INTERNATIONAL JOURNAL OF DIGITAL AND ANALOG COMMUNICATION SYSTEMS, VOL. 6, 87-95 (1993)

EFFICIENT ALGORITHMS FOR MULTIPLE
DESTINATIONS ROUTEING

YIU-WING LEUNG AND TAK-SHING YUM®*
Department of Information Engineering, The Chinese University of Hong Keng, Shatin, Hong Kong

SUMMARY

A number of important problems in computers and telecommunications, such as distributed databases
and multipoint multimedia conferencing, all require the solution of a generic problem called multiple
destinations routeing (MDR). In this paper, we formulate the MDR problem as a zero-one integer
programming problem and propose a technique to reduce the computation required for the optimum
solution. Three heuristics are designed for large MDR problems. Heuristic A can offer different
degrees of optimality with different amounts of time allowed for the solution. Heuristic B is a
modification of Prim's algorithm for the minimum spanning tree. It gives a fairly good solution with
very little computation. Heuristic C is based on Heuristic B and is for minimizing the number of edges
in the multicast tree (i.e. assuming that all edge weights are the same). It always gives a better solution
than Heuristic B. Simulation on two example networks shows that Heuristics A and C always give
better solutions (or lower cost connection paths) than the improved RS algorithm, which has up to

now been the best heuristic.

KEY- WworDS Routeing algorithms Multiple destinations

INTRODUCTION

In recent years, there has been an increase in the
number of applications requiring group-based com-
munications. Examples of such applications are dis-
tributed databases and multipoint multimedia ser-
vices. These applications can be characterized in a
common way: a source node multicasts to multiple
destination nodes. In updating a distributed data-
base, for example, an updated data item is sent to
the nodes where the duplicated copies of the data
item reside. Multicast is also required for a class
of multipoint broadband services where the video
signals from a source node are distributed to mul-
tiple destinations. Examples of this class of broad-
band services are remote video seminars, videoconf-
erences with dynamic switched video links and full
presence videoconferences.!? The problem of find-
ing a tree of minimum weight to connect the source
node and the destination nodes is known as the
multiple destinations routeing (MDR) problem in
the communications literature,* and the Steiner tree
problem in the graph theory literature.* In other
words, the MDR problem is to find a tree connecting
a given subset of nodes of a network. A related
spanning tree problem® is to find a tree connecting
all the nodes of a network.

The MDR problem has been shown to be NP-
complete.* Several heuristics for this problem were
proposed in References 3 and 6-11, and a compari-
son of the earlier ones was given in Reference 12.
Of all the proposed heuristics, the improved RS

* Please direct all correspondence to this author.

1047-9627/93/020087-09%09.50
© 1993 by John Wiley & Sons, Ltd.

algorithm” was shown to have the best performance
through simulation studies. The main steps of the
improved RS algorithm are given below. Initially,
every source or destination node forms a subtree.
Find a node, say node v, such that the average
weight of connecting node v to the i subtrees (where
i is not larger than the current number of subtrees)
is minimum for all possible subtree combinations.
Join node v to the two closest subtrees. For each
subsequent iteration, find a node to join two sub-
trees. When only one subtree remains, the above
steps are repeated for those nodes in the remaining
subtree. If the total number of source and desti-
nation nodes is 4, then the number of subtree combi-
nations is

3=~

The time complexity of the improved RS algorithm
is, therefore, exponential.

In this paper, we formulate the MDR problem
as a zero—one integer programming problem and
propose a technique to reduce the computation
required for the optimum solution. Although the
MDR problem is NP-complete, for some appli-
cations (such as videoconferencing) where the num-
ber of nodes to be connected is small (say, <5),
our proposed technique is still feasible for determin-
ing the optimum connection paths. Moreover, for
many multipoint broadband services (such as remote
video lecture, videoconference) the communication
is prescheduled and the set of nodes to be connected
is known in advance. These applications allow more
time to determine the optimum connection paths.

Received 30 October 1991
Revised 24 November 1992

88 Y.-W. LEUNG AND T.-S. YUM

For applications where the number of nodes to
be connected is large, the search for optimum con-
nection paths becomes infeasible. For this reason,
we design three heuristics that find close to optimum
connection paths. We show by simulation that two
of these heuristics compare favourably to the
improved RS algorithm.? Furthermore, one of them
has a nice feature: it has a parameter k which allows
us to trade-off between optimality and computation
time. A larger k can result in closer to optimum
solution but requires longer computation time. With
a faster computer, we can simply increase k to get
a closer to optimum solution. For applications that
require fast determination of the connection paths
(e.g. immediate updating of a distributed database)
we can set k to a small value. For preschedeuled
communications (e.g. prescheduled videoconfer-
ences or video lectures) we can set k to a larger
value.

INTEGER PROGRAMMING FORMULATION

We model the communication network as a
weighted graph G=(V,E), where V is the set of
network nodes and E is the set of edges. Let node
i be denoted as n;, the edge connecting n; and n; as
e; and the weight of e;; as w;;. Consider the connec-
tion of a source node ny to a set of destination
nodes with i.d.s specified by the set D. Borrowing
the terminology from the videoconferencing appli-
cation, we call the source node and the destination
nodes conference nodes. The corresponding graph
theory terminology is Steiner nodes.**® The connec-
tion between the source and destination nodes forms
a multicast tree. Nodes in the multicast tree which
are not conference nodes are called linking nodes.
Edges that appear in the multicast tree are called
linking edges. A minimum multicast tree (MMT) is
a multicast tree with minimum weights.

Let S; be the set of paths* connecting the source
node and the destination node n; 8‘ € D), |S;| be
the number of such paths, and P,) be the set of
edges on the jth path. In addition, let xU
binary variable defined as

) be a

i {1 ,if the jth path is used to connect ng and #;

0 ,otherwise
and let x be the set of x>s withi € Dand 1 < j

< |§;|. Let the dot operation on any set A be defined
as

1-A=A
0- A = (empty set)

and let Y, defined as

* All paths referred to in this paper are elementary paths, i.e.
paths that do not meet the same vertex twice.

Y=lJ L) aP<pP (1)

i€ED 1=j=|s;|

be the set of edges in the multicast tree. Using
the above definitions, we can formulate the MDR
problem as the following zero-one integer program-
ming problem:

Minimize W(x) = 2 w

mn
mne, =Y

The constraint on Y in (1) ensures that only one
path is selected to connect n, and a destination
node. With this constraint, the objective function
W(x) is the sum of all the edge weights on the
multicast tree. This constraint reduces the number

of enumerations from [215! to [] |S;| as when

xf-k)=l,x?’=0 for all § ﬁ?‘c e

The solution of any heuristic (see the next section)
can serve as an upper bound on W*(x), the mini-
mum tree height. Enumerating paths Py with
weights greater than the upper bound is therefore
not needed. In other words, if the weiéhl of path
PY is larger than the upper bound, x{’ is set to
zero. This reduction is especially important when
the network is large and network connectivity is
high.

Since all enumerations can be performed indepen-
dently, this enumerative approach is well suited for
parallel implementation.

HEURISTICS FOR MULTIPLE
DESTINATIONS ROUTEING

Heuristic A%

The source-to-destination paths may share com-
mon edges (e.g. see Figure 1). Then, the best path
to connect a source node and a destination node
may not be the shortest because a longer path may
be able to share common edges with the other
source-to-destination paths. However, the path con-
necting the source node and a destination node
should not be too much longer than the shortest
path connecting them because otherwise the savings
gained by the sharing of common edges with other

dastination

source

destination

Figure 1. Paths L, and L, can share a common edge

EFFICIENT ALGORITHMS 89

paths may not justify using a longer path. Based
on this property, we can employ the enumerative
approach similar to that given in the preceding sec-
tion, but restricting the lengths of all paths to be
enumerated. This approach can significantly reduce
the number of enumerations, but does not guarantee
optimality. Based on this approach, we design Heu-
ristic A%,

Let o; be the length of the shortest path con-
necting the source node and a destination node n;,
i € D. Let Z and M be sets. Initially, both Z and
M contain all the conference nodes. Heuristic A%
is given below:

Step 1. Select one of the nodes in Z as the
source node and denote it as n*;

M «— M\{n*}.

Step 2. From n* to n;, i € M, enumerate only
the paths with lengths smaller than or
equal to o; + k. Find the multicast tree
with the smallest weights for this source

node n*.
Step 3. Z «— Z\{n*};
M« MU {n*}.
Step 4. Repeat steps 1 to 3 until Z = .
Step 5. Among the multicast trees found in step

2, select the one with the smallest
weights.

The parameter & is used to restrict the lengths of
the paths to be searched. If we use a larger k, then
we can get a closer to optimal solution at the cost
of longer computation time. Hence, we can trade-

(e)

Figure 2. An example illustrating Heuristic B

(@)

(b)

Figure 3. (a). Heuristic B selects L,, then L, and finally L,.
(b). Optimal connection

off between optimality and computation time. As
all enumerations in Heuristic A can be performed
independently, it is therefore well suited for parallel
implementation.

Heuristic B

Heuristic B is modified from Prim’s algorithm®
for finding minimum spanning trees. Prim’s algor-
ithm finds at each iteration a shortest edge that
connects an unconnected node to the existing
subtree. Heuristic B, on the other hand, finds at
each iteration a shortest parh that connects an
unconnected conference node to the existing
subtree, taking advantage of the property that an
edge may be shared by two or more paths. Let C, S
and T be sets. Initially, S contains all the conference
nodes and T and C are empty. The outputs are T
and C which contain the nodes and edges of the
multicast tree, respectively:

Step 1. Find the shortest path P connecting two
nodes in S. Denote the two nodes as n*
and n**.

90 Y.-W. LEUNG AND T.-S. YUM

Step 2. S <« S\{n**};
Goto step 4.

Step 3. Search for the shortest path P that con-
nects a node in S to the existing subtree
defined by (T,C). Denote the node con-
cerned by n*.

Step 4. S < S\{n*};

T « T U {nodes on path P};
C <« C U {edges on path P}.

Step 5. Repeat steps 3 and 4 until § = &.

To illustrate the execution of Heuristic B, con-
sider the network shown in Figure 2(a). The weights
of all edges are equal. The sequence of edges selec-
ted is shown from (b) to (d). The resulting multicast
tree is shown in (e).

Heuristic B consists of two parts. The first part
finds the shortest paths for all the node pairs in the
network. As shown in Reference 5, this requirs
O(N?) steps. The second part is to connect d confer-
ence nodes (d = N) with each connection requiring
at most O(N?) comparisons. Therefore, Heuristic
B has a time complexity of O(N?).

Prim’s algorithm can give the optimal solution
because spanning trees possess the matroidal
properties® such that a local optimum is the global
optimum. However, multicast trees do not have this
property. In fact, the best path to connect any two
conference nodes may not be the shortest path (e.g.
in Figure 3 the shortest path L, is not the best
path).

When there is more than one shortest path con-
necting a conference node to the existing tree, Heu-
ristic B selects one of these shortest paths randomly,
and hence it does not give a unique solution. Some
of them may have larger weights (e.g. see Figure
4). This problem can be relieved by using back-
tracking at the price of longer search time. We call
this Heuristic B with backtracking.

Heuristic C for minimizing the number of edges in
the multicast tree

When the weights of all edges are equal, the
problem becomes the minimization of the number
of edges in the multicast tree. Under this condition,
Heuristic B can be further improved as follows.

(a) (&)

Figure 4. Both (a) and (b) are solutions of Heuristics B

When the heuristic cannot determine which one of
the many shortest paths is the best at each iteration,
all such paths are chosen. After all conference nodes
are connected, redundant linking nodes and linking
edges are removed following a set of four rules. We
call this Heuristic C.

Among the set of linking nodes to be removed
we consider only those that will not disconnect the
conference nodes. The other linking nodes and the
conference nodes are collectively called the must-
be-present nodes. Also, when a linking node is
removed, so is the set of edges attached to it.

Rule 1. A linking node with the largest number
of linking edges is likely to have a large number of
paths passing through it (e.g. see Figure 5). As a
result, we should remove the linking node with the
smallest number of linking edges. If there is more
than one, Rule 2 is used for further resolving.

Rule 2. Among the linking nodes with the small-
est number of linking edges, denote the one that is
directly connected to a large number of must-be-
present nodes as n*. Node n* will probably connect
a large number of the must-be-present nodes
directly. In other words, a large number of paths
connecting the must-be-present nodes should pass
through n*, and thus can share common edges (e.g.
see Figure 6). Hence, among the linking nodes with
the smallest number of linking edges, we should
remove the one that is connected to the smallest
number of linking edges. If there is more than one,
Rule 3 is used for further resolving.

{a) Among the four linking nodes, node 1 has the largest number of
linking edges. Node 1 should be retained.

{b) Optimal connection.

Figure 5. An example illustrating Rule 1 of Heuristic C

EFFICIENT ALGORITHMS 91

5

{a) The four linking nodes have the same number ol linking edges. Only node 1 is
nol directly connected 1o the conlerence nodes, Node 1 shoukd bo remaved.

CrNY

(b} Optimal connection.

Figure 6. An example illustrating Rule 2 of Heuristic C

[

Rule 3. Among the linking nodes not yet
resolved by Rule 2, the node n** that is connected
to a linking node with the largest number of linking
edges is likely to have many paths passing through
it (e.g. see Figure 7). In other words, n*™* is on
the path that contains many common edges. There-
fore node n** should be retained.

Rule 4. Since Rules 1, 2 and 3 only remove the
edges associated with the redundant nodes, there
might be some redundant edges that cannot be
removed by these rules. But note that after the
redundant linking nodes have been removed, the
remaining nodes are the nodes that might be present

©®
4

{a) Among lhe five linking nodes, nodes 1, 2 and 5 are not resolved by rule 1;
and nodes 1 and 2 are not resolved by rule 2. Rule 3 removes node 1.

20

(b) Optimal connection.

Figure 7. An example illustrating Rule 3 of Heuristic C

in the final multicast tree. Hence, we can simply
use minimum spanning tree algorithms® to remove
the remaining redundant linking edges.

The four rules for removing the redundant linking
nodes and linking edges are summarized as follows:

Rule 1. If there is a linking node with the small-
est number of linking edges, remove that
node. Otherwise, employ Rule 2.

Rule 2. Among the linking nodes with the small-
est number of linking edges, if there
is one that is directly connected to the
smallest number of must-be-present
nodes, remove that node. Otherwise,
employ Rule 3.

Rule 3. Among the linking nodes not vyet
resolved by Rule 2, retain the nodes
that are directly connected to the linking
nodes with the largest number of linking
edges.

Rule 4. Remove the redundant linking edges by
the minimum spanning tree algorithm.

Let S, P and T be sets of nodes and C be a set
of edges. Initially, § and P both contain the set of
conference nodes, and 7 and C are empty. The
outputs are P and C, which contain the nodes and
edges of the multicast tree, respectively. Heuristic
C is given below:

Step 1. Search for two nodes n* and n** in §
such that the path connecting them is
shortest. Let the number of shortest
paths connecting n* and n** be m, and
denote the paths as P;, i=1,2, ..., m.

Step 2. S« S\{n**};

Goto Step 4.

Step 3. Search for a node n* in § such that the
path connecting it to the subgraph (T,
C) is shortest. Denote the shortest paths
connecting n* and (T,C) as P;, i=1,2,
ceey ML

Step 4. § <« S\{n*};

T« TU {nodes on P, i=12, ..., m);
C« CU {edgeson P, i=1,2, ..., m}.

Step 5. Repeat steps 3 and 4 until S=J.

Step 6. R« T\P.

Step 7. X « {nodes in R that must be present
to connet the conference nodes};

R « R\X;
P<—PUJX.

Step 8. Remove a node in R and its associated
edges in C according to Rules 1, 2 and
3.

Step 9. Repeat steps 7 and 8 until R=0.

Step 10. Remove the redundant linking edges by
Rule 4.

h Lh

Steps 1-5 connect the conference nodes. Redun-
dant linking nodes and linking edges are added in
this stage. Steps 6-10 remove these redundancies.
In Step 7, set P contains the must-be-present nodes,

92 Y.-W. LEUNG AND T.-S. YUM

and set R contains the linking nodes that are not in
set P. This heuristic does not give a unique solution.
We can again use backtracking to find better sol-
utions.

As an example illustrating Heuristic C, consider
the network in Figure 8(a). The sequences of edges
selected are shown in (b)—(d). Figure 8(e) shows
the topology after all the conference nodes have
been connected. Figures 8(f)—(1) show the steps by
which the redundant nodes and edges are removed.
When all the redundant linking nodes are removed,
there is no redundant linking edge. Therefore, in
this case, we need not execute the minimum span-
ning tree algorithm. The resulting multicast tree
shown in Figure 8(1) is optimal, whereas that
obtained by Heuristic B (Figure 3) is not.

Heuristic C consists of two parts. The first part
connects all the conference nodes. The time com-
plexity analysis is similar to that for Heuristic B,
and the time complexity can be found to be O(N?).
In the second part, at most N—d redundant nodes
are to be removed. Deciding which nodes are redun-
dant, or can be removed without disconnecting the

B
¢
&

(a)

&
&
&

(d)

5
=

(a)

(F

0]

conference nodes, requires O((N—d)(N+e)) =
O(N?+Ne) steps, where e is the total number of
edges in the network.? Deciding which one of these
redundant nodes is to be removed by executing the
Rules requires O(N) steps. Therefore, Heuristic C
has a time complexity of O((N—d)(N?+Ne)) =
O(N3+N?Ze).

PERFORMANCE COMPARISON

We compare the average performance of the heuris-
tics via simulation on two example networks. The
first network, shown in Figure 9(a), has 30 nodes
and an average connectivity of 2-9. The weights of
all edges are one. The second network, shown in
Figure 9(b), has 19 nodes and an average connectiv-
ity 2-6. It is based on an early version of the
ARPANET topology.® The number of conference
nodes varies from 2 to 10 nodes, and the nodes are
randomly located in the network. We select five
cases randomly for each conference size and take
their average performance. If the heuristics give

()

0

(-

0]

=

U}

Figure 8. An example illustrating Heuristic C

EFFICIENT ALGORITHMS 93

e

{a) Network 1.

(b} Network |1,

Figure 9. Two example networks

a non-unique solution, the average of all possible
solutions are taken.

Figure 10 shows the number of enumerations
required for the optimal solution as a function of
conference size. By employing the upper-bounding
technique, the number of enumerations is reduced
by about five orders of magnitude for network I
and two orders for network II. Hence, this reduction
is more significant for large networks with high net-
work connectivity. For five-nodes conferences, the
number of enumerations is about 10° for network I
and 10° for network II, as compared to 10'? and
5 x 103, respectively, with constrained exhaustive
enumerations. Figure 10 also shows that the number
of enumerations required by Heuristics A(®, A
and A® is much smaller than that required by
the upper-bounding technique, although optimality
cannot be guaranteed.

Figure 11 shows the average performance of Heu-
ristic A%, The y-axis shows the normalized weight,
which is defined as the ratio of multicast tree weight
obtained by the heuristics to the optimal multicast
tree weight. Heuristic A" for network I and Heuris-
tic A® for network II can already give optimal
solutions in our cases. In other words, the optimal
paths are either the shortest paths or the next short-
est paths. This confirms our conjecture that a good

Number of
enumerations

i

25
10 [Constrained exhaustive
enumerations
20 L
10
pper bounding
15 | technique
10

4 5 6 7 8 9 10
number of conference nodes
Figure 10 (a). Number of required enumerations: network I

Number of
enumerations
12
10
1 01 U Constrained exhaustive
enumeralions
8 Upper bounding
10° [technique
10° |
| heuristic A(E]
4
107 [
2
- ()
1 1 1 1
4 6 8 10

number of conference nodes

Figure 10 (b). Number of required enumerations: network II

path for connecting a source node to a destination
node should not be much longer than the shortest
paths.

Figure 12 compares the performance of the fol-
lowing five algorithms on Network I: Heuristics B,
C, B with backtracking, C with backtracking, and

94 Y.-W. LEUNG AND T.-S. YUM

Normalized weight

1.04
103
Heuristic Al
1.02 | /
101
euristic Ah}

1.00 - x = x o a

1 1 1 1] 1 1 = T 1

2 3 4 5 6 7 8 9 10
number of conference nodes

Figure 11 (a). Average performance of Heuristic A'™%'): net-
work 1

Normalized weight

1.030

1.025

1.020

Heuristic A ©)
1.015

1.010 Heuristic A (2)

1.005

1.000 [~ = = *

2 4 6 8 10
number of conference nodes

Figure 11 (b). Average performance of Heuristic A%): net-
work II

the improved RS algorithm. Heuristic B performs
in general poorer than the improved RS algorithm,
but Heuristics C, B with backtracking and C with
backtracking all perform better than the improved
RS algorithm. For Network II, only Heuristics B,

Normalized weight

1.16

1.14

1.12

1.10

1.08

1.06

1.04

1.02

1.00

Heuristic B

Improved RS

Heuristic B with
backtracking

Heuristic C

Heurislic C with
backtracking

3 4 5 6 7 B 9 10
number of conference nodes

Figure 12. Average performance: network [

B with backtracking, and the improved RS algor-
ithms are compared, since Heuristic C works for
networks with uniform weights only. The results are
shown in Figure 13.

It is interesting to note that when the number of

1.04

1.03

1.02

1.01

Normalized weight

Heuristic B with
backtracking

2 4 6 8 10

Number of conference nodes

Figure 13. Average performance: network II

EFFICIENT ALGORITHMS 95

conference nodes is two, the six algorithms: Heuris-
tic A%, B, C, B with backtracking, C with back-
tracking, and the improved RS algorithm all reduce
to the shortest path algorithm, and hence the opti-
mal solution (i.e. the shortest path) can always be
found.

CONCLUSIONS

In this paper, we have formulated the multiple desti-
nations routeing problem as a zero-one integer pro-
gramming problem and proposed a technique to
reduce the number of enumerations required for
optimal solutions. When the number of conference
nodes is small (<5), it is feasible to determine the
optimal solutions. Three heuristics were designed
for large MDR problems. By using the criterion
that a good path to connect the source node and a
destination node should not be too much longer
than the shortest path connecting them, we designed
Heuristic A®). The parameter k allows us to trade-
off between optimality and computation time. Heu-
ristic B was modified from Prim’s algorithm for
finding the minimum spanning tree, taking advan-
tage of the property that two or more paths may
share common edges. Heuristic C is for networks
with uniform weights and it overcomes the
deficiency of Heuristic B. Simulation experiments
showed that Heuristics A and A® can already
yield very good solutions for the two network
examples. Moreover, Heuristic A®) with small k
and Heuristic C can give lower cost paths than the
improved RS algorithm.

REFERENCES

1. M. J. Ferguson, L. G. Mason, ‘Network design for a large
class of teleconferencing systems’, JEEE Trans. Commun.,
32, (7), 789-796 (1984).

2. G. Romahn, 'System aspects of multipoint videoconferen-
cing', Proc. of IEEE Globecom, 1987, pp. 723-725.

3. K. Bharath-Kumar and J. M. Jaffe, ‘Routing to multiple
destinations in computer networks', JEEE Trans. Commun.,
31, (3), 343-351 (1983).

4. M. R. Garey and D. S. Johnson, Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness, Freeman,
San Francisco, CA, 1979.

5. M. M. Syslo, N. Deo and J. S. Kowalik, Discrete Optimiz-
ation Algorithms with Pascal Programs, Prentice Hall, 1983,
pp. 253-268.

6. M. Ahamad (cd.), Multicast Communication in Distributed
Systems, IEEE Press Book, January 1990.

7. B. M. Waxman, ‘Routing of multipoint connections’, JEEE
J. Selected Areus in Commun., 6, (9), 1617-1622 (1988).

8. E. N. Gilbert and H. O. Pollak, *Steiner minimal tree’,
SIAM J. Appl. Marh, 16, (1), 1-29 (1968).

9. L. Kou, G. Markowsky and L. Berman, ‘A faster algorithm
for Steiner trees’, Acta Inform., 15, 141-145 (1981).

10. H. Mechlhorn, 'A faster approximation for the Steiner prob-
lem in graphs', Inform. Process. Leu., 27, (3). 125-128
(1988).

11. D. W. Wall. ‘Mechanisms for broadcast and selective broad-
cast’, Ph.D. Disserration, Department of Electrical Engineer-
ing and Computer Science, Stanford University, 1980.

12. K. J. Lee, A. Gersht and A. Fricdman, *‘Multipoint connec-
tion routeing’, International Journal of Digital and Analog
Communication Systems, 3, 177-186 (1990).

Authors™ biographies:

Yiu-Wing Leung received the B.Sc.
and Ph.D. degrees from the Chinese
University of Hong Kong in 1989
and 1992, respectively. He is cur-
rently a Research Associate in the
Department of Information Engin-
cering of the Chinese University of
Hong Kong. His current research
interests are computer systems and
software reliability engineering.

Tak-Shing Yum received the B.S.,
M.S., M.Ph. and Ph.D. degrees
from Columbia University, New
York, NY, in 1974, 1975, 1977 and
1978, respectively. He has worked
at Bell Telephone Laboratories,
Holmdel, NJ, for two and a half
years and taught in National Chiao
Tung University, Taiwan, for two
years before joining the Chinese
University of Hong Kong in 1982,
wherc he is currently a Reader in the Department of
Information Engineering. He has published original
research on packet-switched networks with contributions
to routeing algorithms, buffer management, deadlock
detection algorithms, message resequencing analysis and
multiaccess protocols. In recent years, he has branched
out to work on the design and analysis of cellular net-
works, lightwave networks, and video distribution net-
works.

