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Abstract: RAID (redundant arrays of inexpensive
disks) has gained much attention in the recent
development of fast [/O systems. Of the five
levels, the traditional mirrored disk array still
provides the highest I/O rate for small ‘write’
transfers. This is because the mirrored disk array
has no small ‘write’ problem which is found in
other levels of RAID. The authors propose a
novel RAID architecture for fast engineering
database systems, called dynamic parity logging
(DPL) disk array. DPL disk array has no small
‘write’ problem and can provide much higher
‘write’  throughput  than  other = RAID
architectures. DPL disk array also has journalling
capability, which means that some older design
versions are kept for future references. A
queueing model for DPL disk array is built.
Analytical results, supported by simulation, show
that the DPL disk array can provide the highest
‘write’ throughput when compared to RAID
levels 1, 4, and 5.

1 Introduction

As processor speed continues to increase, the I/O per-
formance of a computer system was recognised to be
more and more crucial to the overall system perform-
ance. Redundant arrays of imexpensive disk (RAID)
systems were proposed in the late 1980s to improve the
I/0 performance, and are now commonly used in oper-
ating systems such as Windows NT". Five levels of
RAID have been defined when RAID was first intro-
duced [1]. RAID level 5, one of the best performing
levels, can yield very high throughput for large data
transfers. However, the throughput reduces signifi-
cantly if the proportion of ‘write’ transfers increases for
such systems. This is because ‘write’ transfers require
the extra steps of reading back the old data and the old
parity, and the writing in of the new parity. This is
commonly called the small ‘write’ problem [2]. Moreo-
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ver, each ‘write’ transfer requires the simultaneous
access of two or more disks and thus has a much
higher probability of blocking by busy disks than a
‘read’ transfer. The average waiting time for all the
required disks to be free in a data transfer, called the
blocking time, is therefore longer for ‘write’ transfers.
Owing to these two problems, the traditional mirrored
disk array still provides the faster response than RAID
level 5 for database applications. Extensive research
efforts have been made on improving the ‘write’ per-
formance of RAID for conventional database systems.
A survey on these can be found in [3].

Unlike conventional database systems, similar
research on RAID for specific types of database sys-
tems is relatively limited. In this paper, we focus on
engineering database systems (EDS) and discuss the
design of a fast disk array architecture for these sys-
tems. A new architecture called dynamic parity logging
(DPL) disk arrays is proposed. As discussed in [4-7],
EDS has the unique ways of processing data and the
unique data storage requirements when compared to
conventional database systems. These unique character-
istics of EDS are carefully studied in the design of DPL
disk array. Without sacrificing the high storage utilisa-
tion (as found in RAID level 5), DPL disk array aims
at solving the small ‘write’ problem and reducing the
blocking time for ‘write’ transfers. DPL disk array also
has journalling capability, which means that some older
design versions are kept for future references.

2 DPL disk array architecture

2.1 Overview of DPL disk array

A DPL disk array has a total of N + 2 disks (Fig. 1).
Disks 1 to N are for data storage and are called the
data disks while disks N + 1 and N + 2 are mirrored
disks and are called the parity disks. This pair of parity
disks 1s used to store the parity blocks of parity sets. A
parity set is defined to be a collection of blocks for
which the parity sum of these blocks is always main-
tained to be ‘1’ for odd parity and ‘0’ for even parity.
In conventional RAID architectures, parity sets are
static and are usuvally formed by the blocks which are
on the same block row. However, parity sets in a DPL
disk array are dynamically assigned when block updates
are performed.

The working principle of DPL disk array for ‘write’
transfers is illustrated in Fig. 1. In our discussions, we
shall denote block j in disk 7/ as B(i, j), and its contents
b(i, ). Fig. 1 shows five successive updates on four dif-
ferent blocks B(3, 79), B(6, 93), B(8, 28) and B(6, 25).
Suppose the contents of these blocks have not been
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Fig.1 Example showing the working principle of DPL disc array for ‘write’ transfers
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modified since the last system backup and the new con-
tents for the five updates are identified as 5(3, 79),
b'(6, 93), b'(8, 28), b'(6, 25) and "(3, 79) respectively as
shown in the Figure. Noting that B(6, 93) and B(6, 25)
are located in the same disk, and B(3, 79) is modified
twice. Since second copies of the original block con-
tents H(3, 79), b(6, 93), b(8, 28) and b(6, 25) have been
stored in the tertiary storage, they can be restored if
necessary. These blocks can therefore be overridden by
new contents. The new contents however should be
protected by additional parity. Therefore, the mod-2
sum of the new contents of the first three updates, i.e.
b'(3, 79 ® b'(6, 93) ® b'(8, 28), is computed and saved
to the parity disks as a parity block. Fig. 2 shows the
structure of a parity block. It consists of a block header
which holds the block identifiers of its member blocks,
and a parity sum of its member blocks. The parity
block for the first three updates of our example is
shown in Fig. 2b. A parity set consisting of three data
blocks and one parity block is thus formed. This parity
set 1s identified as parity set 73 in Fig. 1. These blocks
can be assigned to the same parity set because they are
located on different data disks. If one of these data
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disks fails, the lost blocks in the failed disk can be
recovered from the remaining blocks of the parity set.
This parity set cannot include the next updated block
B(6, 25) because the parity set already has a member
block B(6, 93) in disk 6. We can, however, form the
next parity set 74 starting from this block update. In
our example, parity set 74 consisting of B(6, 93), and
B(3, 1003), and their parity sum (6, 25) ® 5"(3, 79) is
saved to the party disks (Fig. 3). Note that block
B(3, 79) was updated before. Its current contents
b'(3, 79) therefore cannot be overridden. Instead, we
store 5"(3, 79) to a reserved area of the disk called the
popular block area (PBA) at location B(3, 1003).
(Blocks which are updated more than once after
backup are called the popular blocks). As shown in
Fig. 1 each data disk has a PBA for storing new
updates of popular blocks in that disk. When a popular
block is written to the PBA, a block header pointing to
its original location on the disk is also written. This
pointer is used for restoring the content of the block
when system backup is performed.

If there is only one parity disk, all parity information
is lost when the parity disk fails and a very time con-
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suming backup of all data disks is required. This can
be avoided by using a pair of mirrored disks to store
the parity information. Table | summarises the proper-
ties of DPL disk array. These properties are mostly self
evident from the previous discussions.

Table 1: Properties of DPL disk array

1. These is no small ‘write’ problem

2. The blocking time for ‘write’ transfers is much smaller than
that of other RAID architectures

3. The parity disks contain a journal of block updates
4. Data will not be lost in single disk failures

5. The log volume will be significantly smaller than the
updated volume

6. The parity disks work sequentially under all conditions
7. No data is lost when the I/O controller fails

8. DPL Disk Array requires a brief period of data restoration in
case of disk failures

2.2 DPL disk array operation
Fig. 4 shows the organisation of DPL disk array.

Requests for data transfers are sent from host to the I/
O controller for /O operations. The I/O controller con-
sists of seven parts: an I/O queue, a local memory, an
[/O processor, a DMA controller, a block location
table, N data disk counters, and a parity disk counter.
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Fig.4 Organisation of DPL disk array

The I/0 queue is used for storing I/O requests and the
requests are served in a FCFS manner. The data asso-
ciated with a request (i.e. the new data for a block) is
stored in the local memory when the request is placed
on the queue. The local memory is also used for buffer-
ing the data sent to or read from each of the disks and
for storing all temporary data for processing. The
DMA controller functions as a multiplexer/demulti-
plexer and handles simultaneous data transfers to vari-
ous disks. The I/O processor is the heart of the I/O
controller. It is responsible for distributing works to
the disks for data transfers. It also performs necessary
data processing works such as parity computation. The
block location table is used for locating data blocks in
the disk array. It is a K, x N table, where K, is the
number of data blocks per disk. If there are K blocks in
a disk, the size of the PBA is equal to K = K — Kj
blocks. Each data block has its own entry in the block
location table, and each entry consists of a status bit
and a block address. For block B(,)) the contents of the
status bit and the block address are denoted as s(B(;;))
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and a(B(;) respectively. The status bit s(B(;;)) = 1 indi-
cates that the block has been updated since last system
backup and s(B(;;)) = 0 indicates otherwise. The block
address points to the current location of the block in
the disk array. In particular, a(B(;;)) = 0 indicates that
b(;;) 1s the most recently updated contents of B(;;) and
a(B(;)) points to a location in the PBA indicates that
B(;) has been updated more than once. One thing
worth noting is the size of the block location table. For
a typical disk having 2'° blocks (which corresponds to
a 1 GB drive with a block size of 2KB), each entry in
the table require 19 + 1 bits. The size of the block loca-
tion table for a N = 25 disk array system is 20 x 25 x
216 bytes, or 32MB. By using today’s flash RAM tech-
nology, it is practical to implement it on nonvolatile
memory units [§]. It is also possible to use hashing
techniques to reduce the size of this table. Its effect on
performance, however, is a topic for further research.
To facilitate the management of PBA, the 1/O control-
ler maintains a pointer for each data disk pointing to
the next available block in the PBA. We denote the
pointer value for data disk i by ¢;, where K, < ¢; = K.
Each time the 1/O processor attempts to write a popu-
lar block to PBA, the corresponding data disk pointer
is read to give the appropriate location for the block.
That pointer value is then incremented by one to point
to the next available block in the PBA. A similar
pointer ¢, is maintained for the parity disks which
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Fig.5 Queueing models for DPL disk array

3 Performance of DPL disk array

Fig. 5 shows the queueing model for a DPL disk array.
Requests for data transfers are sent from host and
become jobs for the servers. Job arrivals are assumed to
be a Poisson process with rate A, and are assumed to
target uniformly on all disks. The probability that a job
targets on a particular block of a disk is also assumed
to be the same for all blocks. A job is of the ‘write’
type with probability a and of the ‘read’ type with the
remaining probability. As we have mentioned before,
one parity block is written to the parity disks only
when the system finishes the construction of a parity
set. When a parity set is still in construction, the parity
sum of the parity set is kept in the nonvolatile memory.
Therefore, we only need to consider the data disk oper-
ation for each ‘write’ job because the access time of the
nonvolatile memory is much faster than that of the
data disks. For mathematical convenience we assume
that the service time for a job is exponentially distrib-
uted with service rates u,, and w, for ‘write’ jobs and
‘read’” jobs, respectively. We also assume that the /O
controller is fast enough so that it does not affect the
system performance.
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3.1 Mean system backup time

Suppose the system finishes backing up the data and
switches to normal mode at time 0. All blocks are
marked as unchanged at that time. Since all blocks are
requested with the same probability, the rate of ‘write’
arrivals targeting on a particular block y is given by:

__ Rate of “write” arrivals to the disk array
7= Total number of blocks in the disk array
A
= (1)
NKp
Let p, be the probability that there are k ‘write’
requests in (0, ¢) targeting on a particular block. With
the Poisson arrival assumption, we have
_ (Pyt)k ~t
TR @)
Consider block 7 in disk j. Let X(f) be the number of

block 7 images written to PBA of disk j in (0, 7). For k
+ 1 arrivals k images are written to PBA, we have

1 Jpotp for0<k<1
s =K ={mrm s

(3)
The expected value of X (1) is given by:

EIX;(8)] = vt — (1 — po) (4)
The variance of X(r) is given by:

VARuxwyziiPM;:kMQ-EMﬂg

= [yt — (1~ po)]? (5)
Next, let random variable X(7) denotes the total
number of blocks written to PBA of disk j in (0, #), or

Kp
X(t) = Z Xi(t) (6)

As the Xs are independent and identically distributed
random variables, by central limit theorem the distribu-
tion of X(f) can be well approximated by a Gaussian
distribution with mean m = Kp[yt — (1 — py)] and vari-
ance o = Kp[yt — (1 — p))? if Kp is not too small.
Therefore, the probability r(¢) that the PBA of disk j
does not overflow in (0, ¢) is given by:

Ky p—(o—m)?/(20%)
(7)

Finally, the probability that the PBAs of all N disks do
not overflow in (0, #) is simply given by #"(¢). Note that
system backup should be performed if PBA of any one
of the disks overflows. If we let random variable 7" be
the time which the system has to perform system
backup, the mean system backup time 7T is given by:

1@:4 (1= P[T < )t
:A (1= (1= V()

= / MV (t)dt (8)

As an example, consider a DPL disk array with N = 10
and Kp = 50,000. Fig. 6 plots the mean system backup
time 7'; (in days) against the ‘write’ arrival rate ai for
three different values of K. Simulation was also per-
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formed (not shown in the Figure) and it verified the
analytical results. From Fig. 6, we observed that T is
inversely proportional to oA for all values of K, shown.
We also observed that Ty is increased by about 45%
when the size of the PBA is doubled for all ‘write’
arrival rates shown. If T and the maximum number of
blocks being written between successive system backups
are given, K, can be determined from Fig. 6. Take for
an example, if T, = 5 (i.e. weekly backup is performed
for five working days per week) and the maximum
number of block updates per day is 50,000 blocks, the
minimum value of K, should be about 0.1K, or 5,000
blocks. If the maximum number of block updates per
day grows to about 70,000 blocks, K, should be at least
0.2Kp or 10,000 blocks. For systems with very high
update rates, says 350,000 blocks per day (or on the
average 70% of the blocks will be updated once per
day), daily backup should be performed for a K, value
of about 0.2K},.

8

tg days
~
T

Kp [Kp=005

(§] 1 1 L 1 1 3 1 I ) I
50 100 150 200 300 400 500
rate of write arrivals a), 1000 blocks [day

Fig.6 Mean system backup time against the rate of ‘write’ arrivals

3.2 Utilisation of the parity disks
Consider a particular parity set 4 and let |4, be the
number of elements in 4,. Then

The first The second
P[jAs| =m] = P |block is P [block is
new to A, new to A,
The m*® The (m + 1)t
P |block is P [block is not
new to 4, new to A,
:lxN—lxux...
N N
y N—-(m-1) L m
N N
m(n — 1)!
:N%N—;ﬂ 9)
The expected size L, of parity set A, is therefore
ol X om2(N - 1)
L= Y mPld =m = 3 -
(10)

Since only one parity block is generated for each parity
set, the average number of parity blocks generated in
T, denoted as B, is therefore

Oé/\TB
By = —— (11)

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 5, September 1997



For a small disk array of four data disks, we find that
the log volume is about 45% of the update volume
(1/L; = 0.45). For a large disk array of 24 data disks,
the log volume reduces to about 17% of the update vol-
ume (1/L, = 0.17).

3.3 Average delay

As discussed before, DPL disk array has no small
‘write” problem. This is because blocks can be directly
written to the disks without reading back the old parity
and old data. Therefore, it is reasonable to assume that
the same average delay is experienced by the ‘write’
jobs and ‘read’ jobs. With this assumption, we can use
the queueing model for RAID level 5 when o = 0 to
study the performance of DPL disk array. A detailed
analysis of RAID level 5 using exponential servers is
reported in [3]. By using the same analysis (with differ-
ent numbers of disks, i.e. N + 1 for RAID level 5 and
N for DPL disk array), we obtain the average delay for
DPL disk array.

Fig. 7 shows the average job delays for DPL disk
array and RAID level 5 when each architecture has
four data disks. We assume in this example that u,, =
u, = 50 jobs/sec for DPL disk array. For RAID level 5,
the service rates for ‘write’ jobs and ‘read’ jobs are
assumed to be 30 jobs/sec and 50 jobs/sec, respectively.
Since ‘write’ operations in RAID level 5 need to read
back old parity and data, the corresponding service
rate is lower due to extra disk rotation. We find from
Fig. 7 that DPL disk array outperforms RAID level 5
for most values of a. This is because there is no small
‘write’ problem in DPL disk array and the ‘write’ jobs
for DPL disk array only require the access of one disk.
When o = 1, DPL disk array provides maximum
throughput which is 2.5 times higher than that of
RAID level 5. When all the jobs are of the ‘read’ type,
we observe that RAID level 5 performs slightly better
than DPL disk array because data is distributed into
five disks for RAID level 5 and is only distributed into
four disks for DPL disk array. The difference in per-
formance for a = 0 will be smaller for larger Ns for
obvious reasons.

RAID-5

06

04 RAID-5
04
03y

delayD,s

02

01

== K . .
20 40 60 80 700

arrival rate, job]s

,:igl.z Delay throughput characteristics of DPL disk array and RAID
eve

3.4 Throughput performance using a precise
disk model

In our previous analysis disk service time is assumed to
be exponentially distributed. This is usually not true for
practical disk drives. To better understand the perform-
ance of DPL disk array and other RAID architectures
in practice, we perform throughput simulation on dif-
ferent RAID architectures by using a precise disk
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model. In our simulation, disks are not assumed to be
rotationally synchronised and their simulation parame-
ters are summarised in Table 2. Each disk access
involves a seek time, a latency and a data transfer time.
We use the seek profile reported in [9], and the latency
is assumed to be uniformly distributed. Data transfer
time for one sector is equal to the disk revolution time
divided by the number of sectors per track as given in
Table 2. With that, the mean service time for all jobs is
computed to be 20ms. As stated in [10], this kind of
disk modelling provides more than 94% accuracy when
ignoring the disk caching effect. Since disk caching has
little impact on ‘write’ performance (which we are most
interested in), we can thus assume that the system has
no disk caching mechanism.

Table 2: Disc parameters used in simulation

Cylinders per disk 1024 Revolution time 13.3ms
Single cylinder seektime  2ms
Average seek time 13ms
Max. data transfer rate 1.7MB/s

Tracks per cylinder 14
Sectors per track 48
Bytes per sector 512
Block size 2KB

Fig. 8 shows the maximum throughput per disk when
all four architectures use the same total number of 24
disks. When a = 0, we observe that RAID level 1 pro-
vides twice the throughput when compared to other
three architectures. The trade-off for this good per-
formance of RAID level 1 is the reduction of storage
capacity by half. When the proportion of ‘write’ jobs
increases, we find that the throughput of DPL disk
array remains constant while that for the other three
architectures drop significantly. When « = 0.4, DPL
disk array provides the highest maximum throughput
per disk. The reason is obvious that for each ‘write’
operation, all the other three architectures require two
disk updates while DPL disk array requires only one.
From these results we can conclude that DPL disk
array provides the best ‘write’ performance. We have
also performed another simulation and the results show
that for DPL disk array, at most 10% drop in through-
put is observed for all values of @ and g < 0.4. The per-
formance of DPL disk array is therefore quite
insensitive to f.
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Fig.8 Maximum throughput comparison for various RAID architectures

4 Conclusions

We propose in this paper a new RAID architecture
called dynamic parity logging disk array for fast EDS.
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DPL disk array solves the small ‘write’ problem found
in most RAID levels and can significantly reduce the
blocking time for ‘write’ transfers. It also has the jour-
nalling capability which is very desirable for EDS.
Analytical results on DPL disk array shows that it can
provide much faster ‘write’ response than RAID level
5. Smmulation using a precise disk model also showed
that DPL disk array provides the highest ‘write’
throughput when compared to RAID levels 1, 4, and 5.
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