where [x] represents the maximum integer number no greater
than x.

If M >N, from theorem 1, s, ;=sy; for j=1, 2, ..,
N — 1, and from eqn. 2, x; x,, = x5 Xy = 1, we have

N N
) S = 2 Sh
j=1 i=1

Thus s}, ; = s ;. Obviously, only when sy y = —sy 5, Xy #
Xy. This means that M < N + 1. If M = N + 1, it must satisfy
eqn. 2, x5, xy = p, or,

N

Z SN jSN+1,j =P

i=1

Using theorem 1 and eqns. 10 and 11 we have

”i‘( pJ/(1 = p) )2
S\ + G- Dp] . [1 + ¢ — 2p]}

L+ (N = Dp\]*
_[J(l_”)'\/(uw—z)p)] =7

Simplifying the above equation we obtain

1
1+N.p=0 or p N
This means that only when p= —(1/N) is the maximum
number of vectors in the generated vector set greater than N,
ic. equal to N + 1. From eqn. 3 it is easy to prove that the
first N vectors are linearly independent. Summarising the
above results we obtain the following theorem:

Theorem 3: Given an N-dimensional orthonormal vector set
{e1, €3, ..., ¢y}, @ normalised complete vector set {x,, x,, ...,
Xy} with the given percentage of correlation p, can be gener-
ated according to eqn. 3 and the maximum number of vectors
M satisfies

From theorem 3 it is known that only when —(1/N)<p <1
does the constructed vector set have N linearly independent
vectors, and it can be used as a base to represent any N
dimensional signals.

Conclusions: We have proposed a new algorithm which can
generate a complete vector set in which any two vectors have
a given percentage of correlation. Under the special condition
the constructed vector set can be used as a nonorthogonal
base which has many applications in signal representation. If
the constructed vectors are used as row vectors of an N x N
matrix, this matrix can also be used as a nonorthogonal trans-
form which has many applications in signal processing, image
compression, and other areas. Applications will be discussed
in detail in other papers.

14th September 1992

X. Yu, J. Wang, N. K. Loh, G. A. Jullien and W. C. Miller
(Department of Electrical Engineering, University of Windsor, Windsor,
Ontario, Canada N9B 3P4)
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EFFICIENT SPREADING CODE ASSIGNMENT
ALGORITHM FOR PACKET RADIO
NETWORKS

K.-W. Hung and T.-S. Yum

Indexing terms: Radio communication, Packet radio networks

Multihop spread spectrum packet radio networks with a
large number of stations would require a large number of
spreading codes, even with code reuse beyond the inter-
ference range. In the Letter, the code assignment problem is
related to the graph colouring problem and a very efficient
algorithm is proposed for assigning codes to the stations. A
very tight lower bound on the number of codes needed is
also derived.

Introduction: Spread spectrum signalling opens up a new
dimension for protocol design and performance tradeoff in
packet radio networks (PRNs). When receiver-based or
transmitter-based spreading code protocols are used, a multi-
hop PRN with a large number of stations requires a large
number of codes and hence a large channel bandwidth.
Because a spreading code assigned to a station needs to be
unique only to its neighbours, the codes could be reused by
the stations which are farther apart.

It is important to find an efficient algorithm for assigning as
few codes to the PRN stations as possible because the smaller
the number of codes used the smaller the bandwidth needed.
In this Letter we first transform the code assignment problem
to the familiar graph colouring problem. This allows us to
consider the possible use of the graph colouring algorithms
for assigning codes in PRNs. We then design a heuristic code
assignment algorithm making use of some special properties
of PRNs. We also obtain a lower bound on the chromatic
number, which in our case is the minimum number of codes
required. Finally the performance of this new algorithm is
assessed by making comparisons to the bound as well as to
one of the best heuristics for graph colouring,

Code assignment and graph colouring: The colouring of a
graph G means assigning colours to the vertices of G so that
adjacent vertices have different colours. The chromatic
number of a graph is defined as the minjumum number of
colours needed to colour the graph. There are numerous
papers on graph colouring. It was shown that this problem is
NP-complete in the sense of Karp [1]. Therefore to solve
large size graph colouring problems, many heuristics are pro-
posed. One particularly good heuristic is the degree saturation
or Dsatur algorithm [2]. To measure the performance of the
heuristics, various methods have been proposed to estimate
the chromatic number of graphs [3, 4].

The code assignment problem in PRNs is as follows. Let
there be N fixed stations in a packet radio network. Each
station is assigned a code which is unique only in its neigh-
bourhood covering all one-hop and two-hop neighbours.
Beyond this neighbouring area, which we call the local range,
they can be reused.

To relate the code assignment problem to the graph colour-
ing problem, the network structure must first be represented
by a graph. The stations in a multihop PRN are treated as the
vertices and an edge is formed between two vertices when the
two stations are neighbours. Because stations separated by
two hops also cannot be assigned to the same code, edges
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between all vertices which are two hops apart are added to
reflect this requirement. The code assignment problem then
becomes the colouring problem of the graph formed.

In graph theory the degree of a vertex is defined as the
number of edges incident on that vertex. In PRNs we refer to
the degree of a station as the number of stations within that
station’s local range. Let C denote the chromatic number of
this network (i.e. the minimum number of codes needed). Let
ky, k,, ..., ky be the number of neighbours of station 1, 2, ...,
N; then k = max (k,, k,, ..., ky) is the size of the largest
neighbouring group.

All neighbours of a particular station, say A, must be within
the local range of each other. Hence they cannot use the same
code. Therefore the number of codes needed must be no
smaller than the size of the largest neighbouring group plus
one (ie. station A itself). Hence a lower bound on the chro-
matic number C, denoted as C,, is k + 1. This bound is very
useful in solving the assignment problem.

Algorithm description: In designing the code assignment algo-
rithm, the following criteria were followed:

(1) When building a K colouring of a graph, we can ignore all
vertices of degree less than K, because once the other vertices
are coloured, there will always be at least one colour available
for each of these vertices.

(2) The lower bound of the chromatic number obtained in the
preceding Section is a good starting point.

(3) When there is more than one available code, we choose
the code which gives the minimum binding in assigning codes
to other stations.

Let ¢ be the total number of codes currently used. When a
station, say station A, is assigned to code x, this assignment
will affect the assignment freedom of the set of stations in
station A’s local range and might increase the number of
codes needed. For the set of stations within station A’s local-
range let n;, i =0, 1, ..., ¢ — 1, be the number of stations with
i codes to choose from after A chooses code x and let D(A) be
the degree of station A. The degree of freedom left for the
assignment of the remaining codes can be measured by the
binding function F defined as follows:

-1
F(4, x) = 3 n,D(4)"
i=0

It is easy to see that the smaller the F(A4, x), the larger the
freedom of assigning codes to the stations within A’s local
range and hence the smaller the number of additional codes
required.

The code assignment algorithm is as follows:

(1) Find the station with maximum number of neighbours
and denote it as station S*. Let the number of neighbours of
station S* be k. Assign code 1 to station S*. Assign code 2 to
code k + 1 to the neighbours of station S*. Let c =k + 1
where c is the total number of codes currently used.

Table 1 CODE ASSIGNMENT RESULTS

(2) Rank all the stations in order of decreasing degrees and
denote them as S,, S;, ..., Sy where N is the number of
stations in the network.

@) =1
(4) If station S is assigned, go to (7).
(5) If D(S;) < ¢, go to (7).

(6) Find the codes available to S;. (Find the codes which are
not used by the stations in the local range of §)).

(@) If no code is available then ¢:= ¢ + 1 and assign code ¢
to §;.

(b) If only code is available, assign that code to §;.

(¢} If more than one code is available, choose the code
with the minimum F value and assign it to §;.

(7) Hj < N thenj:=j + 1 and go to (4).

(8) To assign codes to the remaining stations, repeat steps (3)
to (7) but skip step (5). (This second loop is for assigning codes
to stations with degree less than c.)

Results and discussion: Many random networks are generated
to compare our code assignment algorithm with the Dsatur
algorithm [2] (which is similar to our algorithm but without
steps (1) and (6¢)) and the lower bound on chromatic number.
The stations in the networks are randomly located within a
20 x 20km? region. The transmission range is 4km. The
number of stations in the network ranges from 40 to 160. For
each case 50 random distributions are generated. Table 1 sum-
marises the assignment results.

Our code assignment algorithm runs very quickly. For a
160 station network the assignment is completed within a few
seconds using a PC/AT. Out of a total of 200 cases, there are
90 cases where our code assignment algorithm requires fewer
codes than the Dsatur algorithm but only 6 cases where our
code assignment algorithm requires more. When using our
code assignment algorithm the average numbers of codes
needed are 9-32, 16-32, 23-48 and 29-60 for the 40, 80, 120 and
160 station network the assignment is completed within a few
seconds using a PC/AT. Out of a total of 200 cases, there are
90 cases where our code assignment algorithm requires fewer
codes than the Dsatur algorithm but only 6 cases where our
the time. This means that our code assignment algorithm
gives the optimal result at least 88% of the time. When the
number of stations is increased to 160, there are still 30% of
cases reaching the lower bound and the average additional
codes required is only 1-22. This therefore shows that both the
code assignment algorithm and the bound on chromatic
number are very good indeed.

1st October 1992

K.-W. Hung (Department of Computing, Hong Kong Polytechnic, Hung
Hom, Kowloon, Hong Kong)

T.-S. Yum (Department of Information Engineering, The Chinese Uni-
versity of Hong Kong, Shatin, NT, Hong Kong)

Network type'"

Network parameters 1
Number of stations N 40
Maximum size of neighbouring group k® 820
Maximum degree D, ‘?
Average code size® 9-32
Number of cases reaching lower bound 44
Maximum additional codes above lower bound 1
Number of cases with smaller code size than
Dsatur algorithm 2
Number of cases with larger code size than Dsatur
algorithm 0
Maximum number of codes saved compared to Dsatur
algorithm 1

15-02

2 3 4
80 120 160
14-90 2190 27-38
33-28 53-26 71-04
16-32 2348 29-60
32 26 15

2 2 4
21 30 37

1 1 4

2 3 4

1) 50 sample networks were generated for each network type
@ averaged over the 50 samples
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PERFORMANCE EVALUATION OF CMOS
COMPATIBLE BIPOLAR TRANSISTORS AND
VERTICAL JUNCTION FETs FOR ADVANCED
VLS| TECHNOLOGY

A. Nouailhat, M. Mouis, A. Marty, A. Granier,
N. Degors, J. Kirtsch and A. Chantre

Indexing terms: Bipolar transistors, Field-effect transistors,
Large-scale integration

A submicrometre CMOS technology, with seifaligned silicide
(salicide) and a high energy implanted retrograde well, has
been used to develop bipolar transistors and vertical junction
FET devices based on the same pMOS selfaligned structure.
Good performance devices have been obtained, with no need
for buried layers and epitaxy, allowing low-cost multidevice
integration.

Introduction: The trend in VLSI is for multidevice integration
on-chip. For instance, BICMOS technologies incorporate
bipolar transistors where high speed and large currents are
required. The vertical JFET is another very interesting device
which could be usefully integrated for its very low noise level
and high power driving capability [1]. In contrast with most
CMOS technologies, bipolar technologies generally need
epitaxy on an n* buried layer in order to obtain low collector
resistance and capacitance. The cost of mixing these two tech-
nologies is therefore high. However, owing to device shrinkage
and the emerging use of retrograde wells [2], both technol-
ogies can be made fully compatible. The same arguments are
valid for the JFET. In this Letter we describe a very attractive
family of devices based on the same pMOS selfaligned struc-
ture, and which can therefore be easily integrated. Our devices
are processed in a submicrometre CMOS technology, with
high energy implantation for retrograde well formation and
titanium salicidation. We show that almost optimal per-
formance can be obtained without changing the basic CMOS
process.

Process integration: As shown in Fig. 1, the bipolar transistors
are classically derived from the pMOS structure by suppress-
ion of the gate oxide and addition of a base implantation [3].
However, the usual collector buried layer is replaced here by a
retrograde well similar to the pMOS well. Vertical junction
FETs (v-JFETs) are very simply obtained by skipping the
additional base implant (Fig. 1). This new JFET structure
takes advantage of the submicrometre lithography (highly

retrograde  well

Fig. 1 Schematic view of bipolar and JFET structures derived from
pMOS structure

doped narrow channel, large transconductance) and of the
salicidation of the gate and source regions (reduced sheet
resistance). For the two types of device, we compared a stan-
dard pMOS well (implant dose: 7 x 10*2 P/cm?, 900 keV) and
a less resistive well obtained with a higher implant dose
(7 x 10'*P/cm?) and a rapid thermal anneal which gives
almost the same doping concentration near the silicon surface
(1130°C for 20s instead of 1050°C for 150 min for the stan-
dard well).

Bipolar transistor characteristics: The first noticeable result
was that the electrical characteristics were unaffected by the
high-energy implantation of the retrograde well. Devices
showed near-ideal Gummel plots and normal behaviour when
stressed under reverse E/B voltage. The aging of the tran-
sistors with a pMOS well or higher implant dose was similar.
The device geometry was designed so as to minimise the col-
lector resistance Rc and C/B capacitance Cjc. Table 1 sum-
marises the results of DC and high frequency s-parameter

Table 1 STATIC AND HIGH-FREQUENCY
CHARACTERISTICS OF 1-1 x 11-3
(x 2)um? EMITTER SIZE DEVICE

FOR V,, =3V
pMOS Highly doped well
Current gain 83 108
BV, (V) 8 45
BV, (V) 16 9
BV, (V) 65 65
Ce (fF) 49 49
Ci (F) 71 130
R. (Q) 110 23
max f (GHz) 66 10-3
Jomax (GH2) 7-8 79

measurements for the two collector wells. The improvement in
the cutoff frequency f; for the highly doped well was due to
the reduction in the forward transit time (narrower base due
to the highly doped collector) and in the R¢ C;c time constant.
However, devices using the standard pMOS well showed a
similar f,,,, and ~60% shorter ECL gate delays (Fig. 2) due to
a smaller C;.. A gate delay of 100ps can be obtained for a
logic swign of 08V and a CmA collector current
(corresponding to the maximum in f;). By comparison with
the literature [4], we are able to estimate that the loss of
performance due to the pMOS well in comparison with the n*
buried layer and epitaxy is 30% [5].
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Fig. 2 Gate delay of 7 stage ring oscillators (with I-1 x 11-3 (x 2) um?®
emitter size devices) against switching current, for logic swing of 0-8 V
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