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Efficient multicast routing with delay constraints

Gang Feng* and Tak-Shing Peter Yum

Department of Information Engineering, The Chinese University of Hong Kong, N.T. Shatin, Hong Kong

SUMMARY

To support real-time multimedia applications in BISDN networks, QoS guaranteed multicast routing is
essential. Traditional multicast routing algorithms used for solving the Steiner tree problem cannot be used
in this scenario, because QoS constraints on links are not considered. In this paper, we present two efficient
source-based multicast routing algorithms in directed networks. The objective of the routing algorithms is to
minimize the multicast tree cost while maintaining a bound on delay. Simulation results show that these two
heuristics can greatly improve the multicast tree cost measure in comparison with the shortest path routing
schemes. Their performance is close to that of the known CST, algorithm proposed by Kompell et al. in
Reference 1, but requiring a much shorter computation time. Copyright © 1999 John Wiley & Sons, Ltd.
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1. Introduction

Multimedia applications such as videoconferencing and remote collaboration rely on the ability
of the network to provide multicasting communication. Multimedia traffic consists of audio and
video that consume large bandwidth and require a certain quality-of-service (QoS) when transfer-
red through networks.! Hence efficient multicast routing algorithms which are capable of
constructing low-cost multicast trees that satisfy the constraints imposed by the QoS require-
ments are essential for real-time multimedia services. Current multicast routing protocols, such as
PIM,?> DVMRP,? are based on simple algorithms: shortest path multicasting and reverse path
multicasting. These multicast algorithms usually assume simply additive cost metric.

Algorithms for constructing multicast trees have been developed with two optimization goals.
The first is the minimum average path delay, which is the average of the minimum path delay
from the source to each of the destinations in the multicast group. This can be done in O(n?) time
using Dijkstra’s shortest path algorithm,* where n is the number of nodes in the graph. The
second goal is to minimize the cost of the multicast tree, which is the sum of the cost on the edges
in the multicast tree. The least cost tree is called a Steiner tree, and the problem of finding
a Steiner tree is known to be NP-complete.* Many heuristics for low-cost multicast routes take
O(n?) to O(n*) time>*® and can produce solutions that are within twice the cost of the optimal
solution.

There are also publications on the Constrained Steiner Tree (CST) problem.® ! Kadaba and
Jaffe® solved a problem that involves optimizing both the cost and delay of the multicast tree.
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Chung et al. proposed algorithms for the degree-constrained multicast trees. Rouskas and Baldine
studied the multicast routing with end-to-end delay and delay variation constraints. Kompell
et al.,! proposed a well-known Constrained Steiner Tree (CST,) heuristic. This heuristic consists
of three stages. First, a closure graph (complete graph) of the constrained cheapest paths between
all pairs of members of the multicast group is found. Second, a constrained spanning tree of the
closure graph is found using a greedy algorithm based on cost. An alternative selection mecha-
nism is proposed based on a function of both cost and delay. The edges of the spanning tree are
then mapped back onto their paths in the original graph. Finally, loops, if any, are removed by
using a shortest path algorithm on the expanded constrained spanning tree. The overall time
complexity is O(An?), where A is the delay bound and n is the number of nodes in the graph. Zhu
et al.'? presented a heuristic algorithm for constructing minimum-cost multicast trees with delay
constraints. The algorithm can satisfy different delay bounds on different destinations and
handles two variants of the network cost optimization goal: minimizing the total cost of the tree
and minimizing the maximal link cost. Good solutions can usually be obtained by this algorithm.
The expected time complexity of this algorithm is O(kn>log(n)), where k is a parameter used for
the delay bounded shortest path construction. The value of k depends on the delay bound and is
usually small.

In real-time multimedia applications, the upper bound on end-to-end delay is an important
QoS requirement for the transmission of video and audio streams. For example, in teleconferenc-
ing applications, such as speaker-video videoconferencing,”-® a change of speaker during a confer-
ence session may require a new multicast tree be computed. The new multicast connection should
be set up within a very short time to guarantee the continuity of the conference procession.
Efficient multicast routing algorithms are essential for this kind of applications. Many con-
strained Steiner tree algorithms can give near-optimal solutions. Unfortunately, the computation
time is beyond the setup speed required in large size networks due to their high time complexities
ranging from O(An®) to O(n*). Furthermore, in the dynamic multicast case exemplified by the
joining and withdrawal of nodes, new trees have to be computed if a static routing algorithm is
used. New dynamic multicast algorithms that allow the addition and removal of conference nodes
without recomputing the entire tree need to be developed for this case. In addition, most existing
algorithms are for undirected graphs. Practical communication networks are more suitably
modelled as directed graphs.

In this paper, we present two new heuristics for constructing delay constrained multicast trees
in directed networks. The first one called ‘Delay-constrained Shortest Path Multicasting’ is a static
minimum cost tree computation algorithm that satisfies the end-to-end delay requirement set by
the application. It has good performance and a time complexity of only O(n?). So it can be used in
the applications requiring fast multicast connection setup. The second one called ‘Dynamic
Delay-constrained Multicasting’ is an efficient dynamic multicast routing algorithm that can
handle multicasting dynamics such as the joining of nodes during an existing connection session.

In the next section, we address the network model and problem definition. In Sections 3 and 4,
we describe the two proposed heuristics in detail. Their performances are evaluated and com-
pared to those in the literature in Section 5 and we conclude this paper in Section 6.

2. Network model and problem definition

The network model and the problem are similar to that in Reference 1. We paraphrase them as
follows. A network is modelled as a connected, directed graph G = (V, E), where V is the set of
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network nodes and E the set of links. In addition, we have two real value functions associated
with each link e (e € E): delay D(e) and cost C(e). The link delay D(e) is the delay a data packet
experiences on link e and the link cost C(e) is a measure of its bandwidth usage. Links can be
asymmetrical, i.e. the cost and delay for the link e = (i, j) and link ¢’ = (j, i) can be different.

The delay-constrained multicast routing problem can be stated as follows. Given a source node
s (s e V), a set of destination nodes, Z(Z < V — s) and a delay tolerance or delay bound A, find
atree T(T < G) rooted at s and spanning all of the nodes in Z such that

Y D) <A, VveZ (1)

ee P(s, v)

Here P(s, v) is the unique path in T from s to v, and that the tree cost Y .. rC(e) is minimized.
Throughout this paper, we let n = [V| and m = |Z|. The nodes in Z are often called multicast

group members and m is then the multicast group size. Obviously, when A is oo, the delay-

constrained multicast routing problem reduces to the NP-complete Steiner tree problem.

A tree rooted at s, spanning all the nodes in S and satisfying (1) is called a constrained multicast
tree. A heuristic of the delay-constrained multicast routing problem should give a solution to the
problem if a solution exists.

A centralized delay-constrained multicast routing algorithm can be easily extended to compute
multicast trees that satisfy both a given end-to-end delay constraint and a given link bandwidth
constraint. Its exposition, however, is beyond the scope of this paper.

3. Delay-constrained Shortest Path Multicasting Algorithm (Algorithm A)

The basic idea of the Delay-constrained Shortest Path Multicasting Algorithm is to construct
a constrained minimum cost tree and a shortest delay path tree in parallel. Combining these two
trees gives the solution tree. We use an algorithm called Delay-constrained Shortest Path (DCSP)
algorithm to compute the minimum cost path tree. The details are shown in Figure 1. The
computation of the shortest delay path tree can make use of Dijkstra’s algorithm.? We now
describe the algorithm as follows.

Algorithm A

Input: A directed graph G = (V, E), delay matrix D, , and cost matrix C,,,, a source se V,
a set of destinations Z < V'\s, a delay constraint A.
Output: A delay-constraint directed tree T = (Vy, E¢) rooted at s and spanning all nodes in Z.

Step 1. Call DCSP function under delay matrix D, ,,, cost matrix C,,, and delay constraint
A to compute a minimum cost spanning tree Ty = (V;, E{) rooted at s and spanning as
many destination nodes in Z as possible.

Step 2. If V; =suZ, T = T, is the multicast tree and return the tree T.

Step 3. Call Dijkstra’s shortest path algorithm under delay matrix D,,,, to compute a shortest
delay path tree T, = (V,, E,) that spans those nodes in Z\ V.

Step 4. Combine T and T, to give a multicast routing tree 7.

Step 5. Remove the loops in the combined tree T.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 12, 181-195 (1999)
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Algorithm Delay-Constrained Shortest Path (DCSP)

1* DCSP algorithm is to compute a constrained spanning tree by using the Dijkstra’s algorithm with the additional
delay constraint for each path. */
Begin
/* § = source node
* Z = multicast group
* A = delay constraint
* cost(u, v) = cost of link (u,v)
* delay (u, v) =delay of link (u,V)
*/
INITIALIZATION:
forall ve Z do
cost _label(v) « ;
delay _label(v) « oo;
final(v) « false;
end for
cost _label(s) < 0;
delay_label(s) < 0;
ﬁnal(s) <« true;
recent < s;

/* node § is permanently labeled with 0. All other nodes are temporarily labeled with OO
Node § is the most recent node to be permanently labeled. */

ITERATION:
while there are nodes in Z which have not been computed do

for every immediate successor v of recent if not ﬁnal(v) do

if delay_ label(recent) + delay(recent,v) < A then
new_ cost < cost _label(recen) + cOSt(recent,v);
if new 0ot <00 _label(v) then
s label(v) < new_ o0& ;

delay _label (v) < delay _label (recent ) + delay (rcent ,v).

end if
end if
end for

lety be the node with smallest temporary cost_label value, which is 7 0O
Sfinal(y) « true;
recent < y;

/ * y, the next closest node which does not violate the delay constraint from s
gets permanently labeled */
end while
end

Figure 1. Delay-constrained Shortest Path (DCSP) Algorithm
Note that loops may appear in combining T; and T5. This can be simply detected by checking the

number of inbound links for each node of the combined tree. If there are two inbound links at
a node, a loop exists. That is, there are two paths (one in T; and another in T5,) from a common
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node to this node. We need to remove segment in either path of T or path of T), to break the loop
for the node with two inbound links. If the path in T; can satisfy the delay constraint of all the
downstream nodes (identified by the Dijkstra’s algorithm in Step 3), then we keep the path of
T, for minimum cost. To remove the segment of the path of T,, we remove the links of the path of
T, one by one along the upstream direction until a multicast destination is encountered.
Otherwise, we need to keep the T, segment, or remove the T; segment in the same way. For
example, Figure 2 illustrates a case of removing a loop (Step 5). The number pair next to an edge
indicates the (cost, delay) of that edge. Assume that the delay constraint is 12. Figures 2a and b are
the minimum cost tree and the shortest delay tree, respectively. Node C in combined tree in
Figure 2¢ has two inbound links, say A to C and B to C. To remove the loop, we first consider
keeping the path B to C and ignore the path A to C for minimizing the tree cost. However, the
delay along the path (4, B, C, E, F) is 14. This violates the delay constraint. Therefore, we have to
choose the path A4 to C in the shortest path tree and ignore the path B to C in the minimum cost
path tree. We then obtain a loop free solution that does not violate the delay constraint shown in
Figure 2d.

Figure 3 shows an example with source node s = F, destination node set Z = {4, C, D, E} and
delay constraint A = 11. Figure 4 shows the procedure of the Algorithm A. In this example,
Algorithm A cannot span node D using the minimum cost path tree. The path H to D as
a segment of the shortest tree is used to connect node D.

The delay-constrained tree consists of T} supplemented by 7). T} satisfies the delay constraints
from step 1. T, is the delay constrained tree for the remaining destinations. The combined tree

A
A
(5,2) (.3)
B 64 c c
4.2) \(11,5)
D (11,5)

O A casle

{a) (b)

(5.2)

(c) (d)

Figure 2. Loop removal in Algorithm A. (a) Minimum cost path tree, (b) shortest delay path tree, (c) combined tree and
(d) solution tree
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Souwrce s=F, destination Z={A, E, C. D}, A=12

Figure 3. An example network

(2.2 )

{a) (b}

Figure 4. Trees generated in steps of Algorithm A. (a) Step 1: minimum cost path tree, (b) Step 2: shortest path tree and
(c) Step 4 combined tree

therefore must be delay constrained. That is, Algorithm A can always find a delay-constrained
tree if such a tree exists.

Steps 1 and 3 of Algorithm A have the same time complexity as that of Dijkstra’s algorithm,
which is at most O(n?). The last step has a time complexity of O(n). Therefore the overall time
complexity of Algorithm A is O(n?).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 12, 181-195 (1999)
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4. Dynamic Delay-constrained Multicasting Algorithm (Algorithm B)

We now present a new heuristic algorithm for the delay constrained multicast routing. We call
this algorithm Dynamic Delay-constrained Multicasting or Algorithm B for short. Three notable
features of this algorithm are: (1) capable of adding destinations without re-computing the
existing tree, (2) provides trade-offs between performance (tree cost) and running time using
a single user-specified parameter, and (3) low computational complexity and good performance in
terms of tree cost.

4.1. Algorithm description

The basic structure of Algorithm B is similar to that of Prim’s spanning tree algorithm.* A tree
is grown starting from s. At every step, a branch, i.e. a directed path, is extended from the tree to
one new destination not in the tree. This step is repeated until all of the destinations in Z are
included in the tree.

In each step, an unconnected destination is chosen at random. Then nodes already in the tree
are arranged in a priority queue,* denoted as Q, according to their delay values from the source
along the computed path (i.e. in the existing tree). A knob k is used as a user-controlled parameter
and the first k nodes in the priority queue are placed in a bin, denoted as B. The k minimum cost
paths for each of the nodes in the bin to that destination are then computed. As a minimum cost
path may pass through nodes already in the tree, we identify the portion of the path not in the
existing tree and call it the subpath. We choose the path with the minimum cost subpath that
satisfies the delay constraint for extending the tree to the destination. If no such subpath exists,
a shortest delay path from the source node is used instead. This step is repeated until all
destinations are linked. Obviously, a larger k value leads to lower cost trees at the expense of
longer computational time.

4.2. Algorithm B

A formal description of Algorithm B is shown in Figure 6. The four functions used there are
defined as follows:

(1) Shortest_Path (s,t,w): a function that computes the shortest directed path from node s to
node t under edge weight matrix w, where w may be either delay matrix or cost matrix;

(2) COST(P): a function that returns the cost of path P, i.e., Y, pCle);

(3) DELAY(P): a function that returns the delay along directed path P, ie. Y, .pD(e);

(4) Sub_Path (P(u,v), T): a function that computes a subpath of path P(u,v) that is outside the
existing tree T. The output is path P(w, v) where w is the linking node in T. Figure 5 shows
the operation of function Sub_Path().

Algorithm B (Figure 6) can always find a delay-constrained tree if such a tree exists. Moreover,
the resulting multicast tree is loop-free. To see this, note that in each iteration of the algorithm,
either a minimum cost subpath or a shortest delay subpath is used for connecting a new
destination. In both cases, the algorithm guarantees that no delay constraint is violated.
Moreover, only one branch (subpath) is created in each outer ‘for’ iteration in the algorithm for
linking a new destination to the existing tree. The Sub_Path( ) function guarantees that the
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Figure 5. Illustration of function Sub_Path(P(u, v), T) = P(w, v)

subpath has only one node (just the linking node) on the existing tree. Therefore, the adding of
a destination does not cause a loop. Hence, the entire tree produced by Algorithm B is also
loop-free.

4.3. Example

We again take the network shown in Figure 3 as an example to illustrate the operation of
Algorithm B. Let the knob be k = 2. For comparison, we show the corresponding shortest delay
path tree and the minimum cost path tree in Figures 7a and b, respectively. The cost of the
shortest delay path tree is 28. Note that in the minimum cost path tree the path from F to D has
delay 13, violating the delay constraint.

Figures 8a—d show the steps of connecting nodes in destinations set Z. Note that for connecting
D in Figure 8c, Algorithm B first checks (in line 4 of the Algorithm B) the minimum cost path
P, from F to D via G. Since DLY(F) + DELAY(P,) = 13 > A, another minimum cost path
P, from C to D via H which satisfies the delay constraint used (line 7 of the Algorithm B). Here,
PATH = P,, BRANCH = P(H,D) and w = H. In Figure 8d, both minimum cost paths P; and
P, from F and C satisfy the delay constraint and Sub_Path(P;) = P, = BRANCH.

In this example, the tree generated by Algorithm B is the same as that found by Algorithm
A and is also the optimal tree. The tree cost is 23, which is smaller than 28, the cost of shortest
delay path tree.

4.4. Running time

Let n be the number of nodes in the graph, m be the number of destinations of a multicast
group. The Shortest_Path() function in Algorithm B can be realized by using Dijkstra’s
algorithm.* The time complexity of Dijkstra’s algorithm is of O(n?).

Line 4 in Algorithm B takes O(n?) time and the computation of subpath in line 5 takes O(1)
time. Thus the inner for loop from line 3 to 9 takes at most O(kn?) + O(k) time. Lines 11-18 are for
computing a shortest delay path and its subpath if the computed minimum cost path does not
satisfy the delay constraint. It takes at most O(n?) + O(1) time. Maintaining the priority queue in
line 22 and adding of nodes and edges in lines 23 and 24 takes O(1) time. Therefore the entire
algorithm costs the running time of O(kn?).
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Algorithm B
Input: A directed graph G = (V, E), delay matrix D, and cost matrix C,

i
asource S € V', a set of destinations Z — ¥ — 5, a delay constraint A, a knob &.

Output: A delay-constrained directed tree T' = (V,, E,) rooted at s and spanning all nodes in Z
Begin

INITIALIZATION:

Q«{sh¥ «{shE <}

T =V, E;);
COST(BRANCH) « INFINITY; /*Let DLY (1) be the delay along the computed path from s to u ¥/
for each # in V do

DLY (1) < INFINITY ;

end for
ITERATION:
for each Vin Z do )
B < first min(k,lQl) nodes in Q; /* |Q| is the length of the queue Q */ )
for each U in B do 3)
P <« Shortest _ Path(u,v,C); (C))
PATH « Sub_ Path(P,T); )
let W be the terminal € T of the path PATH ; ©6)
if (DLY(w)+ DELAY{(BRANCH)<A) and
( COST{PATH)< COST(BRANCH) ) then )
BRANCH < PATH ; ®)
end if ©)
end for
if DLY(w)+ DELAY(BRANCH)> A then /* minimum cost path does not (10)
satisfy delay constraint */
P « Shortest _Path(s,v,D); an
PATH « Sub _ Path(P, T ); /* find the shortest path to add to the tree */ (12)
let W be the terminal € 7' of the path PATH
if DLY(w)+ DELAY (PATH) > A then (13)
return T; (14
break;
else (15)
BRANCH < PATH ; (16)
end if 17)
end if (18)
for cach y € BRANCH \ w do (19)
DLY (1) < DLY(w) + DELAY{P(w, u)); (20)
/* where P(w,u) c PATH is the subpath of PATH */
end for @2n
insert nodes in BRANCH into Q; (22)
V, <V, U{nodes in BRANCH }; 23)
E, « E,{edgesin BRANCH}; (24)
S« §-{uh (25)
T« (V7 Ep)s (26)
end for @n
return T = (V. E,) @8
end Algorithm 29)

Figure 6. Dynamic Delay-constrained Multicasting Algorithm
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Figure 7. (a) The shortest delay path tree and (b) minimum cost path tree
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@
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(e} (d)

Figure 8. An example illustrating Algorithm B. (a) Connecting C, (b) connecting E, (c) connecting D and (d) connecting A

.

5. Performance studies

To evaluate the performance of these two algorithms, we run them on a large number of
randomly generated graphs with various average degrees. This kind of random graph can
represent the topologies of common point-to-point networks, e.g. the NSFNET.*

5.1. Random graph generation

We employ a similar method used in literature!:>:® to generate random graphs. Nodes are
placed randomly in a rectangular co-ordinate grid by generating uniformly distributed random
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Figure 9. A random graph example

numbers for the x and y co-ordinates. A directed edge is placed from u to v with probability

P(u, v) = fexp [—d(u, U)]

Lo

where d(u, v) is the Euclidean distance between u and v, L is the maximum distance between two
nodes and « and f§ are two parameters that control the characteristics of the graph produced.
Increasing f increases the average vertex degree of the graph and increasing « increases the ratio
of longer edges relative to shorter ones. These two parameters allow the generation of a wide
variety of random graphs.

The edges’ costs are randomly selected from the set {1,2, ..., 10}. The random edge costs
match typical values for costs used in the NSFNET backbone network.! The delays for edges are
proportional to their lengths. The multicast groups are generated by randomly placing the source
and destinations on the graphs. Figure 9 shows an example of a random graph so generated.
The network has 60 nodes with parameters: o = 0-2, § = 0-65. The average node is about 5.

5.2. Performance comparison

We compare the performance of Algorithms A and B, with CST.! and the shortest delay tree
created by Dijkstra’s shortest path tree algorithm (SPT) with unnecessary branches pruned. We
take the tree cost of CST, algorithm as a comparison basis and define the relative cost G with
respect to CST, as follows:

K i) i)
i= 1(HX B HgST)

K I5)
i=1 Hesr

GA:

o .
_ iy (HY — He)
a K HO

i=1"" CST

Gy
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K (@) (@)
izl(HSlPT B HéST)

K (i)
Zi: lHCST

where subscripts A, B and SPT refer to Algorithms A, B, and SPT, superscript (i) refers to the ith
run, H is the tree cost and K the number of runs.

In our simulations, the graph size ranges from 50 to 110 nodes. The average node degree is
between 6 and 14 (by varying f). Each experiment generates a series of graphs with identical
parameters. Each graph generated is first checked to ensure that a solution exists. This is done by
checking if the delay values of the shortest delay paths from the source to individual destinations
are all smaller than the delay constraint A. The 95 per cent confidence interval for the relative
costs is within 2 per cent for all simulation results (in our simulations, K > 300 can satisfy this
requirement).

Figure 10 shows the relative costs of SPT, Algorithms A and B relative to CST, versus the
number of network nodes. It is shown that the relative cost of Algorithm A is significantly smaller

GSPT =

0.8
0.7 4
0.6
0.5
0.4 +
0.3 1
0.2 ¢
0.1 7

0

Relative Cost

50 60 70 80 90 100 110
Number of Nodes

Figure 10. Relative costs versus the number of network nodes, comparing SPT, Algorithm A and Algorithm B
(k=1,2,3,4), for group size = 15, A = 50, maximum node degree =9

0.7

R
R e i i i i i

0 o Gao

0.3 e T T S T S T

Relative Cost

0.2 1

0.1 1

0 . ‘ . T

Knob

Figure 11. Relative costs versus knob, for group size = 15, A = 50, o = 0-25, number of nodes = 100, average node
degree =7
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than that of SPT, the relative cost of Algorithm B is significantly smaller than that of Algorithm
A. Figure 11 shows the relative costs of Algorithm B for knob k = 1,2, ..., 7. We can see that
even for k = 1, the cost performance of Algorithm B is better than Algorithm A. When knob
k = 2, the performance of Algorithm B is significantly better than that of Algorithm A. As knob
k = 4, the difference between the relative costs of Algorithm B and CST, is very small: below 6 per
cent for n = 100. Another observation is that larger k results in smaller relative costs. However, as
k increase, the improvement decreases.

Figure 12 shows that both Ggpr and G, increase with the multicast group size. On the
other hand, Gy maintains at the 5 per cent relative cost level (k =4 and n = 100), which
means the difference of cost performance between Algorithm B and CST. does not vary
much.

Figures 13 and 14 show the relative costs versus the delay constraint A and average node
degree. We see that both Ggpr and G, increase with A and average node degree. But Gy is
generally not affected by the change of A and average node degree. We can see that the difference
of cost performance between Algorithm B and CST. is not affected by the characteristics of the
network in which the multicast routing algorithms are examined.

-
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Figure 12. Relative costs versus group size, for A = 50, number of nodes = 100, knob k = 4, average node degree = 7

Relative Cost

Delay Constraint

Figure 13. Relative costs versus delay constraint A, for group size = 15, number of nodes = 100, knob k = 4, average
node degree = 7
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Fi

Relative Cost

Average Degree of Each Node

gure 14. Relative costs versus average degree of each node, for group size = 15, number of nodes = 100, knob k = 4.
Corresponding § = 0-20-0-42

6. Conclusion

The planning and running of multimedia applications in BISDN require an efficient multicast
protocol. We have presented two efficient multicast routing algorithms that can produce good
solutions and scale to large size networks. Algorithm A is very simple and is suitable for static
multicast connection requests, while Algorithm B allows the tuning of the tree cost by the run
time and can support multicasting dynamics. These two properties are important for multiparty
conferencing applications where the setup speed of multicast connection is critical and the

m

ulticast group is dynamic. The performance of Algorithm B is found to be very close to that of

CST. but at a much lower time complexity.
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