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Fig. 7. Bit error probabilities against the transmission efficiency, for binary
(continuous line) and PPM transmission (dashed line). The two techniques

exhibit approximately the same bandwidth expansion factor (8 = 8’ =
12.4).

are depicted in continuous and in dashed lines, respectively.
These curves exhibit an intersection at p = p’ = 1.55 bit/
photon. For higher values of the efficiency, the binary
transmission appears, even in this case, to be preferable. On
the other hand, for lower values of the efficiency, the PPM
transmission achieves bit error probabilities extremely low. p
and p’ increase as N decreases, as expected. When N = 1,
which is the smallest integer values for N, the PPM
transmission gives p’ = 2.5 bit/photon, whereas the binary
transmission approaches an efficiency p more than three times
larger.
V. CONCLUSIONS

The objective of this paper was to investigate the maximum
transmission efficiency one can reach over an ideal photon
counting channel, having fixed the bandwidth expansion
factor. First, the ideal situation, represented by Shannon
theorem for discrete channels, has been analyzed. A low
average number of photons per pulse is demonstrated to be
preferable. A binary transmission, with different a priori
probabilities of the two transmitted symbols, exhibits a higher
efficiency than that of an orthogonal PPM transmission, whose
M-ary symbols are equiprobable, for an equal bandwidth
expansion.

Then practical transmissions have been considered. The
PPM technique can be very efficiently coded, and, in some
situations, is characterized by a bit error probability lower
than that of the uncoded binary technique. However, uncoded
binary transmission remains extremely attractive for the
achievement of ultra-high transmission efficiencies.
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Comments on ‘‘Fundamental Conditions Governing
TDM Switching Assignments in Terrestrial and
Satellite Networks’’

SOUNG C. LIEW

Abstract—The problem in the above paper! is formulated in terms of a
max-flow network problem. The main theorem in the paper can be
proved quite simply using the max-flow-min-cut theorem once the proper
way of looking at the problem is identified.

An alternative, and perhaps simpler proof of Theorem I of
the above paper! is presented. This proof uses the max-flow
network formulation. Since max-flow is a well-studied combi-
natorial optimization problem, it may shed some light on
designing good algorithms for the problem concerned.

Unless otherwise defined, the notation here is adopted from
the paper. The assumptions are listed here for reference

M M
3 t,=NC 1)
i=1j=1
M
S 4=C, i=ltoM @
j=1
Qz(g) M
S 4=K,C, g=110G 3
=T j=1
M
S 4=C, j=1toM @)
i=1
)
Y Y 4=K,C g'=1tG". ©)
i=1j=0/"

In addition, (2) and (4) are satisfied with equality only if P; and
Pj’ are equal to 1, respectively.

As suggested, it suffices to show how to find a 0-1 matrix
T = (t,.}) < T = (&) such that

©

Paper approved by the Editor for Satellite Communications and Coding of
the IEEE Communications Society. Manuscript received November 1, 1987;
revised April 17, 1988.

The author is with Bellcore, Morristown, NJ 07960-1910.

IEEE Log Number 8825340.
' K. Y. Engand A. S. Acampora, IEEE Trans. Commun., vol. COM-35,

[21 I.R. Pierce, E. C. Posner, and E. R. Rodemich, ‘‘The capacity of the pp. 755-761, July 1987.

0090-6778/89/0200-0187$01.00 © 1989 IEEE



188

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Xl Y1
51 Tl
K
K,
Xa,(2)
Yai(2)
S . * T
K, . . K,
. yn',(ﬂ') .
8 . . t
3 . Xo.(o) 1 . K,
1 AN
Sﬂ 1 X; @
. 1
Ko : Kz,
Se T

! f f

arcs of arcs of arcs of
capacity 1 infinite capacity 1
capacity

Note: implicit directions of arcs are from left to right.

Fig. 1. Max-flow network model.
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The associated max-flow network that will be used in the
proof here is depicted in Fig. 1. Stage 3 models the traffic ¢;.
Arc (X;, Y;) of infinite capacity? exists iff #; > 0. Stage 2
models the traffic originating from the individual sources. Arc
(S;, X;) of capacity 1 exists iff X; belongs to the gth source
group and Eﬁl t; > 0, i.e., there is traffic out of Xj.
Similarly, in Stage 4, arc (Y}, Tg,) of capacity 1 exists iff Y
belongs to the g’th destination group and =¥ ;8 > 0. Finally,
in Stage 1, for each g such that 1 < g < G, introduce an arc
(s, Sg) of capacity K, and in Stage 5, for each g’ such that 1
=< g’ = G’, introduce an arc (T,., ¢) of capacity Kg',.

The max-flow problem is to find the maximum flow from
node s to node ¢ subject to the arc-capacity constraints. Let
Fy,y; denote the flow from node X; to node Y; in Stage 3. Fi;y;
is guaranteed to be either O or 1 for most max-flow algorithms
thanks to the total unimodularity of the associated node-arc
incidence matrix [1]. We claim that the matrix (Fy; yj) is a
valid candidate for T”.

The reader can easily verify that the arc-capacity constraints

2 Alternatively, we may assume unit capacity, but the proof later needs to
be meodified.
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guarantee the left sides of (6), (7), and (8) to be less than or
equal to the corresponding right-sides. Therefore, the result-
ing solution will not violate the conditions dictated by the
original physical situation.

Theorem I is proved by showing that the maximum flow is
N. A cut partitions the nodes in Fig. 1 into two sets, Z and
Z: s € Z and t € Z°. The cut value is the sum of the
capacities of the arcs originating in Z and terminating in Z°.
The max-flow-min-cut theorem says that the maximum flow is
equal to the minimum cut. We know that the maximum flow
cannot exeed N. Hence, to prove Theorem I, it suffices to
show the value of any cut is at least N.

Consider Fig. 2 in which we show a typical cut. Four sets of
node groups are defined as follows: § = {S,:1 < g < G}, T
={T,,:1 =g’ <G}, X ={XsZM £;>0],and Y =
{Y;:2M t; > 0]. A cut partitions each of these sets into two
sets, the set of nodes belonging to Z and those belonging to Z*.
Since an arc from X to Y has infinite capacity, we will
consider only cuts such that there are no arcs from X N Zto Y
N Z¢. The lower part of Fig. 2 depicts the situation. Each
arrow, called a composite arc, represents a group of arcs
from one node set to another. The letter adjacent to a
composite arc, not incident on s or ¢, is the number of the arcs
it contains. The letter adjacent to a composite arc incident on s
or ¢ is the sum total of the capacities of the arcs it represents.
The letters will be referred to as the capacities of the
composite arcs. Note that the capacity of a composite arc in
Stage 3 is finite even though the capacity of the arc it contains
are infinite.

In order to simplify the proof, we will use the following
mental picture of messages traversing the network shown in
Fig. 1. For each pair (Xj, Y;), we have a set of ¢; messages.
All messages corresponding to a pair (X;, T;) will traverse the
unique path (s, S;, Xj, Y;, T/, ¢) in the network in Fig. 1
where g and g’ are such that Q,(g) < i < O(g) and Q/(g")
= j = Q;(g’). Equation (3) implies that there are exactly
K, C messages that traverse arc (s, S,) in Stage 1. Similarly,
there are exactly K, C messages that traverse arc (T, ). By
(2) and (4), there are no more than C messages that traverse
any arc in Stages 2, 3, or 4. The above facts lead to the
following observation.

Observation 1: Let x be a composite arc and r be the total
number of messages that traverse the group of arcs represented
by x. We refer to r as the number of messages that traverse
composite arc x. If u is the capacity of x then r < uC, with
equality if x is in Stage 1 or Stage S.

Note that by conservation of messages, the number of
messages entering equals to the number of messages leaving a
set of nodes that does not contain s or .

The value of an arbitrary cut, as shown in the lower part of
Fig. 2, is

b+e+!+n. &)
Also, by definition, we have
G
n+0=2 Kg,=N. (10)
g =1

Proof of Theorem I: We now show b + e + I = o0 and
therefore the cut value b + e + /| + n = n + o = N.
Referring to Fig. 2, Observation 1 implies the number of
messages that leave T N Z°¢ is exactly oC. By the conservation
of messages, the number of messages entering 7T M Z° must
also be oC. These messages come from Y, and of these, the
number of messages from Y N Z is at most /C by Observation
1. Furthermore, all messages from ¥ N Z° must come from X
N Z°. Hence,
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No arc from X NZ to Y N ZE for a noninfinite flow.
Fig. 2. An arbitrary cut with value below co.

the second term on the left side sums to the number of
messages that go into X N Z°¢. But the messages that go into X
N Z° come from S. There are at most eC messages from.§ N
Z, and those from § N Z° must not exceed bC. Hence,

M
bC+eCz= > S ¢

X E€EXNZE j=1
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Applying the above to (11), we have b + e + / = o0 and the
proof is completed.

CONCLUDING REMARKS

Using the algorithm in [2], the complexity of the max-flow
problem is O(M?). Since there are C time slots, each requiring
solving a max-flow problem, the complexity of the overall
problem is O(CM?). Solving the C individual max-flow
problems separately is wasteful and further work on how to
integrate them together will be worthwhile.
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Encoding of Images Based on a Lapped Orthogonal
Transform

PHILIPPE M. CASSEREAU, DAVID H. STAELIN, AND
GERHARD DE JAGER

Abstract—Unitary transform image coding has been successfully
applied to image data compression. However, traditional block transform
image coding systems generate artifacts near block boundaries which
degrade low bit rate coded images. To reduce these artifacts a new class of
unitary transformations, defined here as lapped orthogonal transforms
(LOT), has been investigated.

The basis functions upon which the signal is projected are overlapped
for adjacent blocks. An example of a LOT optimized in terms of energy
compaction was numerically derived using an augmented Lagrangian
optimization algorithm.

Using this LOT, intraframe coding experiments for 256 x 240 pixel
images were performed at bit rates between 0.1 and 0.35 bits/pixel. The
LOT improved the coded image subjective quality over other transforms
such as the discrete cosine transform (DCT) and the short-space Fourier
transform (SSFT). The LOT was also used in interframe full-motion
video coding experiments for head and shoulder sequences at 28 and 56
kbits/s. Experiments designed to measure the subjective quality assess-
ment showed that significant improvement resulted at low data rates and
if no motion compensation were used. However, the improvement was no
longer significant at 56 kbits/s with full motion compensation.

I. INTRODUCTION

Transform coding is recognized as one of the most
successful methods for digital image data compression. In
transform coding systems the digital video signal is typically
divided into blocks, perhaps containing 8 X 8 pixels, which
are then subjected to an energy-preserving unitary transforma-
tion. The aim of the transformation is to convert statistically
dependent picture elements (pixels) into a set of essentially
independent transform coefficients, preferably packing most
of the signal energy (or information) into a minimum number
of coefficients. The resulting transform coefficients are
quantized, coded, and transmitted. At the receiver the video
signal is recovered by computing the inverse transformation
after decoding the transmitted data [1]-[3].

The input signal F represents the digitized image which can
be viewed as a matrix of size R X R where R is the resolution
of the image. The representation of the video signal in the
transform domain is the matrix F; comprising R X R real
transform coefficients. With a separable two-dimensional
transformation, the matrix F, is derived as follows:

F,=TFT! )

where T indicates the transposed matrix. The R X R matrix
T is unitary and represents the one-dimensional transform
kernel. The rows of the transform matrix 7T are defined as the
transform basis functions.

In most transform coding systems, prior to transformation
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