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Abstract—A routing rule similar in nature to delta-fouting [8] is
studied in this paper. The approach is to superimpose local adaptivity
on top of a fixed traffic flow distribution. The fixed flow distribution
we choose is obtained from the best stochastic (BS) rute [3]. The
adaptive part is called the join-biased-queue (JBQ) rule. The resultant
JBQ-BS rule is analyzed on small networks and is shown to provide
10-27 percent delay improvement over the BS rule.

I. INTRODUCTION

ROUTING in computer communication networks involves
sending each incoming message to its destination intel-
ligently via a set of paths that may be available to each node
[10]. Consider a computer communication network with all
its L links and N nodes always reliable and with fixed input tra-
fic rates. We define the state of the network as the L-tuple (g,,
4z, , q1) with g; being the queue size of the output buffer
of link i. A routing rule used in such a network is described
as either fixed or adaptive depending on whether its routing
decisions are independent of or dependent on the network
state (41,92, ™", qL)-

The simple shortest path rule [1] is classified as fixed. A
more sophisticated one is the best stochastic (BS) rule which
allocates traffic flows stochastically (i.e., by fixed probability
assignment) throughout the network so as to minimize the
overall average time delay, subject to constraints due to flow
corisevation. Poisson arrivals, exponential message lengths,
and message independence assumptions are made in the
analysis so as to force the queueing model to be the M/M/1
type. This is referred to as the optimum routing rule in [2].
Numerical techniques such as the flow deviation method [3],
gradient projection method [4], and others [5], [6] have
been used to solve for the optimum flow distribution. Better
overall delay pe’rformance, however, can be obtained by
bifurcating the flow deterministically (ie., according to a
predetermined routing sequence). This is called the best de-
terministic (BD) rule in [7] to contrast with the stochastic
nature of the BS rule.

In this paper, we investigate an adaptive way of bifurcat-
ing the traffic flow. The approach is similar to the join-the-
shortest-queue (JSQ) rule discussed in the literature [8],
[12], [16], [17], [18], except that a biased term is intro-
duced in comparing the queue lengths, We will show later that
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by adjusting the biased term in the so-called join-biased-queue
(JBQ) rule, the proportions of traffic bifurcation can be
regulated at will. Here in particular, we want to regulate the
traffic flows in the network so that they are the same as the
fixed BS rule introduced earlier. In other words, we want
the same link utilization for these two rules. Now, what is
different between the two rules is their message arrival proces-
ses. For the fixed BS rule, the arrivals remain Poisson dis-
tributed because random bifurcation of Poisson processes
remains Poisson; and M/M/1 results can be used for queue
length distribution. For the JBQ adaptive rule on the other
hand, the message arrivals are state dependent because traf-
fic bifurcation is based on the instantaneous queue lengths
in the same network node; and the queue length distribu-
tion is not known analytically.

To study the JBQ adaptive rule and to compare its perform-
ance with the BS rule, we calculate the queue length distribu-
tion by solving a two-dimensional Markov chain numerically.
This will be shown in the next section. Now, the queue length
distributions we obtain from the examples in this paper, as
well as those in [11], show that the average queue length for
the queue with bifurcated arrivals is always smaller than that
given by the M/M/1 queue with the same utilization. More-
over, for the special case where the biased term in the JBQ
rule is zero [the familiar join-the-shortest-queue rule (JSQ)]
and when there is no other traffic except the adaptive stream
to be bifurcated, Foschini and Salz [16] have shown, by
diffusion approximation, that the average queue length can
be reduced to 1/k for k parallel queues, Flatto and McKean
[17] obtained similar results with an.exact formula for two
parallel queues. Thus, comparing the queueing behavior for
these two routing rules on a queue-by-queue basis, there is
reason to believe that the use of the JBQ adaptive rule will
result in average queue size no larger than the M/M/1 queue
given by the BS rule. Since this argument can be used on all
the queues in the network, Little’s result applied to a net-
work [10] would indicate that the overall average delay of
the adaptive rule will be no worse than that given by the
BS rule. The equality of the two delays holds only when
there is no traffic bifurcation since, in that case, the JBQ
adaptive rule degenerates to the BS rule.

We verify the above argument by several three and four
node network examples in Section III. A rigorous proof of
the above argument, however, requires the determination of
the departure process from each queue and the adaptively
bifurcated arrival process to each queue. The determination
of both of these processes appears to lead to difficult queueing
problems (except for the average rates) and we have not gone
this far in our work.
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The concept of relegating portions of the routing decision
to local nodes first appeared in Rudin’s paper on delta-routing
[8}. There, he showed by extensive simulation on small and
medium size networks, that a routing rule generally performs
better if 1) both local and global information are used in mak-
ing routing decisions, 2) routing decisions can be made both
centrally and in a distributed fashion, and 3) the strategy
used can be partly fixed and partly adaptive. The parameter
& (hence delta-routing) determines 1) the amount of adaptivity
in the strategy used, 2) the amount of decision power the
Network Routing Center (NRC) relegates to the local nodes,
and 3) the amount of local information to be used in routing
decisions. In this perspective, we will classify the JBQ-BS
rule (the JBQ rule with the BS rule flow pattern) as a version
of deltarouting. The centralized portion of the rule is fixed;
it collects the traffic rate information about the entire net-
work (giobal information) and determines the amount of flow
on each link. The local (or distributed) portion of the rule is
adaptive, making use of the locally available queue length
information and determines the instantaneous flow of mes-
sages in their local environment. The delay results we obtained
from the analysis of three and four node networks in this
paper agree with the simulation results given in [8].

Adaptive rules used in a real network are often complicated
by the flow control schemes and other “special features”
[13], [14] which also affect the delay performance. Hence,
they can seldom agree exactly with the models of rules that
can be described and analyzed mathematically. In order to
fit the routing rules into models that can be analyzed, a
number of assumptions, and a great deal of simplification,
have to be made. This usvally includes singling out the rout-
ing aspect of the network operation apart from the other inter-
acting network operation functions such as flow control, error
control, nodal buffer allocation, and scheduling (ways of al-
locating network delays among the various user classes [9])
strategies. Rudin and Mueller in their thought-provoking
paper [9] cautioned that it is dangerous to draw conclusions
from the study of flow control, routing, or scheduling as
isolated mechanisms and infer that they are also valid when
other network operation functions are incorporated. We would
like to add to this that the isolated theoretical study can be
of value (and thus necessary) provided the results obtained are
interpreted with care. Thus, in general, we may interpret the
results in the following ways.

1) If any of the network functions is shown not to perform
well when studied in an isolated fashion, then it is not likely
that it will work well with the incorporation of other network
functions. In other words, its contribution to the overall
network performance is likely to be minimum.

2) If any of these network functions is shown to work well
in an isolated manner, then it is potentially well performing.
The next step is to examine its “joint” performance with
other potentially well performing network functions. The
models and analyses of individual network functions in isola-
tion would certainly be of value in providing insight in formu-
lating the more complicated *“joint” models.
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In the above perspective we present the isolated, theoretical
analysis of the JBQ rule in the following two sections.

I1. THE JBQ RULE CONCEPT AND THE ANALYSIS

In this section, we study the JBQ rule in an isolated net-
work node. Its extension to a network with the incorporation
of the BS rule will be studied in the next section.

Consider the isolated node and its queueing model in Fig. 1.
Let v, v, represent Poisson arrival rates of messages that are
constrained to be sent out via link 1 and link 2, respectively.
They are henceforth called fixed arrival rates. These message
arrivals represent the demands on the network by many in-
dependent users and are quite accurately modeled as Poisson
processes. The rates in practice would be obtained from real-
time measurements. Let q,, g, be the lengths of queue 1 (Q,)
and queue 2 ({;); and let A;, \, be the actual input rates to
Q; and Q,. Let all queues be formed in finite buffers of size
M and let y represent the adaptvie Poisson arrival rates of mes-
sages that can be switched to either @, or @,. The following
is the JBQ rule of routing the y messages:

DXy =7, +y
wheng, <gq, + A
A =7
N =7
wheng, >q, +A
M=72ty
A =71 +8y

l wheng; =g, + A.
AN=1+0 By

Here, Ae{0, *1, £2, -} is an integer representing the bias level
and e[0, 1) is the a priori probability for routing the -y mes-
sages to @, when g, =g, + A. The parameter § can therefore
be considered as a “fine tuning” of A. Thus, in words, the IBQ
rule says: route a message in the adaptive category to @, if
the length of @Q; is less than the length of Q5 plus A; route
it to Q, if greater. If the length of @, equals the length of
@, plus A, then route to Q and @, with probability 8 and
(1 — B), respectively. The special case (A, )= (0, 0.5), 7, =
v, = 0 is merely the extensively studied JSQ rule [15]-[17].
The presence of fixed-path messages (i.e., vy, v, ¥ 0) in our
way of modeling makes the JBQ rule particularly suitable for
extension to the network case.

Let P; ; = Prob [q, =i, q; = j]. Then the above routing
rule can be embedded in a two-dimensional Markov chain
with transition rates ¥, and v, taking on different values as
listed above depending on the state (q,, g;). This is possible
because Poisson arrival rates and exponential service times
are assumed and the transition rates at each state are uniquely
defined. The complete set of states for A = 2 is represented by
the two-dimensional sketch in Fig. 2. There are 19 regions in
the sketch representing 19 groups of states. States in the
same group have the same inward-outward transition rates.
Therefore, the state equations associated with these states
differ from each other by the indices i and j only. A typical
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(b)

Fig. 1. An isolated network node and its queueing model. (a) An iso-

lated network node. (b) Queueing model.

n—0OC
el
"l

Fig. 2. Grouping of states for the defining equation, JBQ rule, A = 2.

set, for example the one corresponding to region III, may be
written as follows (the average message length is normalized
to unity):

Poj=0rPo s +P i+ Py ) +y +y,+7)

=12, M—1. 1)
Nineteen such sets plus the normalizing equation
‘M M
Pij=1 @
j=0 i=0

provide a total of (M + 1)? independent equations for the
M + 1) unknowns P; ;. A Fortran program was written
for the solution of the equations with the set of input param-
eters {yy, v2, v, A, B, M} using the Gauss-Seidel iteration
method.

We now investigate some properties of the JBQ rule, found
from analysis, using the state probabilities calculated as in-
dicated above. In Fig. 3, we show the average delay of the
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JBQ rule as a function of (4, B) for the queueing system of
Fig. 1. Five sets of arrival rates are assumed. In all cases, the
total normalized nodal arrival rate is always 1.4 and the
adaptive component + is kept fixed at 0.5. The fixed com-
ponents vy, and v, vary over a selected range. The buffer size
M has been taken to be 25 in all cases, so that the resultant
average blocking probabilities Pg are all less than 10~ 5. We
then assume that this amount of blocking does not affect
the average delay appreciably. Using Little’s formula, the
average delay T is calculated to be

__ E@)tEqg)
(r1 + 712 +¥X1 —Pp)

= =N )

Now, it is clear that changing the (4, §) parameters will
change the routing decisions defined in (1); and in tum
changes also the queue length distribution and the average
delay T. We denote the (A, ) that gives the minimum delay as
the optimum (4, B) for that set of arrival rates. For curves C,
D, and E in Fig. 3, the optimum (A, f) are located at 2,0,
(1, 0), and (1, 0), respectively. The optimum (A, f) for curves
A and B are greater than (3, 0) and therefore are not shown.
These five curves show that the delay is not sensitive to 4,8
over quite a large range. As we shall see later, this character-
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istic is important since (A, ) can be used to vary the rate of
the output processes without affecting the delay appreciably.
Note also that the delay curves agree with intuition: in all
cases when 7y, > v, one would want to route more adaptive
traffic to Q;; hence A > 0. As the disparity between 7y, and
7, increases, the bias A increases accordingly.

Fig. 4 shows the fraction of adaptive traffic that joins Q;
as a function of (A, B). We see that by an appropriate choice
of (A, B) we can route (adaptively) a specific portion of the
adaptive traffic y to Q,; and the remainder to (,. This is the
essence of adaptive bifurcation we mentioned earlier; and
curves like those shown in Fig. 4 will be used later for the
design of the JBQ-BS rule.

Some other characteristics of the JBQ rule, such as the
statistics of the JBQ rule departure process, the relation be-
tween the A and § parameters, the optimum (4, ) and average
delay as functions of the fraction of adaptive traffic, etc., can
be found in [11].

III. THE JBQ-BS ROUTING RULE AND ITS ANALYSIS
IN A NETWORK

The JBQ-BS rule is essentially a rule where local JBQ adapt-
ivity is superimposed on the fixed BS rule base. The BS rule
specifies the flow distribution in the network and the JBQ
rule, with its inherent bifurcation ability, regulates the traffic
so as to achieve that flow distribution. In this section, we shall
first work out an example in detail to illustrate the JBQ-BS
rule concept and its analysis. We then quote results of three
other examples to give an estimate of the actual delay im-
provement over the BS rule for small networks. Lastly, we
discuss the reason for choosing the BS rule flow pattern.
Consider the four node network with unidirectional flow in
Fig. 5(a). The external traffic rates assumed are indicated in
Fig. 5(b). The overall network utilization is calculated to be
0.7. We first calculate the BS flow rates and delay. Let x be
the rate of the adaptive traffic that joins @, . We can achieve
that rate by routing the adaptive messages randomly to {J,
with probability x/0.7 and to Q, with the remaining prob-
ability. By using Little’s formula and the M/M/1 results, we
can write T, the total average time delay, as

12 — x]
x—0.2

The value of x that minimizes T is 0.4. For that value, ' =
5.24. The utilization factors of the four links and their average
queue lengths are shown in the first row of Table L.

We now use the JBQ rule to split the adaptive traffic such
that the utilization of each queue is the same as that given by
the BS rule. The (4, B) needed is obtained by first quantizing
8 to ten values. Ten is chosen for convenience. Other levels of
quantization can also be used. Then the Markov chain of the
JBQ rule is solved repeatedly with different (A, §). Each set
of solutions gives a set of link utilizations (o, p, ). The needed

T=—
06 —x x 08—x

1 04+x 1—x 024+x
) + + +
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Fig. 5. Network and queueing model of example 1. (a) Four-node net-
work with unidirectional flow, example 1. (b) Queueing model with
input rates [network of Fig. 5(a)].

&

TABLE1
LINK UTILIZATION FACTORS AND AVERAGE QUEUE SIZES
rutes | A A A A E(g,) Elq,) Elg) Elg,)
BE .8 7 .6 .8 4.00 2.33 1.50 4.00
JBQaBS L7999 .701 .399 .801 2.22 1.30 1.49 4.03
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set of (A, () is that which gives (o, p,) closest to (0.8, 0.7).
For the above example, the needed (A, B) is found to be
(1, 0, 6). This gives the link utilization factors and average
time delays as shown in the second row of Table I. Note
first, the four link utilization factors agree closely with the
desired BS rule flow pattern; and second, queues 1 and 2 are,
on the average, considerably less occupied than by use of the
BS rule alone. Using Little’s result we obtain T = 4.30. Note
that E(g3) and E(gq) are calculated as they were M/M/1
queues. This is based on the Poisson departure assumption
which says that for local routing rules (i.c., nonfeedback
rules) with exponentially distributed messages, the departure
processes can be assumed as memoryless, or Poisson. This
assumption has been used in [11], [15], [18] and possibly
many other similar works in the analysis of queueing net-
works. It allows us to decouple queues at different nodes and
analyze them separately. A discussion of this and its verifica-
tion can be found in [11]. To verify the above delay result,
12 simulation runs of 10 000 messages each gave T = 432 *
0.17 with 95 percent confidence. Compared to the BS rule,
this represents an 18 percent reduction of delay.

The networks, queueing models, and input traffic matrices
for the second, third, and fourth examples are shown in Figs.
6 and 7. The analyses of the JBQ-BS rule on these networks
are the same as that given by the first example. The delay
results and the comparisons with the BS rule are shown in
Table II. They show 10-27 percent reduction of delay.

In the above example, we have considered the case where
each node has only two outgoing links and at most one adapt-
ive traffic stream. Therefore, in regulating the amount of
adaptive traffic that should join the two outgoing links, only
one set of (A, f) per node needs to be set. In the network en-
vironment, however, there may generally be two or more
adaptive traffic streams joining as many as three or more
outgoing links at each node.

First consider the generalization to three or more outgoing
links. Fig. 8(a) shows a three-queue system with the fixed
messages with rates v,v,7v; joining their respective queues
while the messages with rate y are to be split into three
streams of rates a;, @,, a3. The problem is how to set the
biased level on each queue so as to achieve this specification
bifurcation. We can generalize the approach in the last section
by solving instead, a three-dimensional Markov chain for the
three-queue system and partitioning the states into three
regions for the three routing decisions: the incoming message
should join @, @,, or Q3. No simple way of partitioning the
decision regions so as to achieve the desired bifurcation is
known. For the two-queue case in the examples, we just
search for the desired partitioning. For three or more queues,
the search procedure is prohibitively complex and time con-
suming and we have not continued our investigation. We
suspect that simple approximate techniques exist, and regard
this as a subject for future work. We would also like to point
out the similarities between this decision space partitioning
problem and the multihypothesis testing problem in mathe-
matical statistics.
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Fig. 6. Network and frequency model and delay results of example 2.
(a) Three-node network with unidirectional flow, example 2. (b)
Queueing model with input rates [network of Fig. 6(a)]. (¢) Delay
as a function of {4, ) parameter [queueing model of Fig. 6(b)].
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Fig. 7. Networks and traffic matrices for examples 3 and 4. (a) Net-
work of examples 3 and 4. (b) Traffic matrices,

3and 4.
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TABLE II
DELAY RESULTS AND COMPARISON
EXAMPLE BS RULE JBG-BS RULE % IMPROVEMENT
1 5.24 430 18%
H 5.38 3.95 21%
3 412 389 10%
4 260 21 17%
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The JBQ rule in a three or more outgoing link node. (a) A
three-queue system with adaptive traffic, JBQ rule. (b) Traffic bifur-
cation using a deterministic and a JBQ switch. (¢) Traffic bifurca-
tion in a four-queue system.

Fig. 8.

One approximate technique that might be considered is
the use of a deterministic switch! Sp [7]. In Fig. 8(b), Sp
is used before the “JBQ” switch Sypg. Sp routes a; to O
and g, + a3 to Sypqg-. Sypo then sets the (A, §) parameter
for Q, and Q3 so that a rate of &, goes to @, and a3 goes
to Q3.2 In the case of a four-queue system, we can use two
“JBQ” switches as shown in Fig. 8(c). Generalization to five-,
six-, -+, queue systems is similar.

The queueing behavior and the ways of determining (4, §)
parameters when there are three or more adaptive streams is
not really known. The problem we face is that of a multi-

1 The deterministic switch routes messages according to a prede-
termined sequence. In Fig. 8(b), the output of the deterministic switch
becomes the arrival process to the queues. The interarrival time has an
Erlangian distribution [7], which has a smaller coefficient of variation
than the interarrival time of the Poisson process. Further, we have
shown in [19] that this “deterministically bifurcated” process gives
smaller queueing delay compared to that given by the Poisson process.
Now, in the discussion of the JBQ-BS rule performance, we modeled
the arrivals as Poisson processes. Hence, the use of the deterministic
switch improves further the delay performance of the JBQ-BS rule.

Note also that a stochastic switch which uses fixed probability as-
signments to split the traffic can also be used in place of Sp. In that
case, the output process will still be Poisson.

2 Here we assume @; < min{¢y, @3) so that more messages are
routed adaptively through SiBQ:
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dimensional Markov chain with two or more sets of decision
region partitionings (one for each adaptive stream) super-
imposed on each other. Again, this is a subject for future
work. We would suggest an approximate solution as follows.
Since different adaptive streams can be considered as in-
dependent, each adaptive stream can assume all other bi-
furcated adaptive streams as fixed Poisson arrivals and com-
bine them with other fixed (as opposed to adaptive) streams.
The model is then reduced to that described in the last para-
graph, and (A, B) for that particular adaptive stream can be
found as usual. The validity of this approach needs to be
checked by simulation; again, we have not gone this far in
our investigation.

Why do we choose the BS flow pattern and not others?
Recall that the BS flow pattern is, by definition, the optimum
flow pattern for stochastic fixed rules. But it is by no means
the best flow pattern for adaptive rules. To clarify this point,
we quote the delay results of the second example for different
values of (A, ) in Fig. 6(c). It turns out that the JBQ-BS rule
requires (A, ) = (-1, 0.2) with a corresponding delay of
3.95. Fig. 6(c), however, shows that the lowest delay given
by this “biased-queue” method of routing is at (A, §) =
(-2, 0.7). The corresponding delay is 3.79, which is 4 percent
lower than the JBQ-BS delay. Thus the BS rule flow distribu-
tion is not the optimum flow distribution for the JBQ adaptive
rule. In this simple network with only one set of (A, ) to
optimize, we can get the optimum (A, ) with little effort,
simply by searching the (A, ) around the particular value
obtained by the JBQ-BS rule. In a general network, however,
there are many sets of (4, 8) to be optimized simultaneously.
Altering a particular set will change the departure rates of
the associated queues, and the flow pattern of the entire
network is changed. Therefore the determination of the best
flow pattern for the JBQ rule is still an open research problem.
But it is safe to say that using the BS rule flow pattern as a
substitute is satisfactory.

By now, it should be quite obvious that more traffic
bifurcation in the network means more messages can be
routed adaptively through different links. And as the fraction
of adaptive traffic in a single node environment increases, the
queueing delay decreases monotonically [11]. Therefore, the
technique introduced in [7] that maximizes the amount of
traffic bifurcation in a network while preserving the same
utilization of each link can also be used on the JBQ-BS rule.

IV. SUMMARY AND CONCLUSION

After a brief review of the BS rule we introduced the JBQ
rule, an adaptive way of bifurcating traffic in local nodes.
Markov chain analysis was used on the JBQ rule to obtain
some important properties and characteristics needed for
later development. Then, in Section III, we introduced the
JBQ-BS rule and worked out an example in detail to illustrate
the concept. Three other examples together showed a 10-27
percent reduction of delay when compared to the BS rule,
Finally, we discussed three problems that remain unsolved
in the analysis of the JBQ-BS rule.
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