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The problem of choosing buffer allocation strategies occurs in the design of any store-and-forward computer network. A good
buffer allocation strategy can reduce message blocking; and hence provide more efficient use of network storage resources. We first
summarize five buffer allocation strategies and then provide algorithms for determining the minimum buffer sizes required by these
strategies given that each outgoing channel must satisfy certain blocking requirements. After that, we compare them under different
network conditions such as heavy or light input traffic rate, uniform or non-uniform server utilization and different blocking
requirements. Guidelines on which strategy to use under different conditions are also given.
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1. Introduction

A computer-communication network consists of a set of nodes where computers and data-bases reside
and a set of links through which the nodes communicate. The design of such a network is extremely
complex due to a wide range of operating modes that have to be considered and a large number of design
parameters that have to be set. In this paper, we look at the problem of how to allocate a finite buffer for
storage in a computer network node. In particular, we want to know what strategy to use in different
conditions and how to minimize the total buffer size such that certain blocking requirements are satisfied.

Consider a typical node in a network as shown in Fig. 1. Here, we see two buffering regions. The input
buffer is used to store temporarily the received messages from other nodes and the output buffer is used as
a waiting room for the messages (arrived from neighboring nodes or generated locally) destined for other
nodes and are to be sent via the output channels.

Analysis of some input buffering strategies can be found in [1]-[3]. Concerning the study of output
buffering strategies, Kamour and Kleinrock [4] have studied recently five output buffer sharing strategies.
The five strategies will form the basis of our continued investigation. They are:

a) Complete Partitioning (CP): The entire finite storage is permanently partitioned among the L servers.

b) Complete Sharing (CS): Storage are assigned to arriving messages if any is available, independent of
the servers to which these messages are directed.

¢) Sharing with Maximum Queue Length (SMXQ): A limit is imposed on the number of buffers to be
allocated to each server.

d) Sharing with a Minimum Allocation (SMA): A minimum number of storages is always reserved for
each server and in addition, a common pool of buffer is to be shared among all servers.

e) Sharing with a Maximum Queue length and a Minimum Allocation (SMQMA): The strategy that

combines SMXQ and SMA.
They derived the blocking probabilities and average time delays for the first four strategies and compared
the first four strategies on a network node with two output channels, total buffer size equals to six and
under symmetric loading. They then concluded that sharing with appropriate restrictions on the contention
for space is very much desirable.

Earlier studies on similar strategies can be found in [5]-[8]. Lam [6], in particular, analyzed tHe CS
strategy with nodal functions such as time-out, acknowledgement and retransmission for both a single node
and in a network environment. Irland [7] proposed a square-root rule for choosing a common queue limit
for all channels in the SMXQ strategy. He then obtained the optimum common queue limit by exhaustive
search and showed that the loss probability obtained by using the square-root rule is very close to that
obtained by using the optimum common queue limit policy. A similar square-root rule is proposed by
Latouche [8] for choosing a common minimum allocation for all channels in the SMA strategy.

More recently, Kaufman [9] showed that the state distribution of the model obtained by previous
authors assuming exponential message length distribution is in fact valid for arbitrary message length
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Fig. 1. A message switching node in a computer network.
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distributions having rational Laplace transforms. He also showed that the state distribution holds for
completely arbitrary resource sharing policies. Schwartz and Kraimeche [10] and Kraimeche and Schwartz
[11] treat related subjects in a more general fashion, with improved computational algorithms for system
performance.

As will be shown in Section 2, we formulate the buffer allocation problem in the reverse way. That is,
given the blocking requirements for each channel, we want to find the minimum buffer size required and
the best strategy (among the proposed) that achieves this minimum under various conditions such as
asymmetric input traffic rates and different channel capacities. For each strategy, we need also to optimize
with respect to their associated parameters such as the set of maximum queue lengths {b,} for SMXQ and
the set of minimum allocations {a,} for SMA.

We now present a model for the five allocation strategies. Consider L M|M |1 queues sharing a buffer of
size B units (one unit per méssage). Queue i (i=1,,...,L) is characterized by a Poisson input stream of rate
A, and an exponential service time of mean 1/pC; with C, being the channel capacity (bits/s) and 1/ the
average message length (in bits). Customers served by server / are referred to as the type-i customers, and
blocked customers are lost.

The above queueing system can be described by a birth-death process with state vectorn = (n,, n,,...,n,)
where n, denotes the number of type-i customers in the system. The equilibrium state equation has the
following product form solution [12]:

P(n)= { Copi...ph forn E.FX
0 otherwise
where p, £ X,/pC,, the subscript x(x € {a, b, ¢, d, e}) refers to each of the five buffer allocation schemes,
and F, is the set of all possible system states with the use of scheme x.

In [4], the authors derived, for the first four schemes, 1) the normalization constant C,, 2) the probability
of blocking, 3) the system throughput and 4) the average delay. The results on SMA and SMXQ strategies
have certain restrictions and cannot be used in the strategy optimization problem described above. We
supply generalizations of the results in the appendix. In particular, the SMA analysis is generalized to
include (1) the case where some or all the minimum allocations a,’s may be zero and (2) the case where not
all p,’s are different. For SMXQ analysis, we derive the results without the assumption made in [4] that all
b,> B/2. We do this first for the case where all p,’s are different, and then for the case where all p,’s are
the same. The analysis of the SMQMA strategy is not found in [4]. We found that its derivation with the
above mentioned generalizations is a straight forward but tedious extension of SMXQ and SMA analyses;
and so would refer the readers to [13] for full details.

2. Algorithms for optimizing buffer allocation strategies

The equations derived in [4] supplemented by those derived in the appendix allow us to calculate the
performance measures { PB;} and {7} (the set of blocking probabilities and the set of delays on each
channel) given the set of parameters { B, {A,}, {C;}, {a;}, {b;}}. In the actual design, however, we are
usually asked to solve the reverse problem. That is, given the set of blocking and delay requirements such
as {PB,< PB}} and {T,<T*}, find the minimum buffer size required and the best strategy
(CS, CP, SMXQ, SMA) that will achieve this minimum, together with the set of optimum {a,} or {b,}.

Note that the delay constraints cannot generally be satisfied by the increasing or the decreasing of the
buffer size. Hence we assume here that we have already solved the delay problem by choosing {C;} large
enough to have the {7, < T*} satisfied. Note also that the SMQMA strategy requires the minimization of B
with respect to both {«;} and {b,}. We have not found a good way of doing it.

a) CP optimization algorithm

For partitioned buffers, each channel is a finite storage M|M|1 queue. For such a queue with capacity
K, it can be shown that the blocking probability PB is given by [14]:
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(1-p)p*
l_pK+1 ’

PB =

Let x; be the solution to the following equation:

(1—p,)p;"

Solving for x;, we have

1 PB* PB*p,
x;=——|In —In{1+——}||.
" np{ 1-p, 1-p

Let B* be the required buffer size for channel i, then B = [ x,]. The total required buffer size is the sum of
B/’s.

b) CS optimization algorithm

For CS, SMXQ and SMA strategies, we use the bisection method to search for the optimum total buffer
size B*. We begin with an initial feasible upper bound BU and an initial infeasible lower bound BL on B*.
If the midpoint between BU and BL satisfies the constraints, we set this midpoint as the new upper bound.
Otherwise, we set it as the new lower bound. Since PB is a monotonically decreasing function of B,
repeated bisection will eventually lead to a BU which barely satisfies the set of blocking constraints. This
BU therefore is the required B*.

For SMXQ and SMA strategies, { b,} and {«, } also affect the blocking probabilities. Hence they need to
be optimized as well with different algorithms. These algorithms will then be subalgorithms in the above
bisection algorithm.

For CS scheme, PB, = PB for all i. To satisfy { PB*}, we need only to consider the tightest constraint. let
PB* = min[ PB*]. The constraints { PB, < PB}} is then transformed to PB < PB™.

We may let B*(CP) be the initial upper bound. To find the initial lower bound, consider the two
queueing systems shown in Fig. 2. By the resource sharing theorem [15], we know that system B always
performs better than system A. The optimum total buffer size required by system B is therefore a lower
bound on that for system A.

c) SMXQ optimization algorithm

Let {b*) be the set of limits of queue size that achieves B*. We notice that B* < B*(CP)= BU, and
B* > max| B*(CP]= BL. Moreover, since b = B*(CP), i=1,...,L, we choose { B¥(CP)} as the lower
bound on { p}. The initial upper bound can be set simply as b* < B*(CP), i=1,2,...,L.

Next, we determine the feasibility of a new B value by checking if there exists a set { b, } that satisfies the
constraints. We distinguish two cases here:

Common O Cs

L2, : - O——cC
; sharing 2 X JMIM|I queue|—O—C

: buffer
AL pool O c, ] .
A=IN C=1xC;j
i=1 i=1
System A System B

Fig. 2. The Common Sharing and the M/M /1 systems.
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(i) If such a set { b, } exists, then B is feasible and becomes the new upper bound. We then turn to search
for the particular set of {b,} which minimally (or marginally) satisfies the constraints. That set of {b,} is
then the new lower bound on {b}}.

(i) If such a set does not exist, then B is infeasible and becomes a tighter lower bound. The bounds on
{b,} remains the same.

We now address the question of finding the new lower bound on b}. Decreasing the buffer size will
cause all PB, to increase. But a particular PB; can be decreased by increasing its associated b,. This increase
of b,, however, will cause all PB,, k # i, to increase. Thus for channel & that violates the constraint, we use
the bisection method to search for the minimum b, that just satisfies PB, < PB}. We again distinguish two
cases here:

1) If such a minimum b, exists, we turn to ‘fix’ the next channel that violates the constraint (notice that
the set of channels with constraints violated includes those induced by the increase of b, ). If all constraints
are satisfied with an appropriate choice of {b;}, we have case (i) above.

2) If such a minimum b, does not exist for some channel, i.e., there exists k, such that when b, is
increased to B, the kth constraint is still not satisfied, we have case (ii) above.

d) SMA optimization algorithm

Bisection method is again used for the search of B* = B* (SMA) and {a}} here. The procedure parallels
the SMXQ algorithm. To determine whether all af exist for a reduced buffer size B, we increase the
minimum allocations of all channels that violate the blocking requirements (obviously, PB; decreases as a;
increases) and check if the size of the common buffer pool (B — Yr . a,) is less than max[B*(CP)—aq,]. If
yes, {a*} does not exist for this buffer size and B is deemed infeasible. Zero and B*(CP) are obviously the
upper and lower bounds on a,. Note that when all a; equal to zero, SMA degenerates to CS.

3. Comparisons of strategies

We now use the algoritlims developed in the last section to find B* for each of the four strategies and
compare them under various conditions. The B*(.) results for equal p;, L = 4 and various combinations of
blocking probabilities are shown in Table 1. We see that when only one PB}* is tight, SMA will allocate g,
buffers to that channel, giving it improvement of B* performance over CS. When half or more of the PB}
are tight, this improvement is diminished. The SMXQ, on the other hand, continues to give improvement
over the CS strategy by limiting the queue sizes of the channels with looser bounds. We also showed the
values of the {a*} and { b*} that achieve these optimum buffer sizes. We note in particular, that a} is often
equal to zero and b* is often less than B* /2, thus justifying the need for the additional derivations in the
appendix.

Table 2 shows B* for L =4, asymmetric input rates and all PB* = 107°. We found that B*(CS)=
B*(SMXQ) = B*(SMA). Thus as long as all PB* are the same, the choice of strategy (except CP) is
insensitive to the asymmetry of the input traffic.

For L =4 and when input rates and blocking requirements are all different, we distinguish two cases:

Case A

Some channels have small p, and tight constraints (others have relatively larger p; and relatively looser
constraints). The results for this case is shown in Table 3 and the followings are observed:

1) Only one channel has small p; and tight constraint: Here SMA is indisputably better than SMXQ. In
other words, SMA strategy appears to be superior when there is a single light ‘user’ demanding a
stringent blocking requirement.

2) Half of the channels have small p, and tight constraints: Here, the performance of SMA and SMXQ
are very close to each other, but SMA is still better.

3) Three of the channels have small p; and tight constraints and one channel has a single heavy user
with a loose blocking constraint: Under this conditions, SMXQ shows its superiority over SMA. Thus
we should always limit the maximum queue size of a heavy user with a loose constraint.
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Table 1
Minimum buffer sizes (L = 4)
p PB* B*
CP CS SMA ay a3 a’ a% SMXQ b¥ b¥ b% b
E, 24 12 12 0 0 0 0 12 7 7 7 7
0.5 E, 37 29 25 0 0 0 13 25 6 6 6 20
E, 50 29 29 0 0 0 0 26 6 6 23 23
E, 63 29 29 0 0 0 0 28 6 20 20 20
E, 76 29 29 0 0 0 0 29 20 20 20 20
E, 40 21 21 0 0 0 0 21 12 12 12 12
E, 66 55 46 0 0 0 27 46 10 10 10 39
0.7 E, 92 55 54 0 0 1 1 50 10 10 38 38
E, 118 55 55 0 0 0 0 52 10 41 41 41
E, 144 55 55 0 0 0 0 55 39 39 P 39
E, 72 M 40 1 1 1 1 40 21 21 21 21
E, 138 116 94 0 0 0 60 94 18 18 18 81
085 E, 184 116 115 0 0 2 2 103 18 18 83 83
E, 240 116 116 0 0 0 0 110 18 83 83 83
E, 296 116 116 0 0 0 0 116 84 84 84 84
E, = All PB* =102
E,: PB¥=PB}=PB:=10"2 PB}=10"°
E,: PB}=PB}=10"2 PB*=PBf=10"°¢
Ey: PB¥=10"2 PBf = PB*=PB}=10"¢
E,: All PB¥=10"°
Table 2
Minimum buffer sizes (PB* =10"5)
Py P P3 P4 B*
CP CS. SMXQ, SMA
0.1 0.3 0.5 0.7 60 32
0.1 0.15 0.2 0.25 28 10
0.15 0.2 0.25 0.8 68 46
0.15 0.2 0.7 0.8 88 49
0.2 0.7 0.75 0.8 118 55
0.7 0.75 0.8 0.85 170 75
Table 3
Minimum buffer sizes (L = 4)
Case 4] P2 P3 P4 B*
Ccp Cs SMA SMXQ
0.15 0.7 0.75 0.8 95 76 48 67
1 0.3 0.7 0.75 0.8 100 76 50 67
0.5 0.7 0.75 0.8 109 77 55 68
0.15 0.2 0.75 0.8 82 72 49 62
2 0.3 0.35 0.75 0.8 92 73 53 63
0.5 0.55 0.75 0.8 112 75 64 65
0.15 0.2 0.25 0.8 66 66 49 42
3 0.3 0.35 0.4 0.8 82 67 56 45
0.45 0.5 0.55 0.8 104 69 67 51

Case 1): PB}=10"7, PBf = PB¥ = PB}=10"*
Case 2): PB} = PB}=10"7, PBf=PB}=10""*
Case 3): PBf = PBf=PB¥=10"", PBf=10""
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Table 4

Minimum buffer sizes (L = 4)

Case £ P2 o3 P4 B*

CP CS, SMA, SMXQ

0.15 0.2 0.25 0.8 59 46

1 0.35 0.4 0.45 0.8 67 47
0.45 0.5 0.55 0.8 73 49
0.2 0.25 0.75 0.8 91 52

2 0.5 0.55 0.75 0.8 101 54
0.65 0.7 0.75 0.8 111 58
0.2 0.7 0.75 0.8 115 55

3 0.3 0.7 0.75 0.8 116 55
0.5 0.7 0.75 0.8 119 56

Case 1: PBf = PBf = PB¥ =103, PBf=10"°
Case 2): PB¥ = PB¥=10"° PB}=PB;=10"°
Case 3): PB¥=10"7, PB3=PB}=PB;=10""°

Note that the amount of improvement (either SMA over SMXQ or SMXQ over SMA) depends also on
the differences of the blocking requirements.

Case B

This is the reverse of case A, i.e., some channels have small p, and loose constraints while the others have
large p, and tight constraints. Some specific cases are shown in Table 4. Here, the channels with smaller p;
(< 0.7) have PB* =107 and the channels with larger p, (> 0.7) have PB* = 107°. Under this condition,
we have B*(CS) = B*(SMXQ) = B*(SMA), or the choice of strategy (except CP) is not critical. For all cases
shows, a* = 0. The channel with the largest p,, because of tight blocking constraint, has b} very close to B*.
The others, with looser constraints, all have very small maximum queue limits. Thus for the case
corresponding to the first row of Table 4, B* is equal to 46 and b* is equal to (4, 5, 5, 45).

4. Summary

After reviewing the five buffer allocation strategies found in [4], we presented, in the appendix some
generalizations of the SMA and SMXQ analysis. We then proposed the design problem in Section 2 and
gave four algorithms for the optimization of the four strategies studied. These algorithms are then used to
obtain the performance comparisons in Section 3. Among the major conclusions are:

1) As long as the blocking constraints are the same for all channels, the choice of strategy (except CP)
appears to be insensitive to the asymmetry of the input traffic.

2) When there exists a heavy user with a loose blocking constraint (in relative sense), SMXQ appears to
be superior to SMA.

3) When there exists a light user with a tight constraint, SMA appears to be superior to SMXQ.

4) When no user as described in 2) and 3) is present, the SMXQ, SMA and CS all appear to give
comparable performance.

5) From 2) and 3) we suspect that when there exists a few heavy users with loose constraints, a few light
users with tight constraints as well as some users in between, SMQMA strategy would prove to be superior.
Further study is needed, however, to make this statement conclusive.

Appendix
A. SMA strategy—supplementary derivation

The SMA strategy allows the sharing of a pool of B’ buffers, and with a; buffers permanently allocated
to the type-i customers (total buffer size B is B=B’+ X% a,). As a result, the set of feasible states
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becomes

L
={"|Z max[0, n, —a,] < B’, Osn,sB’+a,}. (1)
i=1

Let a,> 0 (rather than a;>1 as assumed in [4]), we evaluate C; ! by first partitioning F, into disjoint
subsets as follows:

Let #=(1,2,...,L} and A= {ila,>0,i€Z). Let A’ £%- A4, or A’ = {i|a,=0,i€ZL}. Further, let
#A be the number of elements in set 4. Then the number of all possible subsets of A is 2%4; and we denote
the set of all possible subsets of 4 as X where X={X), X,,...,X,#A4}. Define Y, = X,Ud, m=
1, 2,...,2%4 We associate with each Y, a subset of F, defined as

S,={ne€F)nz>a, i€Y,;n<a, i¢€Y,}. (2)

]

Note that S, is the set of all feasible states with queues that belong to Y, having lengths greater or equal to
their respective minimum allocations a; and the rest (i.e., i € Y,) less than a,. It is readily (shown that

1)S,NS, =3 form#nand?2)F,= _1 S,,. Therefore,
232/4
Jl= X ()= X X (reit). (3)
neF, m=1nes,,

The equation for the case where all p,’s are different is identical to that derived in [4] with X,, replaced by
Y, and R by #A. We now derive the result for all p, = p and all @, > 0. For this case, we first define C, (k)
such that

Colk)= Y [Mcy p"]. (4)

nepD

where D= {nlX;cy n;=k}.
Let #Y,, be the number of elements in set Y,,. Then

C, (k)= (k;fyle)p". (5)

From (3) and the definition of S, we have

Q%4 a,—1
Cd_1= Z [Hie Y., Z P/jl[nieympu' Z (H:‘e Ympn')]7
=0

m=1 neD’
where
= {n| Y n,sB’}.
i€y,

Noticing that the last summation is just ©2_,C,,(k), we have finally

28/(

Cd_lz Z [Hieg)'m( 11—_ ) IGY(p )kzo(k+#y ll)pk:| (6)

m=1 P

which is readily computed.
The case where only some p,’s are equal and others different can also be treated. Define E as the set of
servers with equal p, or

E={ilp,=p}
and let E€ and Y be the complement of E and Y,, respectively; in other words,
=% E

and
=%Y,.
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Then, for each m in the summation of (3), we partition the set of servers into four disjoint subsets:
Y, NE, Y,NE*, YSNE, and Y:NE* and partition the products in (3) according to these four subsets. Thus
if there are D sets of equal p;’s, we can similarly define

E,={ilp,=d,}, k=1,2,....D

and partition the set of servers into 2°*! disjoint subsets.
B. SMXQ strategy—supplementary derivation

Evaluation of Q(K), defined as Q(K)=X,c p0}"...p3 where D = {n[C_ n,= K, 0 < n, < b,}, is central
to the analysis of SMXQ strategy. In this subsection, we derive methods for calculating Q(K') without
assuming all b, > B/2. We do this first for all p,’s different and then for all p,’s equal. These results will be
used in the next section for searching the optimum queue size limit b for each server. Our point of
departure for all p,’s different is (24) of [4]:

L

i G(K)tK=( 2} Q(K)tK) Yo+ () T+ ) (7)

i=1
We proceed by first collecting terms of the same powers of 7 of the second summation on the RHS and
write it as

Y= ¥y,

with

k)= X GCp/"™ (8)
(i.jyeD(k)
and
D(k)={(i./)1j(+b)=k}.
We can easily see from (8) that y(0) = X ,C, = 1. The remaining y(i)’s can be evaluated from (8) by the
following algorithm.

BEGIN
B

k’=1+b i=1,2,...,L;

y(i):=0 i=1,2,....B;

FORi:=1to L DO

FOR: =1t0k, DO
y(j(1+5)):=y(j(1+b))+Cp/ "

END

With y(k)’s found, we can substitute Y(¢) into (7), equating equal powers of ¢ and obtain the following
recursive formula for Q(K):
K—1
0(K)=G(K)- X Q(j)»(K—j). K=0,1.....B. (9)
j=0
For the case all p, = p, we have
Q(K)= X pp..ppr=p" X 120%0(K). (10)

Zn =K Zn,=K
0<n,<b, 0<n,<b,
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Define
g(t) S (T+1+ ...1%).

(11)

Expanding the product, we recognize Q(K ) as the coefficient of ¢*, or

b,

g(1)= ¥ 0(K)i¥.
K=0

(12)

The following is a recursive procedure for representing ¢(¢) as a power series, and from that Q’(K') can be

picked out. Define
Yo(r)=1

and
Y, (1))=Y,
Then
hl
Y, ()=107, X 1" =q(1).
k=0
Let the power series expression for Y, (¢) be

bl
Yn(t)zzyn.[t[’ n=172»-~-sL
=0

then from (13), we have

b, b,
)/n(z)= Zynfl.jljz tk'
Jj=0 k=0

b/l
()Y f on=1,2,3,....L.
k=0

(13)

(14)

(15)

In (16), let I=j + k, then k =/ — j; and upon substituting into (16), we have

2b, /
!

Y, ()=} > Y10t

[=0] j=max(0,/—b,)

Compare with (15), we have
!

Y:1~/: Z Ynfl.j’ n=2,3,...,L

Jj=max(0,/—-b,)
Starting from y,, = 1, we have from (18)
1 /=0,1,2,...,by,
Nha= .
0 otherwise.

(17)

(18)

Repeated use of (18) gives { »,,},...,{ ¥, ). Finally, from (10) and (14), we have

Q(K) = Q/(K)PK =)’L.KPK-
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