

The triangles with one or two vertices on Γh are called interface triangles,

the set of all interface triangles is denoted by T ∗
h and we let Ω∗ = ∪K∈T ∗

h
K.

For each triangle K ∈ Th, we use hK for its diameter, ρK and ρ̄K for the

diameters of its inscribed and circumscribed circles, respectively. Let h =
maxK∈Th

hK . We assume that the family of triangulations {Th}h∈(0,h0), for

some fixed h0 > 0, is quasi-uniform, i.e. there are two positive constants

C0 and C1 independent of h such that

C0 ρK ≤ h ≤ C1 ρ̄K , ∀K ∈ Th, ∀h ∈ (0, h0).(2.6)

We introduce some more notations. We first rewrite the set T ∗
h of interface

elements as

T ∗
h = {K ∈ Th; K ∩ Γ /= ∅}.
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Fig. 3. The arc Γ
h
r and the local coordinates x

r
1, x

r
2

Let

Γh = ∪mh
r=1S

h
r and Γ = ∪mh

r=1Γ
h
r ,

where Sh
r ⊂ Γh is the edge of some triangle in Th, denoted by Kr, and Γ h

r

is the part of Γ corresponding to Sh
r (see Fig. 3). As the interface Γ is of

class C2, there exists a constant h0 > 0 such that for h ∈ (0, h0), one can

introduce a local coordinate xr
1, x

r
2 for each Γ h

r (r = 1, 2, · · · , mh). We take

the xr
2-axis along the edge Sh

r and xr
1-axis in the normal to Sh

r (see Fig. 3).

Then the arc Γ h
r can be expressed in the parametric form

Γ h
r = {(xr

1, x
r
2); xr

1 = φh
r (xr

2), xr
2 ∈ [0, sh

r ]}

where sh
r is the length of Sh

r . As the interface Γ is of class C2, we have

φh
r ∈ C2([0, sh

r ]) for r = 1, · · · , mh. It is easy to prove that (cf. Feistauer-

Ženišek [9])

|φh
r (xr

2)| ≤ C (sh
r )2 ≤ C h2, ∀xr

2 ∈ [0, sh
r ],(2.7)

∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣
≤ C h, ∀xr

2 ∈ [0, sh
r ].(2.8)

For any interface element K ∈ T ∗
h , let K1 = K ∩Ω1 and K2 = K ∩Ω2,

then using (2.7), we know

either meas(K1) ≤ C h3
K or meas(K2) ≤ C h3

K .

Later on, we will always use K̃ to denote one of two subregions K1 and K2

which satisfies meas(Ki) ≤ C h3
K , i = 1 or 2.

Now we define Vh to be the standard linear finite element space defined

on the triangulation Th and V 0
h the subspace of Vh with its functions van-

ishing on the boundary ∂Ω. For the coefficient function β(x), we define its

approximation βh(x) as follows: for each triangle K ∈ Th, let βK(x) = βi

if K ⊂ Ωi
h, i = 1 or 2. Then βh is defined by

βh(x) = βK(x), ∀K ∈ Th.
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It is easy to verify that

supp(β − βh) ∩ K = K̃, ∀K ∈ T ∗
h .

Corresponding to the bilinear form a(·, ·) : H1(Ω) × H1(Ω) 7→ R
1 de-

fined previously, we introduce its discrete formah(·, ·) : H1(Ω)×H1(Ω) 7→
R

1 by

ah(u, v) =
∑

K∈Th

∫

K
βK(x)∇u · ∇v dx, ∀u, v ∈ H1(Ω).

Furthermore, we need an approximation gh to the interface function g
on Γ . Let {Pj}

mh
j=1 be the set of all nodes of the triangulation Th lying

on the interface Γ , and {φh
j }mh

j=1 the set of standard nodal basis functions

corresponding to {Pj}
mh
j=1 in the space Vh. Assume that g ∈ C(Γ ). Then

we define gh ∈ Vh by

gh =

mh
∑

j=1

g(Pj)φj .

Now we are in a position to define the finite element approximation to

Problem (P):

Problem (Ph). Find uh ∈ V 0
h such that

ah(uh, vh) = (f, vh) + 〈gh, vh〉h , ∀ vh ∈ V 0
h .(2.9)

Here 〈·, ·〉h denotes the scalar product in the space L2(Γh). It is easy to see

that the finite element problem (2.9) has a unique solution uh.

The main results of this section are stated in the following theorem:

Theorem 2.2 Let u and uh be the solutions to Problem (P) and Problem

(Ph), respectively. Then, for 0 < h < h0, we have

‖∇(u − uh)‖L2(Ω) ≤ C h | log h|1/2
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

,(2.10)

‖u − uh‖L2(Ω) ≤ C h2 | log h|
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

.(2.11)

Remark 2.2 The definition of Sobolev spaces on manifolds, e.g. ‖ · ‖H2(Γ ),

can be found in Grisvard [11]. The regularity of g in Theorem 2.2 can be

weakened, see Remark 2.3.

Before proving Theorem 2.2, we first show two lemmas needed. Let Πh :
C(Ω̄) 7→ Vh be the standard linear interpolation operator corresponding to

the space Vh (cf. Ciarlet [7]). As the solutions concerned are only in H1(Ω)
globally (cf. Theorem 2.1), one can not apply the standard interpolation

theory directly. Instead we are able to show the following properties of the

interpolant Πh:
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Lemma 2.1 For the linear interpolation operator Πh : C(Ω̄) 7→ Vh, we

have

‖v − Πhv‖L2(Ω) + h ‖∇(v − Πhv)‖L2(Ω) ≤ C h2 | log h|1/2‖v‖X ,(2.12)

∀ v ∈ X .

Proof. For any v ∈ X , let vi be the restriction of v on Ωi for i = 1, 2. As

the interface Γ is of class C2, we can extend the function vi ∈ H2(Ωi) onto

the whole domain Ω and obtain the function ṽi ∈ H2(Ω) such that ṽi = vi

on Ωi and

‖ṽi‖H2(Ω) ≤ C ‖v‖H2(Ωi) for i = 1, 2,

See Stein [24] for the existence of such extensions.

Now for any element K in Th \ T ∗
h , the standard finite element interpo-

lation theory (cf. Ciarlet [7]) implies that

‖v − Πhv‖Hm(K) ≤ C h2−m‖v‖H2(K), m = 0, 1.(2.13)

Next, we consider any element K in T ∗
h . Recall that Ki = K ∩ Ωi for

i = 1, 2. Without loss of generality, we can assume that meas(K2) ≤ Ch3
K .

Thus, using Hölder’s inequality we derive that for any p > 2 and m = 0, 1,

‖v − Πhv‖Hm(K2) ≤ C h
3(p−2)

2p

K ‖v − Πhv‖W m,p(K2)

≤ C h
3(p−2)

2p

K ‖v − Πhv‖W m,p(K)

≤ C h
3(p−2)

2p
+1−m

K ‖v‖W 1,p(K)(2.14)

where we have used the standard finite element interpolation result in the

last inequality. On the other hand, it follows by means of the previously

defined extention ṽi of vi that for m = 0, 1,

‖v − Πhv‖Hm(K1) = ‖ṽ1 − Πhṽ1‖Hm(K1)

≤ ‖ṽ1 − Πhṽ1‖Hm(K)

≤ C h2−m
K ‖ṽ1‖H2(K).(2.15)

Now by (2.14)–(2.15) we obtain for m = 0, 1 that

∑

K∈T ∗

h

‖v − Πhv‖2
Hm(K) ≤ C h4−2m{‖ṽ1‖

2
H2(Ω) + ‖ṽ2‖

2
H2(Ω)}

+C
∑

K∈T ∗

h

h
2−2m+

3(p−2)
p ‖v‖2

W 1,p(K)

≤ C h4−2m‖v‖2
X
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+C h
2−2m+

2(p−2)
p {

∑

K∈T ∗

h

‖v‖p
W 1,p(K)

}
2
p

≤ C h4−2m‖v‖2
X + C h

4−2m− 4
p ‖v‖2

W 1,p(Ω)

where in the second inequality we have used the discrete Hölder’s inequality

and the fact that
∑

K∈T ∗

h
1 ≤ C h−1 due to the quasi-uniformity of the

triangulations Th. Now using the Sobolev embedding inequality for two

dimensions (cf. Ren-Wei [23]):

‖φ‖Lp(Ωi) ≤ C p1/2‖φ‖H1(Ωi), ∀ p > 2,

φ ∈ H1(Ωi), i = 1, 2,(2.16)

we conclude that for m = 0, 1 and any p > 2,







∑

K∈T ∗

h

‖v − Πhv‖2
Hm(K)







1/2

≤ C h2−m‖v‖X + Ch
2−m− 2

p p
1
2 ‖v‖X ,(2.17)

where the constant C is independent of h and p > 2. Taking p = | log h| in

(2.17) and combining (2.13) with (2.17), we finally obtain for m = 0, 1 that

‖v − Πhv‖Hm(Ω) ≤ C h2−m| log h|1/2 ‖v‖X .

This completes the proof of Lemma 2.1. ⊓⊔

The second lemma is on the approximation property of gh to the interface

function g:

Lemma 2.2 Assume that g ∈ H2(Γ ). Then we have

∣

∣

∣

∣

∫

Γ
g vh ds −

∫

Γh

gh vh ds

∣

∣

∣

∣

≤ C h3/2‖g‖H2(Γ )‖vh‖H1(Ω∗),

∀ vh ∈ Vh,(2.18)

where Ω∗ = ∪K∈T ∗

h
K.

Proof. To simplify the notation, we will make no difference between a func-

tion defined in the original x1x2-coordinate system and its transformed ver-

sion in the local xr
1x

r
2-coordinate system introduced before. For example, the

interface function g(x1, x2) in the x1x2-coordinate system will be denoted

by g(φh
r (xr

2), x
r
2) in the xr

1x
r
2-coordinate system. This abuse of notation will

not affect any results involved in the following proof but it simplifies the

Numerische Mathematik Electronic Edition

page 184 of Numer. Math. (1998) 79: 175–202



Finite element methods for interface problems 185

notation greatly. Thus, under the local coordinate (xr
1, xr

2), the restriction of

gh on Sh
r , denoted by g̃h, can be written as

g̃h(0, xr
2) =

xr
2

sh
r

g(0, sh
r ) +

sh
r − xr

2

sh
r

g(0, 0), ∀xr
2 ∈ [0, sh

r ].(2.19)

Then for r = 1, · · · , mh, we have

∫

Γ h
r

g vh ds −

∫

Sh
r

gh vh ds

=

∫ sh
r

0
g(φh

r (xr
2), x

r
2) vh(φh

r (xr
2), x

r
2)

√

1 +
∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
dxr

2

−

∫ sh
r

0
g̃h(0, xr

2) vh(0, xr
2)dxr

2

=

∫ sh
r

0
g(φh

r (xr
2), x

r
2)
[

vh(φh
r (xr

2), x
r
2) − vh(0, xr

2)
]

×

√

1 +
∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
dxr

2

+

∫ sh
r

0

[

g(φh
r (xr

2), x
r
2) − g̃h(0, xr

2)
]

vh(0, xr
2)

√

1 +
∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
dxr

2

+

∫ sh
r

0
g̃h(0, xr

2) vh(0, xr
2)

[
√

1 +
∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
− 1

]

dxr
2

≡: (I)1 + (I)2 + (I)3 .

(2.20)

We now estimate (I)1, (I)2 and (I)3 one by one. First from (2.7) we obtain

|(I)1| ≤ C h3 ‖g‖L∞(Γ h
r )

∑

K∈T r
h

‖∇vh‖L∞(K),

where T r
h = {K ∈ Th; K ∩ Γ h

r /= ∅}. Obviously, the number of elements

in T r
h is bounded by some constant independent of h. Using the inverse

inequality, we get

|(I)1| ≤ C h2 ‖g‖L∞(Γ )

∑

K∈T r
h

‖∇vh‖L2(K).(2.21)

We know from (2.19) that g̃h(0, xr
2) is the linear interpolant of g(φh

r (xr
2),

xr
2) on [0, sh

r ]. Thus, the standard finite element interpolation theory and
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inverse inequality imply

|(I)2| ≤ C h1/2 ‖g(φh
r (·), ·) − g̃h(0, ·)‖L2(Sh

r ) ‖vh‖L∞(Sh
r )

≤ Ch5/2 ‖g‖H2(Γ h
r ) ‖vh‖L∞(Kr)

≤ C h3/2‖g‖H2(Γ h
r ) ‖vh‖L2(Kr).(2.22)

We now turn to estimate (I)3. We know from (2.7) that

∣

∣

∣

√

1 +
∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
− 1
∣

∣

∣
≤

1

2

∣

∣

∣

d

dxr
2

φh
r (xr

2)
∣

∣

∣

2
≤ C h2, ∀xr

2 ∈ [0, sh
r ].

Using this and inverse inequality we derive

|(I)3| ≤ C h3‖g‖L∞(Γ )‖vh‖L∞(Sh
r ) ≤ Ch2 ‖g‖L∞(Γ )‖vh‖L2(Kr).(2.23)

Thus we conclude from (2.20)–(2.23) that

∣

∣

∣

∣

∫

Γ
g vh ds −

∫

Γh

gh vh ds

∣

∣

∣

∣

≤ Ch2
mh
∑

r=1

[

‖g‖L∞(Γ )

∑

K∈T r
h

‖vh‖H1(K)

]

+Ch3/2
mh
∑

r=1

‖g‖H2(Γ h
r )‖vh‖L2(Kr)

≤ Ch2 ‖g‖L∞(Γ )

∑

K∈T ∗

h

‖vh‖H1(K) + Ch3/2‖g‖H2(Γ )‖vh‖L2(Ω∗)

≤ Ch3/2‖g‖H2(Γ )‖vh‖H1(Ω∗),

where in the second inequality we have used the fact the number of elements

in T r
h is bounded by some constant independent of h. This completes the

proof of Lemma 2.2. ⊓⊔

Remark 2.3 The regularity requirement on the interface functiong in Lemma

2.2 can be much weaker. In fact, g needs only to be piecewise in H2, i.e.

g ∈ H2(Γ h
r ) for r = 1, 2, · · · , mh. In this case, all the discontinuous points

on Γ must be taken as the finite element nodes. On the other hand, if we

don’t use the approximation gh for g in Problem (Ph), i.e. replace the term

〈gh, vh〉h by 〈g, vh〉, then g ∈ H1/2(Γ ) is enough for Lemma 2.2 and thus

also enough for the main results of this section, i.e. Theorem 2.2.
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Proof of Theorem 2.2. We know from (2.5) and (2.9) that

a(uh − Πhu, vh)

= a(u − Πhu, vh) + {a(uh, vh) − ah(uh, vh)}

+{〈gh, vh〉h − 〈g, vh〉}

≡: (II)1 + (II)2 + (II)3, ∀ vh ∈ V 0
h .(2.24)

By Lemma 2.1, we can bound the term (II)1 by

|(II)1| ≤ C ‖∇(u − Πhu)‖L2(Ω)‖∇vh‖L2(Ω)

≤ C h | log h|1/2‖u‖X ‖∇vh‖L2(Ω) .(2.25)

The term (II)3 can be bounded immediately by using Lemma 2.2 and Poin-

care’s inequality:

|(II)3| ≤ Ch3/2 ‖g‖H2(Γ )‖vh‖H1(Ω∗)

≤ Ch3/2 ‖g‖H2(Γ )‖∇vh‖L2(Ω).(2.26)

For the term (II)2, we recall that for any K ∈ T ∗
h , K̃ = supp (β − βh) ∩K

and meas(K̃) ≤ C h3
K , then we have

|(II)2| =
∣

∣

∣

∑

K∈T ∗

h

∫

K
(β − βK)∇uh · ∇vh dx

∣

∣

∣

=
∣

∣

∣

∑

K∈T ∗

h

∫

K̃
(β − βK)∇uh · ∇vh dx

∣

∣

∣

≤ C
∑

K∈T ∗

h

‖∇uh‖L2(K̃)‖∇vh‖L2(K̃)

≤ C h
∑

K∈T ∗

h

‖∇uh‖L2(K)‖∇vh‖L2(K)

≤ C h ‖∇uh‖L2(Ω)‖∇vh‖L2(Ω)

≤ C h (‖f‖L2(Ω) + ‖g‖L∞(Γ )) ‖∇vh‖L2(Ω),(2.27)

where we have used the fact that ∇uh and ∇vh are constant in K, ∀K ∈ Th,

in the second inequality and the inequality

‖∇uh‖L2(Ω) ≤ C (‖f‖L2(Ω) + ‖g‖L∞(Γ )),

which follows directly from (2.9) by using ‖gh‖L2(Γh) ≤ C ‖gh‖L∞(Γh) ≤
C ‖g‖L∞(Γ ).

From the estimates (2.25) and (2.27), we conclude by taking vh = uh −
Πhu in (2.24) that

‖∇(uh − Πhu)‖L2(Ω) ≤ C h | log h|1/2 (‖f‖L2(Ω) + ‖g‖H2(Γ )).(2.28)
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Now the desired estimate (2.10) follows from (2.28), Lemma 2.1 and the

triangle inequality.

To show the L2-estimate in (2.11), we use the Nitsche’s trick. Let w ∈
H1

0 (Ω) be the solution of the following auxiliary problem: find w ∈ H1
0 (Ω)

satisfying

a(w, v) = (u − uh, v), ∀ v ∈ H1
0 (Ω)(2.29)

and its finite element approximation: find wh ∈ V 0
h satisfying

ah(wh, v) = (u − uh, v), ∀ v ∈ V 0
h .(2.30)

By Theorem 2.1, we know that ‖w‖X ≤ C ‖u − uh‖L2(Ω). Now noting

the fact the jump [β(∂w/∂n)] = 0 across the interface Γ , and applying the

previously proved result (2.10) for problems (2.29)-(2.30), we have

‖∇(w − wh)‖L2(Ω) ≤ C h | log h|1/2 ‖u − uh‖L2(Ω).(2.31)

Taking v = u − uh ∈ H1
0 (Ω) in (2.29) and using (2.5) and (2.9), we get

‖u − uh‖2
L2(Ω) = a(w, u − uh)

= a(w − wh, u − uh) + a(wh, u − uh)

= a(w − wh, u − uh) + [ah(uh, wh) − a(uh, wh)]

+[ 〈g, wh〉 − 〈gh, wh〉h ]

≡: (III)1 + (III)2 + (III)3.(2.32)

By (2.10) and (2.31) we immediately have

|(III)1| ≤ C h2 | log h| ‖u − uh‖L2(Ω)

(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

.(2.33)

We next estimate the term (III)2 in (2.32).

Arguing as deriving (2.27), we can deduce

|(III)2| ≤ C h
∑

K∈T ∗

h

‖∇uh‖L2(K)‖∇wh‖L2(K)

≤ C h ‖∇uh‖L2(Ω∗)‖∇wh‖L2(Ω∗)

≤ C h ‖∇(u − uh)‖L2(Ω∗)‖∇wh‖L2(Ω∗)

+C h ‖∇u‖L2(Ω∗)‖∇(w − wh)‖L2(Ω∗)

+C h ‖∇u‖L2(Ω∗)‖∇w‖L2(Ω∗)

≤ C h2| log h|1/2
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

‖u − uh‖L2(Ω)

+C h ‖∇u‖L2(Ω∗)‖∇w‖L2(Ω∗),(2.34)

where we have used (2.10), (2.31), (2.4) and the following inequality

‖∇wh‖L2(Ω) ≤ C ‖u − uh‖L2(Ω).
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The last term in (2.34) can be further estimated as follows:

‖∇u‖L2(Ω∗) ≤ C h
p−2
2p ‖∇u‖Lp(Ω∗) ≤ C p

1
2 h

p−2
2p ‖u‖X

by Hölder’s inequality, meas(Ω∗) ≤ C h and Sobolev inequality (2.16).

Taking p = | log h| and using Theorem 2.1 yield

‖∇u‖L2(Ω∗) ≤ C h1/2 | log h|1/2
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

.(2.35)

Similarly, we have

‖∇w‖L2(Ω∗) ≤ C h1/2 | log h|1/2‖w‖X

≤ C h1/2 | log h|1/2‖u − uh‖L2(Ω) .(2.36)

Thus, we have derived from (2.34)-(2.36) that

|(III)2| ≤ Ch2 | log h|
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

‖u − uh‖L2(Ω).(2.37)

To estimate the last term (III)3 in (2.32), using Lemma 2.2 yields

|(III)3| ≤ Ch3/2‖g‖H2(Γ )‖wh‖H1(Ω∗)

≤ Ch3/2‖g‖H2(Γ )‖w − wh‖H1(Ω∗) + Ch3/2‖g‖H2(Γ )‖w‖H1(Ω∗)

≤ Ch5/2| log h|1/2 ‖g‖H2(Γ )‖u − uh‖L2(Ω)

+Ch3/2‖g‖H2(Γ )‖w‖H1(Ω∗) .

Now using (2.36) we obtain

|(III)3| ≤ Ch2| log h|1/2
(

‖f‖L2(Ω) + ‖g‖H2(Γ )

)

‖u − uh‖L2(Ω).

(2.38)

Now the L2-error estimate (2.11) follows from (2.32)–(2.38). This com-

pletes the proof of Theorem 2.2. ⊓⊔

Remark 2.4 The error estimates (2.10)-(2.11) are optimal up to the factor

| log h|. However, the H1-error estimate can be improved by using a little

bit more detailed argument. It was proved in Ladyzhenskaya et al. [17] that

u ∈ W 1,∞(Ω0 ∩ Ωi) for i = 1, 2, where Ω0 is some neighborhood of the

interface Γ . By checking the proof of Lemma 2.1, it is easy to see that for

m = 0, 1 and any v ∈ X ∩ W 1,∞(Ω1 ∩ Ω0) ∩ W 1,∞(Ω2 ∩ Ω0) we have

‖v − Πhv‖Hm(Ω)

≤ C h2−m
(

‖v‖X + ‖v‖W 1,∞(Ω1∩Ω0) + ‖v‖W 1,∞(Ω2∩Ω0)

)

.
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Here we have to choose h0 so small such that Ω∗ ⊂ Ω0. This estimate

enables us to achieve the improved error estimate following the same proof

of Theorem 2.2:

‖u − uh‖H1(Ω)

≤ C h
(

‖f‖L2(Ω) + ‖g‖H2(Γ ) + ‖u‖W 1,∞(Ω1∩Ω0) + ‖u‖W 1,∞(Ω2∩Ω0)

)

.

This is the optimal energy-norm error estimate.

3. Parabolic interface problems

Let Ω be a convex polygon in R
2 and Ω1 ⊂ Ω be an open domain with C2

boundary Γ = ∂Ω1 ⊂ Ω, Ω2 = Ω \ Ω1 (see Fig. 1) and QT = Ω × (0, T ).
In this section, we consider the following parabolic interface problem

∂u

∂t
− ∇ · (β∇u) = f(x, t) in QT(3.1)

with the initial and boundary conditions

u(x, 0) = u0(x) in Ω; u = 0 on ∂Ω × (0, T )(3.2)

and jump conditions on the interface

[u] = 0,
[

β
∂u

∂n

]

= g(x, t) across Γ × (0, T ),(3.3)

where [v] and n are specified as in Sect. 2. For the ease of exposition, we

assume that the coefficient β is positive and piecewise constant, i.e.

β(x) = β1 for x ∈ Ω1; β(x) = β2 for x ∈ Ω2.

As stated in Sect. 2, the results of this section can be easily extended to more

general parabolic interface problems (see Sect. 4).

For convenience, we introduce a space Y defined by

Y = L2(Ω) ∩ H1(Ω1) ∩ H1(Ω2)

equipped with the norm

‖u‖Y = ‖u‖L2(Ω) + ‖u‖H1(Ω1) + ‖u‖H1(Ω2).

Regarding the regularity for the solutions of the interface problem (3.1)-

(3.3), we have the following results (cf. Ladyzhenskaya et al. [17]):

Theorem 3.1 Assume that f ∈ H1(0, T ;L2(Ω)), u0 ∈ H1(Ω) and g ∈
L2(0, T ;H1/2(Γ )). Then the problem (3.1)–(3.3) has a unique solution

u ∈ L2(0, T ;X) ∩ H1(0, T ;Y ).
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We are now going to formulate the fully-discrete approximation to the

problem (3.1)-(3.3). We shall make use of the backward difference scheme

to discretize the problem in time and the piecewise linear finite element

method in space.

We first divide the time interval (0, T ) into M equally-spaced subinter-

vals by the following points:

0 = t0 < t1 < · · · < tM = T

with tn = nτ , τ = T/M the time step size. Let In = (tn−1, tn] be the

n-th subinterval. For a given sequence {wn}M
n=0 ⊂ L2(Ω), we introduce

the backward difference quotient:

∂τ wn =
wn − wn−1

τ
.

For a continuous mapping w : [0, T ] → L2(Ω), we define wn = w(·, nτ),
0 ≤ n ≤ M .

The piecewise linear finite element spaces Vh and V 0
h , and all other

notation used in this section relevant to finite element discretizations are

the same as in Sect. 2. To approximate the interface function g(x, t), for

n = 1, 2, · · · , M , we define gn
h ∈ Vh as

ḡn
h =

mh
∑

j=1

ḡn(Pj)φj , ḡn(·) = τ−1

∫

In

g(·, t) dt.(3.4)

With the above notation, we now introduce the fully-discrete finite ele-

ment approximation to the problem (3.1)–(3.3):

Problem (Ph,τ ). Let u0
h = Πhu0. For n = 1, 2, · · · , M , find un

h ∈ V 0
h such

that

(∂τu
n
h, vh) + ah(un

h, vh) = (fn, vh) + 〈ḡn
h , vh〉h , ∀ vh ∈ V 0

h .(3.5)

Evidently, for each n = 1, 2, · · · , M , Problem (Ph,τ ) has a unique solution

un
h ∈ V 0

h by Lax-Milgram theorem.

For convenience, let us define a piecewise constant function uh,τ in time

by

uh,τ (x, t) = un
h(x), ∀ t ∈ (tn−1, tn], n = 1, 2, · · · , M.(3.6)

The main results of this section are the following Theorem 3.2 for the

L2-norm error estimate:
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Theorem 3.2 Let u and uh,τ be the solutions of the problem (3.1)–(3.3) and

Problem (Ph,τ ), respectively. Assume that u0 ∈ X , f ∈ H1(0, T ; L2(Ω))
and g ∈ L2(0, T ;H2(Γ )). Then, for 0 < h < h0, we have

‖u − uh,τ‖L2(QT ) ≤ B1(u, g, f)(τ + h2 | log h|)(3.7)

where B1(u, g, f) is a constant depending on u, g and f specified by

B1(u, g, f) = C‖u0‖X

+C
{

∫ T

0

(

‖u‖2
X + ‖ut‖

2
L2(Ω) + ‖ft‖

2
L2(Ω) + ‖g‖2

H2(Γ )

)

dt
}

1
2
,

and the following Theorem 3.3 for the energy-norm error estimate:

Theorem 3.3 Let u and uh,τ be the solutions of the problem (3.1)–(3.3)

and Problem (Ph,τ ), respectively. Assume that u0 ∈ H1(Ω), f ∈ H1(0,
T ;L2(Ω)) and g ∈ L2(0, T ;H2(Γ )). Then, for 0 < h < h0, we have

‖u − uh,τ‖L2(0,T ;H1(Ω)) ≤ B2(u, g, f)(τ + h | log h|1/2)(3.8)

where B2(u, g, f) is a constant depending on u, g and f specified by

B2(u, g, f) = C‖u0‖H1(Ω)

+C
{

∫ T

0

(

‖u‖2
X + ‖ut‖

2
Y + ‖ft‖

2
L2(Ω) + ‖g‖2

H2(Γ )

)

dt
}

1
2
.

We shall prove the above two theorems by the parabolic duality method.

As in (3.4), for any function ξ ∈ L2(0, T ;B) with some Banach space B,

we denote

ξ̄n(·) = τ−1

∫

In

ξ(·, t) dt, n = 1, 2, · · · , M.

We first prove Theorem 3.2. To do so, we introduce the following auxiliary

discrete dual problem:

Problem (Ah,τ ). Let wM
h = 0. For n = M, M − 1, · · · , 1, find wn−1

h ∈ V 0
h

such that

(−∂τw
n
h , vh) + ah(wn−1

h , vh) = (ūn − un
h, vh), ∀ vh ∈ V 0

h .(3.9)

Clearly, Problem (Ah,τ ) has a unique solution wn−1
h ∈ V 0

h for each n =
M, M − 1, · · · , 1.

We shall need the following stability results for the solution wn
h to Prob-

lem (Ah,τ ).
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Lemma 3.1 We have

max
1≤n≤M

‖wn−1
h ‖2

H1(Ω) +

M
∑

n=1

τ ‖∂τw
n
h‖2

L2(Ω)

≤ C

M
∑

n=1

τ ‖ūn − un
h‖2

L2(Ω).(3.10)

Proof. The lemma can be easily proved by taking vh = −τ(∂τw
n
h) in

(3.9) and applying the standard arguments (cf. Chen-Hoffmann [6] and

Hoffmann-Zou [13]). We omit the details. ⊓⊔

The following lemma is crucial to the proof of Theorem 3.2.

Lemma 3.2 We have

M
∑

n=1

τ ‖wn−1
h ‖2

H1(Ω∗) ≤ C h | log h|

(

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

)

.(3.11)

Proof. Recall that Ω∗ = ∪K∈T ∗

h
K and meas(Ω∗) ≤ C h. For n = M, M −

1, · · · , 1, we define wn−1 ∈ H1
0 (Ω) to be the solution of the following

elliptic interface problem:

a(wn−1, v) = (ūn − un
h, v) + (∂τw

n
h , v), ∀ v ∈ H1

0 (Ω),(3.12)

which corresponds to the following jump conditions

[wn−1] = 0,
[

β
∂wn−1

∂n

]

= 0 across the interface Γ.

Then, by Theorem 2.1, we know that wn−1 ∈ X and

‖wn−1‖X ≤ C
(

‖ūn − un
h‖L2(Ω) + ‖∂τw

n
h‖L2(Ω)

)

.(3.13)

We know from (3.9) that wn−1
h ∈ V 0

h is the finite element approximation of

wn−1 defined in (3.12). Thus, by Theorem 2.2, we have

‖wn−1
h −wn−1‖H1(Ω) ≤ C h | log h|1/2

(

‖ūn−un
h‖L2(Ω)+‖∂τw

n
h‖L2(Ω)

)

,

which with Lemma 3.1 implies

M
∑

n=1

τ‖wn−1 − wn−1
h ‖2

H1(Ω)

≤ C h2 | log h|
M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω).(3.14)
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Now using the argument leading to (2.35), the estimate (3.13) and Lem-

ma 3.1, we obtain

M
∑

n=1

τ‖wn−1‖2
H1(Ω∗) ≤ C h | log h|

M
∑

n=1

τ‖wn−1‖2
X

≤ C h | log h|
M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω).(3.15)

Then (3.11) follows from (3.14)-(3.15) and the following triangle inequality

M
∑

n=1

τ‖wn−1
h ‖2

H1(Ω∗) ≤
M
∑

n=1

τ‖wn−1−wn−1
h ‖2

H1(Ω)+

M
∑

n=1

τ‖wn−1‖2
H1(Ω∗).

This completes the proof of Lemma 3.2. ⊓⊔

Proof of Theorem 3.2. For any v ∈ X , let f∗ = βi∆vi in Ωi, i = 1, 2.

Clearly, f∗ ∈ L2(Ω). With this f∗ we define an operator Ph : X∩H1
0 (Ω) 7→

V 0
h by

ah(Phv, vh) = (f∗, vh), ∀ v ∈ X ∩ H1
0 (Ω), vh ∈ V 0

h .

It is easy to verify that

ah(Phv, φh) = (f∗, φh) = a(v, φh),

v ∈ X ∩ H1
0 (Ω), φh ∈ V 0

h .(3.16)

Thus by Theorem 2.2 and the definition of f∗, we have for any v ∈ X ∩
H1

0 (Ω),

‖v − Phv‖L2(Ω) ≤ C h2 | log h| ‖f∗‖L2(Ω)

≤ C h2 | log h| ‖v‖X ,(3.17)

‖∇(v − Phv)‖L2(Ω) ≤ C h | log h|1/2 ‖f∗‖L2(Ω)

≤ C h | log h|1/2 ‖v‖X .(3.18)

Now taking vh = τ(Phūn − un
h) ∈ V 0

h in (3.9) and then summing the

resultant equations over n, we get

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

=

M
∑

n=1

τ(ūn − un
h, ūn − Phūn) +

M
∑

n=1

τ(ūn − un
h, Phūn − un

h)
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=

M
∑

n=1

τ(ūn − un
h, ūn − Phūn) +

M
∑

n=1

τ(−∂τw
n
h , Phūn − un

h)

+

M
∑

n=1

τah(wn−1
h , Phūn − un

h)

=

M
∑

n=1

τ(ūn − un
h, ūn − Phūn) +

M
∑

n=1

τ( − ∂τw
n
h , Phūn − un)

+

M
∑

n=1

τ( − ∂τw
n
h , un − un

h)

+

M
∑

n=1

τ
[

a(wn−1
h , ūn) − ah(wn−1

h , un
h)
]

≡: (IV)1 + (IV)2 + (IV)3 + (IV)4.(3.19)

where in the last equality we have used (3.16).

Before estimating the four terms in (3.19), we first rewrite (IV)3 + (IV)4
a little bit. To do so, we multiply both sides of (3.1) by any v ∈ H1

0 (Ω),
then integrate the equation over Ω × In and make use of the conditions

(3.2)-(3.3) to obtain for n = 1, 2, · · · , M ,

(∂τu
n, v) + a (ūn, v) = (f̄n, v) + 〈ḡn, v〉 , ∀ v ∈ H1

0 (Ω).(3.20)

Now taking vh = v = wn−1
h both in (3.5) and (3.20), then subtracting the

two equations, and summing the resulting equations over n, we come to

M
∑

n=1

τ
(

∂τ (u
n − un

h), wn−1
h

)

+

M
∑

n=1

τ
[

a(ūn, wn−1
h ) − ah(un

h, wn−1
h )

]

=

M
∑

n=1

τ(f̄n − fn, wn−1
h ) +

M
∑

n=1

τ
[〈

ḡn, wn−1
h

〉

−
〈

ḡn
h , wn−1

h

〉

h

]

.(3.21)

Applying the identity

M
∑

n=1

(an − an−1)bn = aMbM − a0b0 −
M
∑

n=1

an−1(bn − bn−1),

to (IV)3 with an = wn
h and bn = un − un

h, we obtain from (3.21) that

(IV)3 + (IV)4 = (u0 − Πhu0, w
0
h) +

M
∑

n=1

τ(f̄n − fn, wn−1
h )

Numerische Mathematik Electronic Edition

page 195 of Numer. Math. (1998) 79: 175–202



196 Z. Chen, J. Zou

+

M
∑

n=1

τ
[〈

ḡn, wn−1
h

〉

−
〈

ḡn
h , wn−1

h

〉

h

]

≡: (V)1 + (V)2 + (V)3,(3.22)

where we have used wM
h = 0 and u0

h = Πhu0.

Now we estimate the terms (IV)1, (IV)2 and (V)1, (V)2 and (V)3 one by

one. First we have from (3.17) that

∣

∣

∣
(IV)1

∣

∣

∣
≤

M
∑

n=1

τ‖ūn − un
h‖L2(Ω)‖ūn − Phūn‖L2(Ω)

≤ C h2 | log h|
M
∑

n=1

τ‖ūn − un
h‖L2(Ω)‖ūn‖X

≤ C h2 | log h|
[

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

]1/2[
∫ T

0
‖u‖2

X dt
]1/2

.

Similarly, using (3.17) and Lemma 3.1 we have

∣

∣

∣
(IV)2

∣

∣

∣
≤
∣

∣

∣

M
∑

n=1

τ(∂τw
n
h , Phūn − ūn)

∣

∣

∣
+
∣

∣

∣

M
∑

n=1

τ(∂τw
n
h , ūn − un)

∣

∣

∣

≤ C
(

τ + h2| log h|
)[

M
∑

n=1

τ‖∂τw
n
h‖2

L2(Ω)

]1/2

×
[

∫ T

0
(‖u‖2

X + ‖ut‖
2
L2(Ω))dt

]1/2

≤ C
(

τ + h2| log h|
)[

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

]1/2

×
[

∫ T

0
(‖u‖2

X + ‖ut‖
2
L2(Ω))dt

]1/2
.

By Lemmas 2.1 and 3.1, we can easily show that

∣

∣

∣
(V)1

∣

∣

∣
+
∣

∣

∣
(V)2

∣

∣

∣
≤ C

(

τ + h2 | log h|
)

×
[

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

]1/2[

‖u0‖
2
X +

∫ T

0
‖ft‖

2
L2(Ω)dt

]1/2
.

The term (V)3 can be bounded by using Lemmas 2.2 & 3.2,

∣

∣

∣
(V)3

∣

∣

∣
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≤ Ch3/2
M
∑

n=1

τ‖ḡn‖H2(Γ )‖wn−1
h ‖H1(Ω∗)

≤ Ch3/2
[

M
∑

n=1

τ‖wn−1
h ‖H1(Ω∗)

]1/2[
∫ T

0
‖g‖2

H2(Γ )dt
]1/2

≤ C h2 | log h|1/2
[

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

]1/2[
∫ T

0
‖g‖2

H2(Γ )dt
]1/2

.

Finally, by simple calculations we have

‖u − uh,τ‖L2(QT ) ≤ Cτ ‖ut‖L2(QT ) +
[

M
∑

n=1

τ‖ūn − un
h‖2

L2(Ω)

]1/2
,

then Theorem 3.2 follows immediately from this inequality, (3.19), (3.22)

and the previous estimates for (IV)1, (IV)2 and (V)i, i = 1, 2, 3. ⊓⊔

We now prove Theorem 3.3. As in the proof of Theorem 3.2, we introduce

the following auxiliary discrete dual problem:

Problem (A∗
h,τ ). Let zM

h = 0. For n = M, M − 1, · · · , 1, find zn−1
h ∈ V 0

h
such that

(−∂τz
n
h , vh) + ah(zn−1

h , vh) = (∇(ūn − un
h),∇vh),

∀ vh ∈ V 0
h .(3.23)

Clearly, Problem (A∗
h,τ ) has a unique solution zn−1

h ∈ V 0
h for each n =

M, M − 1, · · · , 1.

We need the following stability results for the solution zn
h to Problem

(A∗
h,τ ).

Lemma 3.3 We have

max
1≤n≤M

‖zn−1
h ‖2

L2(Ω)

+

M
∑

n=1

τ ‖∇zn−1
h ‖2

L2(Ω) ≤ C

M
∑

n=1

τ ‖∇(ūn − un
h)‖2

L2(Ω),(3.24)

M
∑

n=1

τ ‖∂τz
n
h‖2

H−1(Ω) ≤ C

M
∑

n=1

τ ‖∇(ūn − un
h)‖2

L2(Ω).(3.25)

Proof. (3.24) can be proved by taking vh = zn−1
h in (3.23) and applying the

standard arguments (cf. Chen-Hoffmann [6] and Hoffmann-Zou [13]). We

only show (3.25) below.
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Let Qh : H1
0 (Ω) 7→ V 0

h be the standard L2 projection defined by

(Qhφ, φh) = (φ, φh), ∀φ ∈ H1
0 (Ω), φh ∈ V 0

h .

We know Qh is H1-stable (cf. Bramble-Xu [4]), i.e.

‖Qhφ‖H1(Ω) ≤ C ‖φ‖H1(Ω), ∀ v ∈ H1
0 (Ω).

Using this and the definition of zn
h in (3.23), we obtain

‖∂τz
n
h‖H−1(Ω)

= sup
φ∈H1

0(Ω)

φ/=0

(∂τz
n
h , φ)

‖φ‖H1(Ω)
= sup

φ∈H1
0(Ω)

φ/=0

(∂τz
n
h , Qhφ)

‖φ‖H1(Ω)

≤ C
(

‖∇zn−1
h ‖L2(Ω) + ‖∇(ūn − un

h)‖L2(Ω)

)‖∇Qhφ‖L2(Ω)

‖φ‖H1(Ω)

≤ C
(

‖∇zn−1
h ‖L2(Ω) + ‖∇(ūn − un

h)‖L2(Ω)

)

.

This with (3.24) gives (3.25). ⊓⊔

Proof of Theorem 3.3. Let

E(h, τ) =

M
∑

n=1

τ‖∇(ūn − un
h)‖2

L2(Ω).

By taking vh = τ(Phūn − un
h) ∈ V 0

h in (3.23) and then summing the

resultant equations over n, we get

E(h, τ) =

M
∑

n=1

τ(∇(ūn − un
h),∇(ūn − Phūn) )

+

M
∑

n=1

τ(∇(ūn − un
h),∇(Phūn − un

h) )

=

M
∑

n=1

τ(∇(ūn − un
h),∇(ūn − Phūn) )

+

M
∑

n=1

τ(−∂τz
n
h , Phūn − ūn)

+

M
∑

n=1

τ(−∂τz
n
h , ūn − un)
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+

M
∑

n=1

τ(−∂τz
n
h , un − un

h)

+

M
∑

n=1

τ
[

a(zn−1
h , ūn) − ah(zn−1

h , un
h)
]

≡: (VI)1 + · · · + (VI)5,(3.26)

where we have used (3.16) for obtaining (VI)5.

Similarly to the proof for L2-error estimate, we have

(IV)4 + (IV)5 = (u0 − Πhu0, z
0
h) +

M
∑

n=1

τ(f̄n − fn, zn−1
h )

+

M
∑

n=1

τ
[〈

ḡn, zn−1
h

〉

−
〈

ḡn
h , zn−1

h

〉

h

]

≡: (VII)1 + (VII)2 + (VII)3.(3.27)

Next, we are going to analyse the terms (VI)i and (VII)i, i = 1, 2, 3.

By Lemmas 2.1 and 3.3, we immediately derive
∣

∣

∣
(VII)1 + (VII)2

∣

∣

∣
≤ C (τ + h| log h|1/2) (E(h, τ))1/2

×
[

‖u0‖
2
H1(Ω) +

∫ T

0
‖ft‖

2
L2(Ω)dt

]1/2
,

while by Lemma 2.2, we obtain

∣

∣

∣
(VII)3

∣

∣

∣
≤ Ch3/2

M
∑

n=1

τ‖ḡn‖H2(Γ )‖zn−1
h ‖H1(Ω)

≤ Ch3/2 (E(h, τ))1/2
[

∫ T

0
‖g‖2

H2(Γ )dt
]1/2

.

For three terms (VI)i, i = 1, 2, 3, we have by (3.18)

∣

∣

∣
(VI)1

∣

∣

∣
≤ C (τ + h| log h|1/2) (E(h, τ))1/2

[

∫ T

0
‖u‖2

Xdt
]1/2

,

and by Lemma 3.3,

∣

∣

∣
(VI)2

∣

∣

∣
≤

M
∑

n=1

τ‖∂τz
n
h‖H−1(Ω)‖Phūn − ūn‖H1(Ω)

≤ Ch | log h|1/2 (E(h, τ))1/2
[

∫ T

0
‖u‖2

Xdt
]1/2

,
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and

∣

∣

∣
(VI)3

∣

∣

∣
≤

M
∑

n=1

τ‖∂τz
n
h‖H−1(Ω)‖ūn − un‖H1(Ω)

≤ C τ (E(h, τ))1/2
[

∫ T

0
‖ut‖

2
Y dt
]1/2

.

Finally, by simple calculations we have

‖∇(u − uh,τ )‖L2(QT ) ≤ Cτ
[

∫ T

0
‖ut‖

2
Y dt
]1/2

+
[

M
∑

n=1

τ‖∇(ūn − un
h)‖2

L2(Ω)

]1/2
,

then Theorem 3.3 follows immediately from this inequality, (3.26), (3.27)

and the previous estimates for (VI)i and (VII)i, i = 1, 2, 3. ⊓⊔

4. Concluding remarks

In this paper, we have proposed some finite element methods to solve the

second order elliptic and parabolic interface problems in two dimensions.

The nearly optimal error estimates both in energy-norm and L2-norm are

proved under reasonable regularity assumptions on the original solutions. In

fact, the energy-norm error estimate can be made optimal (cf. Remark 2.4).

We note that the methods proposed in the paper can be easily extended

to treat the following more general interface problems of the self-adjoint

elliptic type

−
2
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+ a(x)u + f(x) = 0

and of the self-adjoint parabolic type

∂u

∂t
−

2
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+ a(x)u + f(x, t) = 0.

The correposponding interface conditions are

[u] = 0,
[

p
du

dN
+ σu

]

= g across the interface Γ.

Here the functions p and σ are known and depend on x in the elliptic case and

x and t in the parabolic case. The symbol du/dN denotes
∑

ij aij(∂u/∂xj)

× cos(n, xi). The classical solvability of the above interface problems was

studied carefully in Ladyzhenskaya et al. [17].
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