

Prefix-Randomized Query-Tree Protocol for RFID Systems*

Kong Wa Chiang, Cunqing Hua and Tak-Shing Peter Yum
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

E-mails: {kwchian4, chua0, yum}@ie.cuhk.edu.hk

* The work was supported in part by the Hong Kong Research Grants Council under Grant CUHK 4220/03E.

Abstract— In this paper we present a new tree search-
based protocol for the anti-collision problem of RFID sys-
tems. This protocol builds a binary search tree according
to the prefixes chosen randomly by tags rather than using
their ID-based prefixes. Therefore, the tag identification
time of the proposed protocol is no longer limited by the
tag ID distribution and ID length as the conventional tree
search protocol. The time complexity of the protocol is
derived and shown that it can identify tags faster than the
Query-Tree protocol.

I. INTRODUCTION

The Radio Frequency Identification (RFID) system
consists of a number of tags with unique IDs, a reader to
obtain information from the tags and a data processing
subsystem. A vast majority of current RFID systems
work in a Reader-Talk-First mode, where a reader is-
sues query commands first, and those tags that are
within the reading range of the reader will respond with
the stored information with internal energy (for an Ac-
tive Tag) or external energy powered by the reader (for
a Passive Tag). Since all tags have to share the common
broadcast channel to communicate with the reader, this
will lead to collision as multiple tags transmit simulta-
neously.
 The anti-collision problem of RFID is similar to the
classical multi-access communication systems with so-
lutions such as Tree protocol, Aloha (slotted-Aloha,
framed-Aloha) and Carrier Sense Multiple Access
(CSMA). However, anti-collision protocols of RFID
systems are constrained by low computational capabil-
ity and small memory. In addition, they must be opti-
mized for low power operation to increase the commu-
nication range in the case of passive tags. The limited
power supply, memory and computing capability of
low-cost RFID tags rule out the use of complicated anti-
collision algorithms. In addition, low-cost tags are not
able to sense the medium, so the use of CSMA is also

not possible. The Query-Tree protocol is simple, but it
has scalability problem because its worst-case time
complexity is on the order of 2(2 log)n k n+ − [2], where
n is the number of tags and k is the length of ID string.
 The majority of RFID anti-collision protocols are
time-domain based of either deterministic type or sto-
chastic type. For deterministic schemes, the reader
broadcasts a command requesting certain tags, based on
their IDs, to respond. It then either polls a list of tags’
IDs or performs some variations of binary search algo-
rithm. Typical polling schemes can be time exhaustive
if there are many tags under the reader’s interrogation
area. Moreover, the length and distribution of tag IDs
can affect the identification time significantly. In [1], a
reader queries all tags for the next bit of their IDs.
When collision occurs, the reader splits the queries until
there is only one tag respond. An efficient memoryless
scheme called Query-Tree protocol is proposed in [2].
In this protocol, a reader sends out a prefix in each
communication round and tags simply respond with
their IDs if the prefix is match with their IDs. If there is
a collision for a particular prefix, the reader ignores the
response and polls a one-bit-longer prefix later. The
polling efficiency for this protocol is low when the tag
population size is large or the ID address distribution is
sparse.
 For stochastic schemes, tags respond to reader’s
interrogation at randomly chosen time slots. There are a
number of variations of these schemes based on the
Aloha protocol family for many commercial RFID sys-
tems [3]-[4]. Among this protocol family, framed-Aloha
is a favorite choice from both theoretical and practical
consideration. This protocol is an extension of slotted-
Aloha by grouping several slots into one frame. Tags
are required to send their IDs in a randomly chosen time
slot of each frame. The frame size is determined by the
reader. In [5], the author built a Markov model for the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

1653

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore. Restrictions apply.

dynamic framed-Aloha protocol for passive tags identi-
fication. Optimal parameters such as frame size and
number of communication rounds can be derived based
on the estimation of tag set size. In [6], the identifica-
tion time of passive tags was derived for framed-Aloha
under a given missing tag probability. The wireless
channel models and capture effect are also taken into
consideration in this paper. The performance of stochas-
tic scheme is not limited by the length and distribution
of tag IDs, however, it cannot guarantee that all tags are
identified within a certain time interval if the number of
tags is not known in advance.
 In this paper, we introduce a new protocol called
Prefix-Randomized Query-Tree (PRQT) protocol for
tag identification. PRQT protocol differs from the
Query-Tree (QT) protocol [2] in that it uses prefixes
chosen randomly by tags (rather than using their ID-
based prefixes). Therefore, the identification time of
PRQT is no longer affected by the length and distribu-
tion of tag IDs as does for QT. We compare PRQT and
QT by analysis and computer simulation.

II. TAG IDENTIFICATION
In this section, we introduce the Prefix-

Randomized Query-Tree (PRQT) protocol. PRQT is
designed under the assumptions: (i) the tag set size is
fixed during the identification process; (ii) tags can ran-
domly generate a prefix with a prescribed length, and
(iii) tags cannot communicate with each other and they
may choose the same prefix.

A. Prefix-Randomized Query-Tree Protocol

The PRQT algorithm consists of rounds of “queries
from the reader” and “responses from tags”. In the ini-
tialization round, the reader broadcasts a command with
an initial prefix length l (l≤L, L is the length of the ID
string) which is determined from the tag set size n. Af-
ter receiving this initial command, each tag generates an
l bits random binary prefix. The reader then polls each
of these 2l prefixes sequentially. In each round, tags
with prefix matches respond with their IDs. Since tags
cannot coordinate the prefix choices, multiple tags may
choose the same prefix. Therefore tags with the same
prefix will respond to the reader at the same time and
cause a collision. Suppose a collision is detected when
polling the initial prefix fi. The reader will broadcast a
command asking this group of collided tags matching
this prefix to expand their prefixes by one bit randomly
drawn from ‘0’ or ‘1’ and polls the extended prefixes fi0

and fi1. If collisions occur in these polls, the same pro-
cedure is repeated. In essence, PRQT grows a binary
query tree from the collided prefix until all tags choos-
ing this prefix are identified. After that, the algorithm
returns and continues polling the rest of 2l initial pre-
fixes. The same procedure is repeated until all initial
prefixes have been polled.
 In Fig. 1 we show a query tree of PRQT for identi-
fying eight tags. The shaded root node indicates the
broadcasting of the initial prefix length by the reader. A
dark node indicates a prefix polled by the reader and is
chosen by a single tag (which corresponds to a success
response). A gray node indicates a prefix polled by the
reader and is chosen by multiple tags (the number inside
the circle indicates the number of collided tags). A
white node indicates a prefix polled by the reader and is

2 22

2

3 2
000 001 010 011 100 101 110 111

2

0010 0011

2

00100 00101

001000 001001

2

1100 1101

2

11000 11001

Level 1

Level 2

Level 3

Level 4

Level 0

Fig.1 PRQT example for identifying eight tags.

Step Query Response
1 L = 3 No response
2 000 Success
3 001 Collision
4 0010 Collision
5 0011 No response
6 00100 Collision
7 00101 No response
8 001000 Success
9 001001 Success
10 010 No response
… … …
19 111 Success

Fig. 2. Communication between reader and tags.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1654

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore. Restrictions apply.

not chosen by any tag (no response). In this example,
there are eight level-1 nodes corresponding to the eight
initial prefixes. The initial prefix ‘001’ is chosen by two
tags and ‘110’ is chosen by three tags. So a binary tree
is grown from each of these two initial prefixes. The
left and right child nodes of a collided parent node for
prefix fi represent prefixes fi0 and fi1 respectively. The
communication between the reader and tags for this ex-
ample are shown in Fig. 2 where PRQT uses a total of
19 steps to identify all eight tags.

B. Time Complexity Analysis

 In the PRQT protocol, tags may choose the same
prefix round after round. But this probability drops
geometrically as the prefix length gets longer. The clas-
sical analysis methods for tree search algorithm [7]-[9]
cannot be used here as tags are not guaranteed to gener-
ate unique prefixes.
 To find the average tree size given the number of
tags and the initial prefix length, let us assume the tag
set size is n, the initial prefix length is l and there
are 2lN = nodes in the first level of the query tree. In
this level, some nodes (or initial prefixes) may be cho-
sen by multiple tags as shown in Fig. 1, which leads to
collision when the reader polls these initial prefixes. Let
pk denote the probability of k tags choosing the same
initial prefix in a level-1 node. Then pk follows a bi-
nominal distribution

1 11

k n k

k

n
p

k N N

−    = −    
    

 (1)

 Every collision from level-1 node onward causes a
split of the query tree. Since each node (excluding the
root node) on the query tree represents a round of poll-
ing operation by the reader, the expected number of
polling rounds needed to completely identify all tags, W,
is numerically equal to the size of the query tree exclud-
ing the root node. Assuming the amount of time for
each polling-response round is fixed, then W is also
identical to the expected tag identification time.

Let tk denote the average size of a sub-tree with k
tags in its root node, then W equals the summation of all
sub-tree sizes

0

n

k k
k

W N p t
=

= ∑ (2)

Obviously t0 = t1 = 1 because there are no collision
in these cases. To calculate tk for k from 2 to n, we pro-
ceed as follows. We condition on the first split (level-2)
of the collided level-1 node. Suppose i out of k

([0,]i k∈) tags choose to expand the prefix by “0” and
the rest k-i tags choose to expand the prefix by “1”,
which leads to two sub-trees each with i and k-i nodes
respectively. Therefore, 1k i k it t t −= + + and this probabil-
ity is given by

 (,) 2 , 0,1,k
k

k
p i k i i k

i
 

− = = 
 

 (3)

 Summing over all [0,]i k∈ we obtain

0

1 (,)()
k

k k i k i
i

t p i k i t t −
=

= + − +∑ (4)

 Substituting (3) into (4) and rearranging the term kt
to the left-hand side, we can obtain the result as follows.

1

1
1

0

1 2
2 1

k
k

k ik
i

k
t t

i

−
−

−
=

  = +  −   
∑ (5)

where t0 = t1 = 1 and k = 2, 3, …, n.

Fig. 3 shows the close matching of the analytical
and simulation results of W under different settings of
the initial prefix length. Each simulation point repre-
sents the average value of 1000 trials.

C. Optimal Initial Prefix Length

In this section, we derive the optimal initial prefix
length for a given tag set size. From (1), (2) and (5) we
can see that given n, the expected number of polling
rounds W is a function of N only. We therefore can
minimize W with respect to N. As stated before, the ini-
tial prefix length is 2logl N= .

3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

500

550

Initial prefix length

E
xp

ec
te

d
nu

m
be

r
of

 p
ol

lin
g

ro
un

ds
 W

50 tags simulation

50 tags analysis
30 tags simulation

30 tags analysis

Fig. 3 Analytical and simulation results of PRQT protocol.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1655

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore. Restrictions apply.

However, W is not differentiable because N is an
integer. To cope with this problem, we relax N to be a
real number and introduce a variable q = 1/N. Substitut-
ing q into (1) and (2) we have

0

1() (1)
n

k n k
k

k

n
W q q q t

kq
−

=

 
= − 

 
∑ (6)

Differentiating W(q) with respect to q we have

 2 1

0
(1) (1)

n
k n k

k
k

nW k q nq q q t
kq

− − −

=

 ∂ = − + − − ∂  
∑ (7)

Let / 0W q∂ ∂ = , *q that minimizes W can be found nu-
merically. Since *q is a real number, the optimal initial

prefix length will be either *
2log (1/)l q+  =   or

*
2log (1/)l q−  =   . Putting them together, the optimal

prefix length is given by

 { }* arg min (), ()l W l W l+ −= (8)

Table I shows the values of *l as a function of n,
for 30 500n≤ ≤ .

TABLE I OPTIMAL INITIAL PREFIX LENGTH FOR DIFFERENT TAG

SET SIZE

Tag set size n 30 -
53

54 -
107

108 -
215

216 -
429

430 -
500

Optimal initial
prefix length *l 5 6 7 8 9

III. PERFORMANCE EVALUATION
We now compare the performance of PRQT with

the Query-Tree protocol. QT is a deterministic collision
resolution scheme with an average time complexity of
(2.881n – 1, 2.887n – 1) for uniformly distributed set
with n tags. However, its worst-case time complexity is
on the order of 2(2 log)n k n+ − [2].

Firstly, we investigate the effect of tag ID distribu-
tion on the tag identification time of QT by varying the
probability of ‘0’s occurring in the ID string from 0.05
to 0.95. The ID length is set to be 64 bits [10]. Each
data point shown in Fig. 4 is the average value of 1000
trials. We can see that the tag identification time of the
QT protocol is heavily dependent on the uniformity of
the tag distribution, particularly when the tag set size is

large. The performance of PRQT, however, is totally
independent of ID distribution and ID length.
 In Fig. 5, we compare the expected identification
time for three different schemes:
1. PRQT with optimal initial prefix length (analytical

result).
2. QT with uniform tag ID distribution (lower bound

of its average time complexity 2.881n-1).
3. QT with non-uniform tag ID distribution where

Prob(‘0’) = 0.3.
It can be seen from Fig.5 that PRQT has better per-

formance than the other two schemes for all tag set size.
The expected identification time of PRQT increases
linearly with n with a slope of 2.36. So the average time
complexity of PRQT is O(2.36n).

In Fig. 6, we compare the worst-case identification
time for PRQT and QT for tag set size equal to 50, 100,
and 150 respectively assuming uniform ID distribution
and 64 bit ID length. This worst-case is the worst of the
1000 trials in each case. The results show that PRQT
gives increasingly better worst case performance than
QT as the tag set size increases.
 Fig. 7 shows the cumulative distributions of polling
rounds for PRQT and QT to identify all tags. These dis-
tributions are obtained by 1000 trials each of PRQT and
QT for tag set sizes equal to 50, 100, and 150 assuming
uniform ID distribution and 64 bit ID length. It is noted
that PRQT always performs better than QT for the same
tag set size and performs increasingly better with the
increasing tag set size. As an example, with a popula-
tion of 150 tags, the probability of identifying all tags
by no more than 400 polling rounds is 0.988 for PRQT
and 0.158 for QT.

IV. CONCLUSION
In this paper we propose a Prefix-Randomized

Query-Tree (PRQT) protocol for the anti-collision prob-
lem of RFID systems. We study the relation of the ini-
tial prefix length and the tag identification time of
PRQT and summarize the optimal initial prefix length
for different tag set size in Table I. Through theoretical
analysis and simulation studies, we show that PRQT
performs better than the Query-Tree protocol in terms
of both average and worst-case time complexity. The
design of a light-weight tag set size estimation algo-
rithm will be part of the future work.

REFERENCES
[1] D. R. Hush and C. Wood, “Analysis of tree algorithms for RFID

arbitration,” IEEE Inter. Sym. On Information Theory, 1998.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1656

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore. Restrictions apply.

[2] C. Law, K. Lee, and K. Siu, “Efficient memoryless protocol for
tag identification,” In Proceedings of the 4th International Work-
shop on Discrete Algorithms and Methods for Mobile Comput-
ing and Communications, August 2000.

[3] Philips I*Code1 System Design Guide – “Application Note
AN00025”, May 2002, Philips Semiconductors.
http://www.semiconductors.philips.com/markets/identification/pr
oducts/icode/.

[4] ISO/IEC 18000-7 draft, “RFID for item management-Air inter-
face, Part 7-Parameters for an active RFID interface communica-
tions at 433MHz,” (684_18000-7_FCD.doc at
http://www.autoid.org)

[5] H. Vogt, “Efficient object identification with passive RFID
tags,” Inter. Conf. on Pervasive Computing, LNCS, pp. 98-113,
2002.

[6] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed Aloha for

Multiple RFID Objects Identification,” IEICE Trans. Commun.,
vol. E88-B, No. 3, March 2005.

[7] J. I. Capetanakis, “Tree algorithms for packet broadcast chan-
nels,” IEEE Transactions on Information Theory, IT-25(5): 505-
515, 1979.

[8] M. A. Kaplan and E. Gulko, “Analytic properties of multiple-
access trees,” IEEE Transactions on Information Theory, IT-
31(2): 255-263, 1985.

[9] J. l. Massey, “Collision resolution algorithms and random-access
communications,” In G. Longa, editor, Multi-User Communica-
tion Systems, pages 73-137. Springer Verlag, New York, 1981.

[10]EPCTM Generation 1 Tag Data Standards Version 1.1 Rev.1.27,
EPCglobal.
http://www.epcglobalinc.org/standards_technology/specification
s.html.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

Probability of '0' for tag ID distribution

E
xp

ec
te

d
nu

m
be

r
of

 p
ol

lin
g

ro
un

ds
 b

y
Q

T
 p

ro
to

co
l 150 tags

100 tags
50 tags

50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

Number of tags

E
xp

ec
te

d
nu

m
be

r
of

 p
ol

lin
g

ro
un

ds

QT nonuniform

QT uniform
PRQT

Fig. 4. Effect of the tag ID distribution on the Fig. 5 Comparison of expected identification time

identification time of QT protocol.

50 100 150
0

100

200

300

400

500

600

Number of tags

W
or

st
 c

as
e

id
en

tif
ic

at
io

n
tim

e

PRQT

QT

50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of polling rounds

C
um

ul
at

iv
e

di
st

rib
ut

io
n

PRQT

QT

50
tags

100
tags

150
tags

Fig. 6 Worst-case tag identification time among Fig. 7 Cumulative distribution for number of polling

1000 trials for different tag set size rounds of PRQT and QT for different tag set size

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1657

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 08:45 from IEEE Xplore. Restrictions apply.

