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The utilization of links in a communication network is an impor-
tant and easily measurable quantity; it is the fraction of time that a
link is busy. We focus on the estimation of link utilization through
measurements and consider, in particular, the duration of measure-
ment required for a prescribed accuracy of the estimate. Two conflict-
ing factors involved in the choice of measurement time are the
desirability of a measurement of short, and thus recent, duration and
the desirability of an interval of sufficient duration to assure statis-
tical accuracy. We assume that the composite input of messages to
an outgoing buffer of a synchronous data link constitutes a Poisson
process. The message length is arbitrarily distributed and is in units
of “packets.” This allows us to model the transmission facilities as a
continuous-time-input, discrete-time-output M| G| 1 queue. We ana-
lyze the output process of such a system and determine the time
needed to measure link utilization with a prescribed accuracy. We
also present an application to the Common Channel Interoffice
Signaling network as an illustration of the analysis.

I. INTRODUCTION

Measurements made on a computer-communication network can
provide information regarding the throughput, delay, congestion, and
deadlock in the network. These kinds of information are used not only
to validate and improve network designs but also to provide for real-
time control of the traffic flow.

The utilization of links in a communication network is an important
and easily measurable quantity. It is merely the fraction of time that
a link is busy. This paper focuses on the estimation of link utilization
through measurements and considers, in particular, the duration of
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measurement required for a prescribed accuracy of the estimate. There
are two conlflicting factors involved in the choice of measurement time:
on the one hand, we know that the most recent information should be
used in any on-line control mechanism due to the nonstationarity of
the “utilization” process. Thus a measurement of short duration is
desirable. On the other hand, we want to measure an interval of
sufficient duration to assure statistical accuracy. Thus we are inter-
ested in finding the shortest measurement time T such that the error
is less than e with confidence level 1 — a. We shall be considering hoth
relative and absolute error criteria.

We start with the modeling and analysis of the data link in Sections
IT and III. The results are used to derive the measurement time 7' in
Section IV and are applied to the ccis network in Section V.

Il. THE QUEUING MODEL FOR THE DATA LINK

It is customary to model a computer-communication network as a
network of interconnected single server queues. This kind of modeling
allows us to study the delay-blocking performance of the network as
well as the utilization of each link. For the purpose of the present work,
we focus on a synchronous line (defined at the end of this section) in
such a network and model it as an M | G|1 queue. The Poisson arrival
assumption is widely used in the literature."? To justify this assumption
intuitively, let us study in a little more detail the arrival process"to a
particular link (or queue) in a network node. Basically, there are two
kinds of arrivals, the external ones and the internal ones. The external
arrivals of messages to a particular link are usually generated by a
large number of independent “users.”* It is therefore a superposition
of a large number of independent random processes and can be
considered to be approximately random. The internal arrivals to a
link, on the other hand, are the messages being relayed through that
link toward their destinations. They are the portions of the departure
processes from neighboring nodes that have to be sent out again to
other neighboring nodes through that link. This complicated internal
arrival process is therefore another superposition of primarily unre-,
lated processes from neighboring nodes. Combining with the external
arrival process, we have a composite process which indeed is quite
random. This points immediately to a Poisson process which is mem-
oryless and has uncorrelated arrivals. | : N

A common practice in modern data network is to segment méssages
into “packets” of some fixed size. This is done to improve both network

* For the ccis network application in Section V, the external messages are initiated
by telephone calls. e :
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utilization and transmission reliability. Error checking and retransmis-
sion can be done on each packet, and packets can be interleaved and
routed by the most cost-effective available route. The segmentation of
messages Into packets is modeled here; therefore, message lengths are
in units of packets. For convenience, we define the time to transmit a
packet on the synchronous line as a unit service interval.

The distribution of message length X differs widely for different
networks and may not even follow any well-known distribution. But
since these distributions can easily be measured, we shall assume an
arbitrary (or general) distribution with B(n), b(n), and B*(z) being the
distribution function, the probability mass function, and the generating
function of X, respectively.

As a final remark on modeling, what we meant by synchronization
1s that a system clock is maintained and the output of packets must be
at the beginning of one of the equally spaced time slots. This renders
the output a discrete time process. The queuing model therefore is
neither purely continuous nor purely discrete. Fortunately, this seem-
ingly complex phenomenon adds little complexity to the analysis, as
we see in the next section.

ll. THE BUSY-IDLE PERIOD ANALYSIS

A lucid discussion on the busy period analysis of the M| G| 1 queue
can be found in Ref. 3. We follow a similar approach here, but we must
generalize previous results to take into account the synchronization
effect. The reader can easily find the differences in the results. A
special result of this section, namely, the means and variances of the
busy and idle periods, is to be used in finding the optimal measurement
time T in the next section. We derive the idle period statistics here
and refer the reader to the appendix for the lengthy derivation of the
busy period results.

Focusing on the departure process of the queuing system, we observe
that the system passes through alternating cycles of busy and idle
periods. Consider first the idle period. Since it terminates immediately
upon the arrival of a message and the time until the next message
arrival has exponential distribution, the length of idle period is also
exponentially distributed. This, however, is not true when the output
stream of messages are synchronized. Let there be an arrival to an
empty queue. Due to synchronization, the message is not served until
the beginning of the next time slot. Thus the idle period is in effect
exponentially distributed, but rounded off (or discretized) to the next
time unit. ' "

Consider the exponential density function in Fig. 1. After discreti-
zation, all the “mass” from ¢t = n — 1 to t = n is concentrated at ¢ = n.
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Fig. 1-—Discretization of a density function.

Therefore, the probability mass function of the length of discretized
idle period I is

fn) = j AeMdt=e?e*~1] n=123, ..., (1)
n—1

where A is the arrival rate of the Poisson process. The mean and
variance of I are

=X
0% =‘il——i€'——)‘]i' (3)

The mean and variance of the idle period for the nonsynchronous
system are 1/A and 1/A? respectively. Comparing with (2) and (3), we
see that synchronization increases the mean and variance of the idle
period. This can be explained intuitively by the fact that synchroni-
zation delays the termination of the idle period until the next time
slot. - :
We now turn to the derivation of the busy period statistics. Let there
be an arrival to an empty queue at ¢. The busy period initiated by
that arrival does not start until the beginning of the earliest time slot
after ;. We denote the length of this interval as D and show schemat-
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ically the situation in Fig. 2. We continue the derivation in the appendix
and eventually come up with the mean and variance of the busy period
U as:

A X
l—e*1—p

A ok +pX? A - X
+ 1- e = e ———y,
oo TS e LT T Ty

where X is the average message length and pAAX is the utilization of
queuing system. Note that the busy period for the nonsynchronous
system is merely Y (defined in the appendix). Its mean and variance
are given by (13) and (14), respectively, in the appendix. Comparing
(4) and (5) with (13) and (14), we see that synchronization also
increases the mean and variance of the busy period.* This presumably
is due to the additional arrivals in the time interval D.

This concludes the busy-idle period analysis of a synchronous data
link. In the next section, we use the above results to derive the optimal
measurement time 7.

U= (4)

(5)

ol =

IV. DERIVATION OF MEASUREMENT TIME

In the operation of a data network, people usually want to have an
estimate of link utilization from time to time as network conditions
change. Of interest are the frequency and duration of measurements
required to assure a particular quality for the utilization estimate. We
derive in the following the measurement duration T needed for any
given desired accuracy. The results depend on the accuracy (or error)
criteria used. We consider two of them: the absolute error § and the
relative error e. .

Consider a time interval of T slots at the output end of the M| G| 1
queue of the last section. Let N(T') be the number of busy periods in
Tand U;,i=1, 2, --., N(T) be the length of the busy periods in T' If
there are R message-carrying slots (therefore, T-R idle slots), an
estimate of the utilization p over the interval [0, T] is

R

ﬁ(T) ='7—,- (6)

We note that R is composed of the sum of busy periods:
R=U+ U+ .-+ + Unn.

Now the central limit theorem for N(T') says that, for large T, N(T)

* Note that A/(1 — e ™) > 1 for A > 0 in (4) and (5).
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Fig. 2—The sub-busy-periods in a busy period.

is approximately normal with mean and variance*

T
U+1T

N(T) =

T(o} + o})
(O+1I)»
R is a sum of N(T) i.i.d. random variables U. Hence, for large T, R is

also approximately normal. Therefore, from (6), p(T) is also approxi-
mately normal. Taking expectation of p(T), we have

2
oND =

E[5(T)] = 7. E[R)

1

E[U]-E[N(T)]

T

U + T

N~ N

<

8
U+1

Thus the g defined in (6) is an unbiased estimator of p. From (6), the

= p.
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Go(T) ="7‘,1-202R
= 715 [N(T)ol + Uo%n)]
__l r-2(70'?}({7 +I)+ o} + Uzo?jl
T| (O +1I)®
_1 [p(1 + pP ok + XY _ 20° ]
TL Xa-pp 1=-p)e”*—1l (1)

upon substituting the means and variances of the busy and idle periods
from the previous section.

As we have mentioned before, our objective is to find the minimum
value of T such that the following inequality is satisfied:

Pl[|p(T) —pl<ep]lz=1-a (8)
Let
woBD=p
O5(T)

Then, equivalently, we can express (8) as

0s(T)

P[IWIS Ep]zl-a. 9)

Now, from the table of N(0, 1)*, we can find a quantile w that gives
a cumulative probability of 1 — (a/2). That is, w is given as

B O
f ¢ dy=1- x .
—w V2 2

We interpret w as the number of standardized N (0, 1) deviations such
that P[| W| = w] = 1 — . Comparing this with (9), we have

€p
=Ww
a3(T)
or
. €22
Op(1) = —3°
g w

* This is the normal density function with zero mean and unit variance.



From (7), we have finally

2 2y, 2 G2 3
- (_tg) [pu +pY) ok + X7) 20" _ J (10)
€p X(1 - p)? (1 — p)(e”* - 1)

where w is a constant for a specific confidence level 1 — a. One can
specify € as an acceptable upper limit for the relative error or ep as the
acceptable absolute error in g. . ~ '

In the following discussion, we investigate the dependence of T on
p for the absolute and the relative error criterion.

(2) Consider a relative error objective €. From (10), we see that there
are two poles, at p = 0 and p = 1. When the traffic 1s light (i.e., p
small), the error bound ep specified by the relative error criterion is
small too. This means that the measure duration T must be long to
accumulate enough “samples” (message-carrying slots) for an accurate
estimate, and therefore account for the pole at the origin. When the
traffic is heavy (i.e., p close to 1), the term (1 — p)? in the denominator
dominates. This term comes from the variance of the busy period and
accounts for the pole at p = 1. :

(i} If we specify an absolute error objective, the denominator (ep)?
should be replaced by 8% where § is the specified objective. The
dependence of T on p will be via the terms in the square bracket of
(10). A zeroisat p = 0 and a pole at p = 1. For this case, T increases
in p. _ , ,

Figures 3 and 4 show the curves for both error criteria for a specific
example. These figures also show how seemingly similar specifications
can result in entirely different conclusions. Both error criteria are used
extensively; the choice depends entirely on the designer. With a
thorough understanding of both, however, it is trivial to transform one
to the other. .

V. EXAMPLE

We use the Common Channel Interoffice Signaling (ccis) network
to illustrate the analysis. Presently, a ccis link is engineered to accom-
modate the signaling load for around 1500 trunks under normal con-
dition. With a busy-hour average of five attempts in each direction per
trunk, a link utilization of p = 0.28 is obtained. The message length, in
“signal units,” has the following distribution:

0603 n=1
0.261 n=3
b(r) =1 0130 n=4
0006 n=25

Each signal unit is 28 bits long. The mean and variance of the message
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Fig. 3—Measure duration: Absolute error criterion.

length in signal units are 1.936 and 1.434. The ccis link currently
operates at a rate of 2400 bits/s or, equivalently, 85.7 signal units/s.
One out of every 12 signal units is used for acknowledgment. The
equivalent “message” capacity therefore is 85.7 X Y4, = 78.57 signal
units/s. With this capacity and with the nonrandom acknowledgment
- traffic deleted, we have an effective utilization of

_ 0.28 — 0.0825
1 - 0.0825

= 0.2153.

Pe
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(¢) The ccis links operate in pairs so that, when one link fails, the
other can take up the combined load. Consider first the operation of
the network under normal conditions, le, p. = 0.2153. Let a = 0.05, ¢
= 0.05; then w = 1.96. From (10), we have T = 25297 units of time =
5 min, 22 s. Note that N(T) = T/(U + I) = 768. This justifies the
normality of R, and hence g(T') in (6). Now let the maximum absolute
error be § = 0.03. The corresponding optimal measure time is T = 41
s. (N(T) = 98).

(1) Next, let us consider the case when one of the link pair fails. Its
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mate link then must handle a total of 2p. = 0.4306. Proceed with the
calculation as before. For ¢ = 0.05, we have T = 5 min, 30 s. For § =
0.03, we have T = 2 min, 48 s. Figures 3 and 4 show the measurement
time T versus the utilization pe for the absolute error and the relative
error, respectively.

If we need more confidence in the result, say, 99-percent confidence
(a = 0.01), we can use the following elementary “ratio and proportion”
technique. From the table of normal distribution, the w that corre-
sponds to a = 0.01 is found to be woor = 2.576. From (10), we know
that 7' is proportional to w2 Therefore, the conversion factor for
changing from a = 0.05 to « = 0.0] is

2
(w""”) = 1.727.
Wo.05

Thus in (if) above with € = 0.05, p = 0.4306 and o = 0.01, we require T
= 9.9 min X 1.727 = 9.5 min.

VI. SUMMARY AND ACKNOWLEDGMENT

We have focused our attention on the output of a synchronous data
link. We analyzed the busy-idle period and specialized our results to
traffic intensity measurements. As a specific example, we studied the
ccis link and calculated the required measure duration for different
utilization levels p, error criteria, confidence levels (1 - a), and accu-
racy.

I would like to thank Tony T. Lee, Jerry Gechter, and Charles D.
Pack for their helpful suggestions in the course of this work.

APPENDIX
The Busy Period Statistics

The length of the busy period U is composed of two sub-busy-
periods (sBP’s) V and Y. The V-sBp is generated by the arrivals in D.
The Y-sBP constitutes the service time of the first message and those
SBP’s generated by the arrivals during the service time of that first
message. In other words,

Y=Xi+M +M+ .. M, (11)

with X, the length of the first message, M; the length of the spp
generated by the ith arrival during the service time of the first message
and K the total number of arrivals during that first service time.
Observe that the M and the Y sgp’s are both initiated by single
messages with lengths drawn independently from the same distribu-
tion. Moreover, each SBP continues until the system catches up to the
work load (i.e., the work load of the system drops back to the level just

UTILIZATION OF SYNCHRONOUS DATA LINK 741



before the start of the sBp). Thus the M/’s are independent, identically
distributed, and have the same distribution as Y.

Let y(n) = Prob{Y = n] and Y*(z) be its generating function. We
condition Y on two events: the length of the first message and the
number of arrivals during the service of the first message. From (11),
we can write

Y*(Z) |X|-n,K-k = E[ZH+M‘+"°M"].

Since all the M-sBP’s are independent and identically distributed as
the Y-sBP and n is nonrandom, we may write

Y*(2) |np = 2"[Y*(2) ]

Moreover, conditioned on X; = n, K has a Poisson distribution with
mean An. We may therefore remove the condition on K:

o )\ k_—An
Y*(2)|r}= Z [L_’%.e_'e_

]ZH[Y* (Z)]k = 2"e —J\n[l—Y‘(z)].
k=0

Similarly, we remove the condition on X,:

Y*(Z) = Z b(n)[ze—)\[l—}"(z)]] = B*[ze—)\[i—Y‘(z)]]. (12)
nm=]
Thus we arrive at a functional equation in Y*(z), which is usually
impossible to solve and invert. However, we can solve for the ith
moment h; by differentiating (12) i times. Carrying this out, we have
the mean and variance of Y given as

Y=h1=1—‘Y—“ ‘ (13)
-p

2+ XZ
R (14)

where p A A X is the utilization of the system.

We now turn to the V-sBp, which is initiated by L random arrivals
in D. Each of these arrivals initiates an sBP which behaves statistically
the same as the M-sBp’s that we have just described. Hence, we can
write

V=M +M+ ... M;. (15)

Proceeding as before, we condition V on L=1 and D=s. Taking the z-
transform on (15), we have

V*(2) | 1ot Dy = B[40 4] = [Y*(2)]"
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Removing the conditioning on L, we have

- (AS)I o
S 1

We now digress a moment to find the density of D. Figure 5 shows
an arrival A, in the interval (0, 1) (note again that the unit time is the
time to transmit one packet). Let C A 1 — D. Then C is the arrival time
of the first message in (0, 1). We know there is at least one arrival in
(0, 1); A, is the first one, and there may be more in the same slot.
Therefore, the random variable C is actually the arrival time of the
first message, given that there is at least one arrival in (0, 1). We may
therefore write

V*(2) | p-s = [Y*(2)] = esl!-Y") (16)

Prob[arrival time < x] |

0w 1 =
Prob[C = x] Prob[ at least one arrival in (0,.1)]
o o<l Soan
T l1-e? =7

Now since D = 1 — C, the den51ty function of D is "

Ae M1 - y)

mbd=kﬂ~ﬂ= e 0<y<l.— (18)

Figure 5 also shows the two density functlons

fc(x)

s o
-
X

(b) (¢)

Fig. 5—The densities of C and D. (a) An arrival in the time slot (0,1). (b) Density of
C. (c} Density of D,
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We are now ready to remove the conditioning on D:

1 ; *
Ae M- er’ _
Vv . A=V 2 | dg = . 19
(2) f ¢ [1 ——e"Ajl “yae-n W

Now Vand Y are each generated by Poisson arrivals in disjoint time
intervals, hence they are independent. Equation (19) says the distri-
bution of V can be expressed as a function of the distribution of Y, not
that V and Y are statistically dependent. Hence from U= V + Y, we
have

AY*(2) — 1

U*(z) = V*(2)Y*(2) = ———. (20)
e’ —1

Extracting the moments, we obtain the mean and variance of U as
given in (4) and (5).
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