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Abstract— In this paper we present a new tree search-
based protocol for the anti-collision problem of RFID sys-
tems. This protocol builds a binary search tree according 
to the prefixes chosen randomly by tags rather than using 
their ID-based prefixes. Therefore, the tag identification 
time of the proposed protocol is no longer limited by the 
tag ID distribution and ID length as the conventional tree 
search protocol. The time complexity of the protocol is 
derived and shown that it can identify tags faster than the 
Query-Tree protocol. 
 

I. INTRODUCTION 

The Radio Frequency Identification (RFID) system 
consists of a number of tags with unique IDs, a reader to 
obtain information from the tags and a data processing 
subsystem. A vast majority of current RFID systems 
work in a Reader-Talk-First mode, where a reader is-
sues query commands first, and those tags that are 
within the reading range of the reader will respond with 
the stored information with internal energy (for an Ac-
tive Tag) or external energy powered by the reader (for 
a Passive Tag). Since all tags have to share the common 
broadcast channel to communicate with the reader, this 
will lead to collision as multiple tags transmit simulta-
neously. 
 The anti-collision problem of RFID is similar to the 
classical multi-access communication systems with so-
lutions such as Tree protocol, Aloha (slotted-Aloha, 
framed-Aloha) and Carrier Sense Multiple Access 
(CSMA). However, anti-collision protocols of RFID 
systems are constrained by low computational capabil-
ity and small memory. In addition, they must be opti-
mized for low power operation to increase the commu-
nication range in the case of passive tags. The limited 
power supply, memory and computing capability of 
low-cost RFID tags rule out the use of complicated anti-
collision algorithms. In addition, low-cost tags are not 
able to sense the medium, so the use of CSMA is also 

not possible. The Query-Tree protocol is simple, but it 
has scalability problem because its worst-case time 
complexity is on the order of 2( 2 log )n k n+ − [2], where 
n is the number of tags and k is the length of ID string. 
 The majority of RFID anti-collision protocols are 
time-domain based of either deterministic type or sto-
chastic type. For deterministic schemes, the reader 
broadcasts a command requesting certain tags, based on 
their IDs, to respond. It then either polls a list of tags’ 
IDs or performs some variations of binary search algo-
rithm. Typical polling schemes can be time exhaustive 
if there are many tags under the reader’s interrogation 
area. Moreover, the length and distribution of tag IDs 
can affect the identification time significantly. In [1], a 
reader queries all tags for the next bit of their IDs. 
When collision occurs, the reader splits the queries until 
there is only one tag respond. An efficient memoryless 
scheme called Query-Tree protocol is proposed in [2]. 
In this protocol, a reader sends out a prefix in each 
communication round and tags simply respond with 
their IDs if the prefix is match with their IDs. If there is 
a collision for a particular prefix, the reader ignores the 
response and polls a one-bit-longer prefix later. The 
polling efficiency for this protocol is low when the tag 
population size is large or the ID address distribution is 
sparse. 
 For stochastic schemes, tags respond to reader’s 
interrogation at randomly chosen time slots. There are a 
number of variations of these schemes based on the 
Aloha protocol family for many commercial RFID sys-
tems [3]-[4]. Among this protocol family, framed-Aloha 
is a favorite choice from both theoretical and practical 
consideration. This protocol is an extension of slotted-
Aloha by grouping several slots into one frame. Tags 
are required to send their IDs in a randomly chosen time 
slot of each frame. The frame size is determined by the 
reader. In [5], the author built a Markov model for the 
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dynamic framed-Aloha protocol for passive tags identi-
fication. Optimal parameters such as frame size and 
number of communication rounds can be derived based 
on the estimation of tag set size. In [6], the identifica-
tion time of passive tags was derived for framed-Aloha 
under a given missing tag probability. The wireless 
channel models and capture effect are also taken into 
consideration in this paper. The performance of stochas-
tic scheme is not limited by the length and distribution 
of tag IDs, however, it cannot guarantee that all tags are 
identified within a certain time interval if the number of 
tags is not known in advance. 
 In this paper, we introduce a new protocol called 
Prefix-Randomized Query-Tree (PRQT) protocol for 
tag identification. PRQT protocol differs from the 
Query-Tree (QT) protocol [2] in that it uses prefixes 
chosen randomly by tags (rather than using their ID-
based prefixes). Therefore, the identification time of 
PRQT is no longer affected by the length and distribu-
tion of tag IDs as does for QT. We compare PRQT and 
QT by analysis and computer simulation. 

II. TAG IDENTIFICATION 
In this section, we introduce the Prefix-

Randomized Query-Tree (PRQT) protocol. PRQT is 
designed under the assumptions: (i) the tag set size is 
fixed during the identification process; (ii) tags can ran-
domly generate a prefix with a prescribed length, and 
(iii) tags cannot communicate with each other and they 
may choose the same prefix. 
 

A. Prefix-Randomized Query-Tree Protocol 

The PRQT algorithm consists of rounds of “queries 
from the reader” and “responses from tags”. In the ini-
tialization round, the reader broadcasts a command with 
an initial prefix length l (l≤L, L is the length of the ID 
string) which is determined from the tag set size n. Af-
ter receiving this initial command, each tag generates an 
l bits random binary prefix. The reader then polls each 
of these 2l prefixes sequentially. In each round, tags 
with prefix matches respond with their IDs. Since tags 
cannot coordinate the prefix choices, multiple tags may 
choose the same prefix. Therefore tags with the same 
prefix will respond to the reader at the same time and 
cause a collision. Suppose a collision is detected when 
polling the initial prefix fi. The reader will broadcast a 
command asking this group of collided tags matching 
this prefix to expand their prefixes by one bit randomly 
drawn from ‘0’ or ‘1’ and polls the extended prefixes fi0 

and fi1. If collisions occur in these polls, the same pro-
cedure is repeated. In essence, PRQT grows a binary 
query tree from the collided prefix until all tags choos-
ing this prefix are identified. After that, the algorithm 
returns and continues polling the rest of 2l initial pre-
fixes. The same procedure is repeated until all initial 
prefixes have been polled. 
 In Fig. 1 we show a query tree of PRQT for identi-
fying eight tags. The shaded root node indicates the 
broadcasting of the initial prefix length by the reader. A 
dark node indicates a prefix polled by the reader and is 
chosen by a single tag (which corresponds to a success 
response). A gray node indicates a prefix polled by the 
reader and is chosen by multiple tags (the number inside 
the circle indicates the number of collided tags). A 
white node indicates a prefix polled by the reader and is 
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Fig.1 PRQT example for identifying eight tags. 
 
 

Step Query Response 
1 L = 3 No response 
2 000 Success 
3 001 Collision 
4 0010 Collision 
5 0011 No response 
6 00100 Collision 
7 00101 No response 
8 001000 Success 
9 001001 Success 
10 010 No response 
… … … 
19 111 Success 

 
Fig. 2. Communication between reader and tags. 
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not chosen by any tag (no response). In this example, 
there are eight level-1 nodes corresponding to the eight 
initial prefixes. The initial prefix ‘001’ is chosen by two 
tags and ‘110’ is chosen by three tags. So a binary tree 
is grown from each of these two initial prefixes. The 
left and right child nodes of a collided parent node for 
prefix fi represent prefixes fi0 and fi1 respectively. The 
communication between the reader and tags for this ex-
ample are shown in Fig. 2 where PRQT uses a total of 
19 steps to identify all eight tags. 

B. Time Complexity Analysis 

 In the PRQT protocol, tags may choose the same 
prefix round after round. But this probability drops 
geometrically as the prefix length gets longer. The clas-
sical analysis methods for tree search algorithm [7]-[9] 
cannot be used here as tags are not guaranteed to gener-
ate unique prefixes.  
 To find the average tree size given the number of 
tags and the initial prefix length, let us assume the tag 
set size is n, the initial prefix length is l and there 
are 2lN = nodes in the first level of the query tree. In 
this level, some nodes (or initial prefixes) may be cho-
sen by multiple tags as shown in Fig. 1, which leads to 
collision when the reader polls these initial prefixes. Let 
pk denote the probability of k tags choosing the same 
initial prefix in a level-1 node. Then pk follows a bi-
nominal distribution 

 
1 11

k n k

k

n
p

k N N

−    = −    
    

 (1) 

 Every collision from level-1 node onward causes a 
split of the query tree. Since each node (excluding the 
root node) on the query tree represents a round of poll-
ing operation by the reader, the expected number of 
polling rounds needed to completely identify all tags, W, 
is numerically equal to the size of the query tree exclud-
ing the root node. Assuming the amount of time for 
each polling-response round is fixed, then W is also 
identical to the expected tag identification time. 

Let tk denote the average size of a sub-tree with k 
tags in its root node, then W equals the summation of all 
sub-tree sizes 
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Obviously t0 = t1 = 1 because there are no collision 
in these cases. To calculate tk for k from 2 to n, we pro-
ceed as follows. We condition on the first split (level-2) 
of the collided level-1 node. Suppose i out of k 

( [0, ]i k∈ ) tags choose to expand the prefix by “0” and 
the rest k-i tags choose to expand the prefix by “1”, 
which leads to two sub-trees each with i and k-i nodes 
respectively. Therefore, 1k i k it t t −= + +  and this probabil-
ity is given by 
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 Summing over all [0, ]i k∈   we obtain 
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 Substituting (3) into (4) and rearranging the term kt  
to the left-hand side, we can obtain the result as follows. 

 
1

1
1

0

1 2
2 1

k
k

k ik
i

k
t t

i

−
−

−
=

  = +  −   
∑  (5) 

where t0 = t1 = 1 and k = 2, 3, …, n. 

Fig. 3 shows the close matching of the analytical 
and simulation results of W under different settings of 
the initial prefix length. Each simulation point repre-
sents the average value of 1000 trials. 
 

C. Optimal Initial Prefix Length 

In this section, we derive the optimal initial prefix 
length for a given tag set size. From (1), (2) and (5) we 
can see that given n, the expected number of polling 
rounds W is a function of N only. We therefore can 
minimize W with respect to N. As stated before, the ini-
tial prefix length is 2logl N= . 
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Fig. 3 Analytical and simulation results of PRQT protocol. 
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However, W is not differentiable because N is an 
integer. To cope with this problem, we relax N to be a 
real number and introduce a variable q = 1/N. Substitut-
ing q into (1) and (2) we have 
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Differentiating W(q) with respect to q we have 
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Let / 0W q∂ ∂ = , *q that minimizes W can be found nu-
merically. Since *q  is a real number, the optimal initial 

prefix length will be either *
2log (1/ )l q+  =    or 

*
2log (1/ )l q−  =   . Putting them together, the optimal 

prefix length is given by 

 { }* arg min ( ), ( )l W l W l+ −=  (8) 

Table I shows the values of *l as a function of n, 
for 30 500n≤ ≤ . 

 
TABLE I   OPTIMAL INITIAL PREFIX LENGTH FOR DIFFERENT TAG 

SET SIZE 
 

Tag set size n 30 - 
53 

54 - 
107 

108 - 
215 

216 - 
429 

430 - 
500 

Optimal initial 
prefix length *l  5 6 7 8 9 

 

III. PERFORMANCE EVALUATION 
We now compare the performance of PRQT with 

the Query-Tree protocol. QT is a deterministic collision 
resolution scheme with an average time complexity of 
(2.881n – 1, 2.887n – 1) for uniformly distributed set 
with n tags. However, its worst-case time complexity is 
on the order of 2( 2 log )n k n+ − [2]. 

Firstly, we investigate the effect of tag ID distribu-
tion on the tag identification time of QT by varying the 
probability of ‘0’s occurring in the ID string from 0.05 
to 0.95. The ID length is set to be 64 bits [10]. Each 
data point shown in Fig. 4 is the average value of 1000 
trials. We can see that the tag identification time of the 
QT protocol is heavily dependent on the uniformity of 
the tag distribution, particularly when the tag set size is 

large. The performance of PRQT, however, is totally 
independent of ID distribution and ID length. 
 In Fig. 5, we compare the expected identification 
time for three different schemes: 
1. PRQT with optimal initial prefix length (analytical 

result). 
2. QT with uniform tag ID distribution (lower bound 

of its average time complexity 2.881n-1). 
3. QT with non-uniform tag ID distribution where 

Prob(‘0’) = 0.3. 
It can be seen from Fig.5 that PRQT has better per-

formance than the other two schemes for all tag set size. 
The expected identification time of PRQT increases 
linearly with n with a slope of 2.36. So the average time 
complexity of PRQT is O(2.36n). 

In Fig. 6, we compare the worst-case identification 
time for PRQT and QT for tag set size equal to 50, 100, 
and 150 respectively assuming uniform ID distribution 
and 64 bit ID length. This worst-case is the worst of the 
1000 trials in each case. The results show that PRQT 
gives increasingly better worst case performance than 
QT as the tag set size increases. 
 Fig. 7 shows the cumulative distributions of polling 
rounds for PRQT and QT to identify all tags. These dis-
tributions are obtained by 1000 trials each of PRQT and 
QT for tag set sizes equal to 50, 100, and 150 assuming 
uniform ID distribution and 64 bit ID length. It is noted 
that PRQT always performs better than QT for the same 
tag set size and performs increasingly better with the 
increasing tag set size. As an example, with a popula-
tion of 150 tags, the probability of identifying all tags 
by no more than 400 polling rounds is 0.988 for PRQT 
and 0.158 for QT. 

IV. CONCLUSION 
In this paper we propose a Prefix-Randomized 

Query-Tree (PRQT) protocol for the anti-collision prob-
lem of RFID systems. We study the relation of the ini-
tial prefix length and the tag identification time of 
PRQT and summarize the optimal initial prefix length 
for different tag set size in Table I. Through theoretical 
analysis and simulation studies, we show that PRQT 
performs better than the Query-Tree protocol in terms 
of both average and worst-case time complexity. The 
design of a light-weight tag set size estimation algo-
rithm will be part of the future work. 

REFERENCES 
[1] D. R. Hush and C. Wood, “Analysis of tree algorithms for RFID 

arbitration,” IEEE Inter. Sym. On Information Theory, 1998. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1656

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore.  Restrictions apply.



 

[2] C. Law, K. Lee, and K. Siu, “Efficient memoryless protocol for 
tag identification,” In Proceedings of the 4th International Work-
shop on Discrete Algorithms and Methods for Mobile Comput-
ing and Communications, August 2000. 

[3] Philips I*Code1 System Design Guide – “Application Note 
AN00025”, May 2002, Philips Semiconductors. 
http://www.semiconductors.philips.com/markets/identification/pr
oducts/icode/. 

[4] ISO/IEC 18000-7 draft, “RFID for item management-Air inter-
face, Part 7-Parameters for an active RFID interface communica-
tions at 433MHz,” (684_18000-7_FCD.doc at 
http://www.autoid.org) 

[5] H. Vogt, “Efficient object identification with passive RFID 
tags,” Inter. Conf. on Pervasive Computing, LNCS, pp. 98-113, 
2002. 

[6]  B. Zhen, M. Kobayashi, and M. Shimizu, “Framed Aloha for 

Multiple RFID Objects Identification,” IEICE Trans. Commun., 
vol. E88-B, No. 3, March 2005. 

[7] J. I. Capetanakis, “Tree algorithms for packet broadcast chan-
nels,” IEEE Transactions on Information Theory, IT-25(5): 505-
515, 1979. 

[8] M. A. Kaplan and E. Gulko, “Analytic properties of multiple-
access trees,” IEEE Transactions on Information Theory, IT-
31(2): 255-263, 1985. 

[9] J. l. Massey, “Collision resolution algorithms and random-access 
communications,” In G. Longa, editor, Multi-User Communica-
tion Systems, pages 73-137. Springer Verlag, New York, 1981. 

[10]EPCTM Generation 1 Tag Data Standards Version 1.1 Rev.1.27, 
EPCglobal.      
http://www.epcglobalinc.org/standards_technology/specification
s.html. 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

Probability of '0' for tag ID distribution

E
xp

ec
te

d 
nu

m
be

r 
of

 p
ol

lin
g 

ro
un

ds
 b

y 
Q

T
 p

ro
to

co
l 150 tags

100 tags
50 tags

50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

Number of tags

E
xp

ec
te

d 
nu

m
be

r 
of

 p
ol

lin
g 

ro
un

ds

QT nonuniform

QT uniform
PRQT

 
Fig. 4. Effect of the tag ID distribution on the     Fig. 5 Comparison of expected identification time 
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