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Abstract

In this paper, we present a data aggregated maximum lifetime routing scheme for wireless sensor networks. We address
the problem of jointly optimizing data aggregation and routing so that the network lifetime can be maximized. A recursive
smoothing method is adopted to overcome the non-differentiability of the objective function. We derive the necessary and
sufficient conditions for achieving the optimality of the optimization problem and design a distributed gradient algorithm
accordingly. Extensive simulations are carried out to show that the proposed algorithm can significantly reduce the data
traffic and improve the network lifetime. The convergence property of the algorithm is studied under various network
configurations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Energy-efficient routing [1–3] has long been stud-
ied in the context of wireless ad hoc networks and
sensor networks. The basic idea is to deliver packets
through the minimum energy paths so as to reduce
the end-to-end energy consumption. But this class
of approaches tends to overwhelm the minimum
energy paths, causing nodes on the paths to run
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out of battery energy quickly and break the network
connectivity. This is undesirable for sensor net-
works since sensor nodes have to collaborate for
common mission, the failure of nodes may break
the network functionality.

To cope with this problem, maximum lifetime
routing has been proposed recently [4–7]. The key
idea is to maximize the network lifetime by balancing
the traffic load across the network. These solutions
are applicable for ad hoc networks where traffic is
conserved between source and destination nodes.
However, data collected by sensor nodes may con-
tain redundant information due to the spatial–tem-
poral correlation. Therefore, it is desirable to
aggregate the data at the intermediate nodes to
remove the redundant information. A few schemes
have been proposed to exploit this feature to improve
.
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the network performance [8–13]. For example, in
[14], the authors propose a Minimum Energy Gath-
ering Algorithm (MEGA). This algorithm requires
to maintain two trees – the coding tree for raw data
aggregation and the shorted path tree (SPT) for deliv-
ering the compressed data to the sink node. These
work demonstrate that data aggregation can
improve the performance of various communication
protocols (channel coding, routing, MAC, etc.).

However, existing work does not consider data
aggregation with maximum lifetime routing scheme.
By jointly optimizing routing and data aggregation,
the network lifetime can be extended from two
aspects. First, data aggregation can help to reduce
the traffic to the sink node, which in turn can reduce
the power consumption of intermediate nodes.
Second, maximum lifetime routing can balance the
traffic across the network so as to avoid overwhelm-
ing the bottleneck nodes. In this work, we present a
model that can optimize routing and data aggrega-
tion simultaneously. The basic idea is to adopt the
geometric routing [15] whereby the routing is deter-
mined solely by the nodal position. We associate
each link with two variables, one for data aggrega-
tion, the other for routing. This allows the foreign-

coding [14] model to be incorporated without
intervening the underlying routing scheme. The
problem is therefore focused on computing the opti-
mal set of variables so that the network lifetime can
be maximized subject to energy constraints. Since
the problem cannot be solved directly using the sim-
ple distributed methods, we adopt a recursive
smoothing function to approximate the original
problem. We derive the necessary and sufficient con-
ditions required to achieve the optimality of the
smoothed problem. A distributed gradient algorithm
is designed accordingly with which nodes can com-
pute their variables using the information from
neighbors. It is shown by simulations that the pro-
posed scheme can significantly reduce the traffic
and improve the network lifetime. The distributed
algorithm can converge to the optimal points effi-
ciently under various network configurations.

In the following, we first introduce the system
models and define the data aggregated maximum
lifetime routing problem in Section 2. We then intro-
duce the recursive smoothing method in Section 3
and derive the optimality conditions in Section 4.
The implementation issues of the distributed algo-
rithm are discussed in Section 5 and performance
evaluation is presented in Section 6. Finally we con-
clude this paper in Section 7.
2. System models and problem formulation

In this section, we first introduce the routing
model, the data correlation and aggregation model,
and the power consumption model. Based on these
models, we define the network lifetime and formu-
late the optimization problem.

2.1. Routing model

We consider a wireless sensor network with a set
of sensor nodes N that generate data constantly,
and a single sink node s that is responsible for
collecting data from sensor nodes. Each node has
multiple routing paths to the sink node. The routing
algorithm suitable for use belongs to the class of
geometric routing algorithms [15]. Every sensor node
is assumed to know its own position as well as that
of its neighbors, which can be obtained with some
positioning schemes [16,17]. Each node can forward
packets to its neighbor nodes within its transmission
range that are closer to the sink node than itself.
Since nodes can make routing decisions based on
the position information of its neighbors and the
sink node, this routing algorithm is localized and
particularly suitable for large-scale sensor networks.

Let Ni denote the set of neighbors of node i and
Ni = {jjdij 6 R, j 2 N}, where dij is the Euclidean
distance of node i and j, and R is the radius of the
transmission range. According to the geometric

routing, only those neighbors that are closer to the
sink node s can serve as the downstream nodes.
Let us denote this set of downstream neighbors as
Si = {kjdks < dis, k 2 Ni}. Similarly, the set of
upstream neighbors is denoted as Ai = {kjdks P dis,
k 2 Ni}. Note that in case a node has no neighbors
that are closer to the sink node than itself, we
encounter a problem known as ‘‘local maximum’’
where the node fails to find routing path to the sink
node according to geometric routing. A few solu-
tions have been proposed for this problem [18–20].
However, the consideration of these solutions is
beyond the scope of this paper. In the following,
we assume that the downstream neighbor set Si is
non-empty for all i 2 N.

2.2. Data correlation and aggregation model

In sensor networks, data collected by neighboring
nodes is normally correlated due to the spatio-tem-
poral characteristics of the physical medium being
sensed, such as the temperature and humidity
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sensors in a similar geographic region, or magneto-
metric sensors tracking a moving vehicle. As a result,
the data collected by sensor nodes often carries
redundant information. Data aggregation (combin-
ing the data at the intermediate nodes) is an effective
way to remove the redundant information and
reduce the traffic. To incorporate data aggregation
into the geometric routing model, we adopt the
foreign-coding model [14] scheme. Specifically, we
assume a node i is able to compress the data originat-
ing at its upstream neighbor j using its local data.
The compression ratio depends on the data correla-
tion between node i and j, which is denoted by the
correlation coefficient qji = 1 � H(XjjXi)/H(Xj),
where H(Xj) is the entropy coded data rate of the
information Xj at node j, and H(XjjXi) is the condi-
tional entropy coded data rate of the same informa-
tion Xj at node i given the side information Xi.
Examples of correlation models include the Gaussian

random field model [10] which assumes that the cor-
relation coefficient qji decreases exponentially with
the distance between nodes, or qji ¼ expð�ad2

jiÞ,
and the inverse model [14] which assumes the data
correlation is inversely proportional to the Euclid-
ean distance between nodes, or qij = 1/(1 + dji).

Using the foreign-coding model, the traffic of a
node is classified into two categories: transit data
from upstream neighbors and local data generated
by itself. To separate the routing of these types of
traffic, each node maintains two routing variables
/ik and wik for the link to its downstream neighbor
k, where /ik denotes the fraction of transit data to
be routed from node i to node k, and wik denotes
the fraction of local data to be routed from node i

to node k. Clearly, it is required that
P

k2Si
/ik ¼ 1

and
P

k2Si
wik ¼ 1.

The data aggregation and routing work as
follows. For the local data generated by node i itself,
it is directly forwarded to the downstream neighbors
according to routing variables wiks. For the data
received from upstream neighbor j (which contains
both raw data generated by node j and transit data
passing through node j), node i performs two differ-
ent operations. For the raw data of node j, it is
encoded with the local information, while for the
transit data passed from node j (which has been
encoded by node j or its upstream nodes), no further
encoding is performed. All these transit traffic is for-
warded to the downstream neighbors according to
the other set of variables /iks. Mathematically, let
rj denote the data generating rate of node j, ki and
kj denote the aggregated transit traffic rate at node
i and j, respectively. The aggregated transit traffic
of node i is a superposition of two parts: the transit
traffic passed from the upstream nodes, and the raw
data originated from the upstream nodes that is to
be encoded using the local information. That is,

ki ¼
X
j2Ai

½kj/ji þ rjwjið1� qjiÞ�: ð1Þ
2.3. Power consumption model

The power consumption of a sensor node consists
of four parts: sensing and generating data, idling,
receiving, and transmitting. The power eg for gener-
ating one bit of data is assumed to be the same for all
nodes. The idle power consumed by a node, again
assumed to be the same for all nodes and indepen-
dent of traffic, is denoted by es. For power consump-
tion in receiving and transmitting, we adopt the first

order radio model in [1]. Specifically, a node needs
�elec = 50 nJ to run the circuitry and �amp = 100 pJ/
bit/m2 for the transmitting amplifier. Therefore,
the power consumption for receiving one bit of data
is given by er = �elec. The power consumption for
transmitting one bit of data to a neighbor node j is
given by eij ¼ �elec þ �amp � dn

ij, where n is the path loss
exponent, which typically ranges between 2 and 4 for
free-space and short-to-medium-range radio com-
munication. Let Ei denote the initial battery energy
of node i, and wi denote the fraction of power
consumption in each time unit. We have

wi ¼ esþ egriþer

X
j2Ai

ðkj/jiþ rjwjiÞþ
X
k2Si

eikðki/ikþ riwikÞ
 !,

Ei;

ð2Þ
where the first term is the idling power consump-
tion, the second term is the power for sensing, the
third term is the power consumption for receiving
and the last term is the power consumption for
transmitting.

2.4. Data-aggregated maximum lifetime routing

problem

The lifetime Ti of node i is the time for the node
to run out of the battery energy. Since wi is the frac-
tion of power consumed in each time unit, it is obvi-
ous that Ti = 1/wi. Similar to [5,6], we define the
network lifetime Tnet as the time at which the first
node in the network runs out of energy, that is

T net ¼ min
i2N

T i: ð3Þ
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The power consumption wi is a function of r, k and
/. However, the set of aggregated transit traffic k

can be obtained from r, / and w using (1). There-
fore, Tnet depends only on r,/,w and the initial bat-
tery energy E. If r and E are given, the network
lifetime is solely determined by the set of variables
{/,w}. We therefore define the Data-Aggregated
Maximum Lifetime Routing (DA-MLR) problem
as follows:

DA-MLR: Given the traffic generating rate r = {ri},
the initial battery energy E = {Ei} and the data cor-
relation coefficient q = {qij}, find two set of routing
variables / = {/ij} and w = {wij} for a sensor
network such that the network lifetime Tnet is
maximized.

Since maximizing the network lifetime Tnet is
equivalent to minimizing the maximum power con-
sumption wi for all i 2 N, we can rewrite the DA-
MLR problem formally as

minimize max
i2N

wi

subject to /ik P 0;
X
k2Si

/ik ¼ 1; 8i; ð4Þ

wik P 0;
X
k2Si

wik ¼ 1; 8i:
3. Recursive smoothing of DA-MLR problem

The max function in the DA-MLR problem (4) is
non-linear and non-differentiable, so some distrib-
uted solutions based on the gradient methods are
not directly applicable. There are many different
approaches to overcome this difficulty. One is to
transform the min–max problem to an equivalent
optimization problem by introducing an extra upper
bound parameter (e.g., [21]). This approach is
exploited in a recent work [7] where subgradient
algorithms are developed to solve the dual optimiza-
tion problem. But the algorithms are shown to con-
verge slowly. There is also a family of regularization
approaches to obtain the smooth approximation for
the max function in literature, such as the entropy
type approximation [22,23], the two dimensional
approximation [24] and the recursive approximation
[25]. All these approaches are special cases of so-
called smoothing method. An overview of these
approaches can be found in [26]. A penalty-function
based approximation is proposed in [27], which
however lacks theoretical convergence property. In
this section, we briefly introduce the recursive
smoothing method [25] and adopt this method to
construct a smoothing function for DA-MLR
problem.

3.1. Recursive smoothing methods

A high dimensional max function with n vari-
ables can be expressed recursively as [25]

maxfx1; . . . ; xng ¼ maxfmaxfx1; . . . ; xmg;
maxfxmþ1; . . . ; xngg: ð5Þ

On the other hand, it is well-known that a two
dimensional max{x1,x2} function can be approxi-
mated by the following function [24]

f ðx; tÞ ¼ tf ðt�1xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1� x2Þ2þ t2

q
þ x1þ x2

2
; ð6Þ

where t is an approximation parameter, and when t

approaches 0, f(x; t) approaches max{x1,x2}. Based
on this observation, a recursive procedure has been
proposed to construct a high dimensional approxi-
mation for max function with more than two
variables [25]. Specifically, a recursive function
fi,j(xi, . . . ,xj), 1 6 i < j 6 n, and k = j � i + 1 is de-
fined as

fi;jðxi; . . . ;xjÞ¼
f ðxi;xjÞ; if k¼ 2;

f ðfi;uk ðxi; . . . ;xuk Þ;flk ;jðxlk ; . . . ;xjÞÞ; if k> 2;

�

ð7Þ
where

uk ¼ iþdk=2e�1 and lk ¼
uk; if k is odd;

ukþ1; if k is even:

�

The recursive procedure in (7) can be simplified as

fi;jðx; tÞ ¼ f ðfi;uk ðxð1ÞÞ; flk ;jðxð2ÞÞÞ; 1 6 i < j 6 n:

ð8Þ
By defining

xð1Þ ¼ ðxi; . . . ; xuk Þ and xð2Þ ¼ ðxlk ; . . . ; xjÞ:
The partial derivative of fi,j(x, t) with respect to a
variable xl can be obtained recursively using the
chain rule as

ofi;jðx; tÞ
oxl

¼ of ðfi;uk ðxð1Þ; tÞ; tÞ
ofi;uk ðxð1Þ; tÞ

ofi;uk ðxð1Þ; tÞ
oxl

þ of ðflk ;jðxð2Þ; tÞ; tÞ
oflk ;jðxð2Þ; tÞ

oflk ;jðxð2Þ; tÞ
oxl

: ð9Þ

It is shown in [25] that the computational complex-
ities of (8) and (9) are both O(k).
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3.2. Smoothing function for DA-MLR

The N dimensional max function of the DA-
MLR problem in (4) can be approximated by the
recursive function in (8) with w1, . . . ,wN as inputs.
That is, we can construct the following smoothing
function for the max function of the DA-MLR
problem

Uðw; tÞ ¼ f1;N ðw; tÞ: ð10Þ

It is easy to see that U(w, t) is an approximation of
the N dimensional max function and converges to
the max function as parameter t goes to 0, that is

lim
t!0

Uðw; tÞ ¼ max
i2N

wi: ð11Þ

Thus, instead of solving problem (4), we can solve
the following approximate problem

minimize Uðw; tÞ
subject to /ik P 0;

X
k2Si

/ik ¼ 1; 8i; ð12Þ

wik P 0;
X
k2Si

wik ¼ 1; 8i:
4. Optimality conditions

To solve problem (12) in a distributed manner,
using / and w as the control variables, we extend
the techniques in [28] to derive the necessary and
sufficient conditions for achieving the optimality of
the smoothing function U(w, t).

By differentiating U(w, t) with respect to /ik and
wik for i 2 N and k 2 Si, we obtain

oUðw; tÞ
o/ik

¼
X
l2N

of1;N ðw; tÞ
owl

owl

o/ik
; ð13Þ

oUðw; tÞ
owik

¼
X
l2N

of1;N ðw; tÞ
owl

owl

owik

: ð14Þ
i

k1

k2

l

i

ik1
εφ

ik1
εφ

ε

ε

εφ

ik2
εφ

ik2
εφ

Fig. 1. Three scenarios of node i and l: (a) node i and node l are non-ad
co-located.
In (13) and (14), of1,N(w, t)/owl can be computed
recursively with (9) using w1, . . . ,wN as inputs. The
partial derivatives of wl with respect to /ik and wik

involve three nodes i, k and l. Note that if node l
is not on the downstream paths of node i, both
owl/o/ik and owl/owik are zeros because the traffic
of node i does not pass through node l. Thus, we
can narrow down the discussion to node l 2 N that
is on the downstream path of node i.

In order to derive owl/o/ik and owl/owik, we
introduce a dummy variable r 0, which can be inter-
preted as the dummy traffic injected into node i that
follows the set of routing of transit traffic ki, but
without considering data aggregation. We consider
three scenarios of source node i and node l as shown
in Fig. 1.

(a) Node i and l are non-adjacent: If the source
node i is not adjacent to node l as shown in
Fig. 1a, let us consider a small increment �
to the input rate r0i, this will cause an incre-
ment �/ik to the transit data of its nexthop
neighbor k. This extra traffic is equivalent to
an increment of �/ik to the input rate r0k.
Therefore, the contribution of the increment
of r0i to the power consumption of node l can
be expressed via r0k as �/ikowl=or0k. This reason-
ing is applicable for all nexthop neighbors.
Summing up over all k 2 Si gives
il

ilεφ

jacent;
owl

or0i
¼
X
k2Si

/ik
owl

or0k
: ð15Þ

Suppose that the transit traffic ki of node i is
fixed. An increment � to the routing variable
/ik will cause an increment �ki to node k,
which is equivalent to an increment of �ki to
the input rate r0k. Therefore, we have

owl

o/ik
¼ ki

owl

or0k
: ð16Þ
l i
ε

(b) node i and node l are adjacent; (c) node i and node l are
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Similarly, by fixing ri and introducing an
increment � to the routing variable wik will
cause an increment �ri to node k, which is
equivalent to an increment of �ri(1 � qik) to
the input rate r0k after the aggregation.
Therefore,

owl

owik

¼ rið1� qikÞ
owl

or0k
: ð17Þ
(b) Node i and node l are adjacent: If the source
node i is adjacent to node l as shown in
Fig. 1b, then the increment of power con-
sumption of node l due to the increment of
the input rate r0i is composed of two parts.
One is for receiving the increased traffic �/il,
which is given by �/il(er/El). The other is for
transmitting the traffic �/il, which is given by
�owl=or0l following the analysis of first sce-
nario. Taking into account the indirect incre-
ment from other non-adjacent neighbor
k 5 l as derived above, we obtain
owl

or0i
¼

X
k2Si ;k 6¼l

/ik
owl

or0k
þ /il

er

El
þ owl

or0l

� �

¼
X
k2Si

/ik
owl

or0k
þ /iler

El
: ð18Þ
Similarly, an increment � to /ik leads to an
increment of �ki to node k, therefore

owl

o/ik
¼ ki

er

El
þ owl

or0l

� �
: ð19Þ
Also, an increment � to wik leads to an incre-
ment of �ri(1 � qik) to node k, so

owl

owik

¼ ri
er

El
þ ð1� qilÞ

owl

or0l

� �
: ð20Þ
(c) Node i and node l are co-located: If i = l, we
can obtain from (1) and (2)
owi

or0i
¼
X
k2Si

eik/ik

Ei
;

owi

o/ik
¼ kieik

Ei
;

owi

owik

¼ rieik

Ei
:

ð21Þ
Combining the above results with (13) and (14), we
obtain
oUðw; tÞ
o/ik

¼ ki

X
l2N

of1;N ðw; tÞ
owl

owl

or0k
þof1;N ðw; tÞ

owi

eik

Ei
þof1;N ðw; tÞ

owk

er

Ek

 !

ð22Þ

and

oUðw; tÞ
owik

¼ ri ð1�qikÞ
X
l2N

of1;N ðw; tÞ
owl

owl

or0k
þof1;N ðw; tÞ

owi

eik

Ei
þof1;N ðw; tÞ

owk

er

Ek

 !
:

ð23Þ

Applying the Lagrange multipliers mi and li to the
constraints

P
k2Si

/ik ¼ 1 and
P

k2Si
wik ¼ 1, respec-

tively, and taking into account the constraints /
� 0 and w � 0, the necessary condition for / and
w to be the minimizer of U(w, t) is given by the
following theorem:

Theorem 1 (Necessary condition). Let oU(w, t)/o/ik

and oU(w, t)/owik be given by (22) and (23), respec-

tively, the necessary conditions for the existence of

the minimum U(w, t) with respect to /* and w* for all

i 2 N are

oUðw; tÞ
o/�ik

¼
¼ mi; /�ik > 0;

P mi; /�ik ¼ 0

�
ð24Þ

and

oUðw; tÞ
ow�ik

¼
¼ li; w�ik > 0;

P li; w�ik ¼ 0:

�
ð25Þ

This states that all links (i,k) for which /ik > 0 must
have the same value of oU(w, t)/o/ik, and this value
must be less than or equal to the value of oU(w, t)/
o/ik for the links on which /ik = 0. The same argu-
ment is held for wik.

However, the conditions given by (24) and (25)
are not sufficient to minimize U(w, t) because these
conditions are automatically satisfied if ri and ki

are zeros for some node i. Since ki and ri are decou-
pled, we show next that (24) and (25) would be suf-
ficient to minimize U(w, t) if the factors ki and ri

were removed from the conditions.
Let us define

oUðw; tÞ
or0k

¼
X
l2N

of1;Nðw; tÞ
owl

owl

or0k
ð26Þ

and

Zik ¼
of1;Nðw; tÞ

owi

eik

Ei
þ of1;N ðw; tÞ

owk

er

Ek
: ð27Þ



Hoc Networks 6 (2008) 380–392
Theorem 2 (Sufficient condition). Let oU(w, t)/o/ik
and oU(w, t)/owik be given by (22) and (23), respec-

tively. The sufficient conditions for /ik and wik to be

the minimizer of U(w, t) are

oUðw; tÞ
or0k

þ Zik P
oUðw; tÞ

or0i
ð28Þ

and

ð1� qikÞ
oUðw; tÞ

or0k
þ Zik P

oUðw; tÞ
or0i

; ð29Þ

respectively, where the equality is achieved for k whose

routing variables /ik and wik are greater than 0.

In other words, when the optimality is achieved, the
transit traffic is distributed only over those links
with the smallest and identical values of oUðw; tÞ=
or0k þ Zik, while the raw data is distributed only over
those links with the smallest values of ð1� qikÞoU
ðw; tÞ=or0k þ Zik. The proofs of the necessary and suf-
ficient conditions are provided in Appendices A and
B, respectively.

5. Distributed algorithm and protocol

In this section, we first design a gradient algo-
rithm for nodes to update their routing variables
according to the sufficient conditions. We then dis-
cuss the protocol that nodes can exchange informa-
tion and execute the gradient algorithm to maximize
the network lifetime.

5.1. Gradient algorithm

The gradient algorithm is based on the sufficient
conditions given by (28) and (29). Every node exe-
cutes the algorithm to update its routing variables
/ and w iteratively until these conditions are satis-
fied. The algorithm is operated in the following
steps.

1. Calculate oUðw; tÞ=or0k and Zik for every neighbor
k 2 Si. Find the neighbors k1 and k2 such that

k1  arg min
k2Si

oUðw; tÞ
or0k

þ Zik

� �
ð30Þ

and

k2  arg min
k2Si

ð1� qikÞ
oUðw; tÞ

or0k
þ Zik

� �
: ð31Þ

2. Calculate the amounts of reduction D/ik and
Dwik. Define
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aik ¼
oUðw; tÞ

or0k
þ Zik �

oUðw; tÞ
or0k1

þ Zik1

( )
ð32Þ

and

bik ¼ ð1� qikÞ
oUðw; tÞ

or0k
þ Zik

� ð1� qik2
Þ oUðw; tÞ

or0k2

þ Zik2

( )
: ð33Þ

The amounts of reduction to /ik and wik are
given respectively by

D/ik ¼ minf/ik; caik=kig; k 2 Si ð34Þ
and

Dwik ¼ minfwik; gbik=rig; k 2 Si; ð35Þ
where c and g are positive scale parameters.

3. Update routing variables as follows

/ik ¼
/ik � D/ik; k 6¼ k1;

/ik þ
P

k2Si;k 6¼k1
D/ik; k ¼ k1

(
ð36Þ

and

wik ¼
wik � Dwik; k 6¼ k2;

wik þ
P

k2Si;k 6¼k2
Dwik; k ¼ k2:

(
ð37Þ

Using this algorithm, each node i gradually
decreases the routing variables for which the values
oUðw; cÞ=or0k þ Zik and ð1� qikÞoUðw; cÞ=or0k þ Zik

are larger, and increases the routing variables for
which the values are the smallest until the sufficient
conditions (28) and (29) are satisfied.
5.2. Protocol

Let Mi denote the set of downstream nodes of
node i. A table is maintained by node i for all nodes
in Mi, where each entry of the table consists of the
node identity l, the power consumption wl and the
power consumption rate owl=or0i.

In each iteration, the DA-MLR protocol is oper-
ated as follows by each node i:

1. Wait until receiving the table from all of its
downstream neighbors and merge Mk of neigh-
bor k with the local set Mi.

2. Calculate the new routing variables using the gra-
dient algorithm.
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3. Calculate the power consumption wi and power
consumption rate owi=r0i, and add a new entry
into the table with the local information.

4. Update the power consumption rate owl=or0i for
all l 2Mi in the table using the recursive equation
(15).

5. Pass the table to upstream neighbors.

Each iteration of the DA-MLR algorithm only
involves the communications between neighboring
nodes, and the communication cost is bounded by
the number of downstream nodes. Thus, every node
can update the routing variables in a distributive
manner. This procedure is repeated until the
sufficient conditions are satisfied and the global
optimality is achieved. The convergence property
of the algorithm is shown in Section 6.2 through
simulations.

6. Performance evaluation

6.1. Simulation setup

We compare the performance of DA-MLR algo-
rithm with the Minimum Energy Gathering Algo-
rithm (MEGA) [14] and the Minimum Energy
Routing (MER) algorithms.

1. MEGA – This algorithm tries to optimize the
aggregation costs for raw data and the transmis-
sion costs for compressed data. It maintains two
trees – the coding tree and the shorted path tree

(SPT). The coding tree is constructed with direc-

ted minimum spanning tree (DMST) algorithm for
data aggregation, and the SPT is for delivering
the compressed data.

2. MER – This algorithm tries to minimize the
overall energy consumption of delivery of a
packet using the shortest path from the source
node to the sink node in term of energy cost.
For fair comparison, we revise the MER algo-
rithm to take into account the data aggregation.
That is, raw data is firstly compressed at the next-
hop node along the shortest path. After that, the
compressed data is delivered through the shortest
path.

The network size in the simulation varies between
20 and 80. For each network size, 20 random net-
work topologies are generated and average results
are obtained for these algorithms. Sensor nodes
are randomly distributed on a 100 m · 100 m
region. The transmission radius of all nodes is
R = 20 m. For radio power consumption setting,
we adopt the first order radio model and set
�elec = 50 nJ/bit, �amp = 100 pJ/bit/m2 and path loss
exponent n = 2. For data correlation setting, we
adopt the Gaussian random field model [10] such
that the correlation coefficient qik decreases expo-
nentially with the increase of the distance between
nodes, or qik ¼ expð�ad2

ikÞ. Here a is the correlation
parameter ranging between a = 0.001/m2 (high cor-
relation) and a = 0.01/m2 (low correlation) in the
simulations. All nodes have the same battery energy
Ei = 1 kJ and constant data rate ri = 1 kbps. The
decreasing sequences of step size c,g and the
approximation parameter t are used for the DA-
MLR algorithm in the experiments.
6.2. Simulation results

In Fig. 2 we show the network lifetime obtained
by these algorithms under two data correlation set-
tings (a = 0.001 and a = 0.01). DA-MLR algorithm
can almost double the network lifetime compare to
MEGA and MER algorithms. The network life-
times obtained by DA-MLR algorithm increase
gradually as the network size grows, while the life-
times obtained by MEGA and MER algorithms
drop continuously. This can be explained as follows.
The overall raw data rate is proportional to the
number of nodes in the network. Thus, it is expected
that the network lifetime should decrease as the net-
work size grows and more data traffic is generated.
On the other hand, the increase of nodes in the net-
work also drives the network topology from sparse
to dense, which affects the network in two ways.
First, the distance between neighboring nodes
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becomes smaller, so a node needs less power to send
data to its neighbors. Second, the data correlation
between neighboring nodes becomes higher, so
more redundant information can be removed
through data aggregation. Both effects help to
reduce the energy consumption per node. From
the simulation, we can see that MEGA and MER
algorithms do not exploit this feature and the net-
work lifetime drops continuously as the network
size grows. In particular, under lower correlation
condition (a = 0.01), the network lifetimes returned
by both algorithms are very close. However, MEGA
outperforms MER algorithm under higher correla-
tion condition (a = 0.001) because it can optimize
the data aggregation, but MER algorithm cannot.
DA-MLR algorithm, on the other hand, can opti-
mize both routing and data aggregation, therefore
it performs much better than MEGA and MER
algorithms. For example, for the network size with
80 nodes, the network lifetime obtained by DA-
MLR algorithm is around two times of MEGA
algorithm and three times of MER algorithm for
a = 0.001. For a = 0.01, the network lifetime of
DA-MLR algorithm is around three times of both
MEGA and MER algorithms.

The aggregated data rate at the sink node is
shown in Fig. 3. We can see that DA-MLR algo-
rithm has better aggregation results than MER
algorithm. For MEGA algorithm, its aggregated
rate is comparable to DA-MLR algorithm under
higher correlation condition (a = 0.001), but is still
worse than DA-MLR algorithm under lower corre-
lation condition. Comparing to the results in Fig. 2,
we can see that MEGA algorithm helps to optimize
data aggregation, but fails to balance the traffic
across the network since it uses the shortest path
to deliver compressed data. Therefore, under lower
correlation condition where no much data can be
compressed, the network lifetimes of MEGA and
MER algorithms are quite close.

In Fig. 4 we show the average network lifetimes
given by DA-MLR, MEGA and MER algorithms
as the correlation parameter a increases from
0.001 to 0.01. We can see MEGA and MER algo-
rithms achieve better network lifetime for the smal-
ler network size (40 nodes) than the larger network
size (80 nodes) under all correlation situations. For
the same network size, the performance of MEGA
and MER algorithms degenerates as the correlation
becomes smaller. This coincides with the observa-
tion in Fig. 2. On the other hand, the network life-
time of DA-MLR algorithm is higher in larger
network. But the difference diminishes as the corre-
lation is decreasing. Under the same settings, we
show in Fig. 5 the aggregated data rate at the sink
node with these algorithms. We see that DA-MLR
algorithm effectively reduces the network traffic
compare to MEGA and MER algorithms.

We study the impact of the number of source
nodes on the performance by fixing the network size
to 80 nodes and varying the number of source
nodes. We assume that data aggregation is per-
formed only when two source nodes are neighbors.
In Fig. 6 we show the network lifetime for various
number of source nodes. We can see that under
the low correlation case (a = 0.01, 0.005), the net-
work lifetime drops with the increase of source
nodes. However, it is interesting to see that under
high correlation case (a = 0.01, 0.005), the network
lifetime stops decreasing after the source nodes
reaches certain number. This is because when the
number of source nodes increases, the chance of a
source node to find a neighboring source node
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increases accordingly. Therefore, they can take
advantage of data aggregation to reduce data traffic,
which can partially cancel out the effect of traffic
increase due to the increase of source nodes. Similar
effects can be observed in Fig. 7, which shows the
aggregated data rate at the sink node. It is interest-
ing to see that for the lower correlation case, the
aggregated data rate is simply increased as the
source nodes grows. However, for the high correla-
tion case, the data rate stops increasing after it
reaches the peak value where the source nodes reach
certain number. This coincides with the observation
in Fig. 6.

The convergence property is another important
performance metric for DA-MLR algorithm.
Fig. 8 shows the normalized network lifetime
obtained by DA-MLR algorithm for various net-
work sizes (20, 40, 60 and 80 nodes). The network
lifetime is computed at each iteration and normal-
ized with respect to the optimal value. We see that
the algorithm can converge efficiently. The number
of iterations required for the network lifetime to
converge to over 95% of the optimal values is 5,
10, 25 and 30 iterations, respectively for network
size ranging from 20 to 80 nodes. The effectiveness
of the distributed DA-MLR algorithm can also be
observed from Fig. 9 which shows the normalized



390 C. Hua, T.-S. Peter Yum / Ad Hoc Networks 6 (2008) 380–392
aggregated data rate at the sink node for various
network sizes. The aggregated data rate is normal-
ized with respect to the optimal value. Again, we
see that the distributed DA-MLR algorithm suc-
cessfully reduces the data rate.

7. Conclusions

In this paper we present the data-aggregated
maximum lifetime routing for wireless sensor net-
works. Network lifetime is maximized by jointly
optimizing routing and data aggregation variables.
A recursive smoothing function is adopted to
approximate the original optimization problem.
We derive the necessary and sufficient conditions
for the smoothing problem and design a distributed
algorithm as the solution. Simulation results
demonstrate that the proposed scheme can signifi-
cantly reduce the traffic and improve the network
lifetime.

Appendix A. Proof of necessary conditions
:

Proof. We now prove that (24) and (25) are the
necessary conditions to minimize U(w, t) by defining
the following Lagrange function

Uðw; t;l;m;j;vÞ¼Uðw; tÞþ
X
i2N

li 1�
X
k2Si

/ik

 !

�
X

i2N ;k2Si

jik/ikþ
X
i2N

mi 1�
X
k2Si

wik

 !

�
X

i2N ;k2Si

vikwik; ðA:1Þ

where l = (l1, . . . ,lN) and m = (m1, . . . ,mN) are the
Lagrange multipliers.

According to Kuhn–Tucker theorem, the neces-
sary condition for a /* to be a minimizer of
U(w,c,l,m,j,v) is that there exist Lagrange multi-
pliers l�i and j�ik; i 2 N ; k 2 Si such that

oU
o/�ik
� l�i � j�ik ¼ 0;

j�ik ¼ 0; if/�ik > 0; 8i; k;
j�ik > 0; if/�ik ¼ 0; 8i; k:

ðA:2Þ

Rearranging the first equation as oU=o/�ik ¼ m�i þ j�ik,
and taking into account the second and the third
conditions will complete the proof of (24). Similarly,
we can prove that (25) is the necessary condition for
w* to be a minimizer of U(w,c,l,m,j,v). h
Appendix B. Proof of sufficient conditions

Proof. To prove that (28) and (29) are sufficient
conditions to minimize U(w, t), let us assume that
there are routing variables /* and w* satisfying (28)
and (29), respectively. Let the corresponding node
flow be k* + r* and link flow be x*, where xik =
ki/ik + riwik. Let / and w be any other set of routing
variables with the corresponding node flow k + r

and link flow x. Define x(h) as the convex combi-
nation of x* and x with respect to a variable h, that
is,

xikðhÞ ¼ ð1� hÞx�ik þ hxik: ðB:1Þ
Therefore, each wl can be represented by the link
flow x(h). Since each wl(h) is a convex function of
the link flow x, therefore U(h) is also a convex func-
tion of h, so it is obvious

dUðhÞ
dh

����
h¼0

6 Uð/;wÞ � Uð/�;w�Þ: ðB:2Þ

Since / and w are arbitrary routing variables, it will
complete the proof by proving that dU(h)/dh P 0 at
h = 0.

From (2) and (B.1), it is straightforward to
express wl as a function of the link flow x(h) as
wlðhÞ ¼
1

El
es þ egrl þ

X
i2Al

xilðhÞer þ
X
k2Sl

xlkðhÞelk

 !
:

ðB:3Þ
Differentiating wl with respect to h, and from (B.1)
and (B.3) we obtain

owl

oh
¼
X
i2Al

er

El
ðxil � x�ilÞ þ

X
k2Sl

elk

El
ðxlk � x�lkÞ: ðB:4Þ

We can obtain dU(h)/dh as

dUðhÞ
dh

����
h¼0

¼
X
l2N

of1;N ðw; tÞ
owl

owl

oh

¼
X
l2N

of1;N ðw; tÞ
owl

�
X
i2Al

er

El
ðxil � x�ilÞ þ

X
k2Sl

elk

El
ðxlk � x�lkÞ

( )

ðB:5Þ
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We then first prove that

X
l2N

of1;Nðw; tÞ
owl

�
X
i2Al

erxil

El
þ
X
k2Sl

elkxlk

El

 !

P
X
i2N

ri
oUðw; tÞ

or0i
: ðB:6Þ

Multiplying both sides of (28) with ki and /ik, and
multiplying both sides of (29) with ri and wik, sum-
ming over all i 2 N and k 2 Si. Using the fact that
ki ¼

P
j2Ai
½kj/ji þ rjð1� qjiÞwji�, we can obtain the

result for the left-hand side as

LHS¼
X
i2N

X
k2Si

½ki/ik þ riwikð1� qikÞ�

� oUðw; tÞ
or0k

þ
X
i2N

X
k2Si

ðki/ik þ riwikÞZik ðB:7Þ

and the right-hand side as

RHS ¼
X
i2N

ðki þ riÞ
oUðw; tÞ

or0i

¼
X
i2N

X
j2Ai

½kj/ji þ rjð1� qjiÞwji�

� oUðw; tÞ
or0i

þ
X
i2N

ri
oUðw; tÞ

or0i
: ðB:8Þ

Notice that the first term of LHS and RHS are
equivalent and can be canceled out. Substituting
Zik from (27) into LHS and recalling the inequality
between (B.7) and (B.8), we obtain

X
l2N

of1;N ðw; tÞ
owl

X
i2Al

er

El
ðki/ilþ riwilÞþ

X
k2Sl

elk

El
ðkl/lkþ rlwlkÞ

 !

P
X
i2N

ri
oUðw; tÞ

or0i
: ðB:9Þ

Recalling that xil = ki/il + riwil, substituting this
into (B.9) we can obtain (B.6).

Following the same derivation procedure, if k*,
r*, /* and w* are substituted for k, r, / and w, this
becomes an equality from the equations for oU=or0i
in (28) and (29). That is,

X
l2N

of1;Nðw; tÞ
owl

X
i2Al

erx�il
El
þ
X
k2Sl

elkx�lk

El

 !

¼
X
i2N

ri
oUðw; tÞ

or0i
: ðB:10Þ

Substituting (B.6) and (B.10) into (B.5), we see that
dU(h)/dh P 0 at h = 0, which complete the
proof. h
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