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Packet Switch Modules
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Abstract—This paper analyzes the performance of a class of asym-
metric packet switch modules with channel grouping. The switch mod-
ule considered has n inputs and m outputs. A packet destined for a
particular output address (out of ¢) needs to access only one of the r
available physical output ports; m = gr. The motivation for the study
of these switch modules is that they are the key building blocks in many
large multistage switch architectures. We concentrate on the perfor-
mance of input-buffered and output-buffered switch modules under ge-
ometrically bursty traffic. A combination of exact derivation, numeri-
cal analysis, and simulation yields the saturation throughput of input-
buffered switch modules and the mean delay of the input-buffered and
output-buffered switch modules. Tables and formulas useful for traffic
engineering are presented. Our results show that increasing the num-
ber of output ports per output address (r) can significantly improve
switch performance, especially when traffic is bursty. An interesting
observation is that although output-buffered switch modules have sig-
nificantly better performance than input-buffered switch modules when
there are equal numbers of input and output ports, this performance
difference becomes significantly smaller when the switch dimensions
are asymmetric.

I. INTRODUCTION

ECENT research activities in asynchronous transfer mode

(ATM) switching have progressed to the study of large
switch architectures constructed of interconnections of smaller
switch modules [1}-[4]. In many cases, the underlying switch
modules are of asymmetric dimensions in that there are unequal
numbers of input and output ports. In addition, channel group-
ing, the technique of allocating more than one output port to
each output address, is often used to improve switch perfor-
mance. To gain insight into the design of large switch architec-
tures of this type, it is important to understand the performance
of the individual switch modules thoroughly.

Toward this goal, this paper considers the performance of a
general class of asymmetric packet switch modules illustrated
in Fig. 1. There are hs input ports consisting of A input groups
of s input ports each, and gr output ports of g output groups of
r output ports each. To achieve acceptable performance with
the overall switch architecture, it is necessary to choose the var-
ious parameters of the basic switch modules properly. The ob-
jective of this paper is to quantify the performance of these
switch modules as a function of the switch dimensions, buffer-
ing strategies, and traffic characteristics.

Before proceeding further, for motivation., we give three ex-
amples of switch architectures in Figs. 2-4 which make use of
the class of switch modules considered here. Fig. 2 is a modular
nonblocking switch architecture proposed by Lee [1]. The first
stage consists of Batcher-banyan switch modules of dimensions
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Fig. 1. The asymmetric switch module with channel grouping.
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Fig. 2. Two-stage nonblocking modular switch architecture.

n X nk (i.e., with respect to the switch module in Fig. 1, s, r
— 1, h = n, and g — nk). The second-stage switch modules
are statistical multiplexers of dimensions k X 1. Fig. 3 is a
general three-stage switch architecture proposed by Liew and
Lu [2]. The dimensions of the first-stage, second-stage, and
third-stage switch modules are n X m (m > n), l X I', and m’
X n'(m' > n'), respectively. Here, a channel group of r (r")
channels interconnects switch modules of adjacent stages. The
structure is such that if » and r' were to be 1, there would be
one and only one path between any input and output. For better
performance, however, r, r' > 1 (in general) and packets have
several alternative paths from their inputs to their destination
outputs. Finally, Fig. 4 is a three-stage Clos switch architecture
[4] that employs asymmetric switch modules at the two outer
stages, and symmetric switch modules at the middle stage.
There is no channel grouping internally, however. In all three
schemes, asymmetric switch modules at the first stage result in
internal line expansion which improves the performance of the
overall switch architecture. It is also worth pointing out that the
class of asymmetric switches we study here can also be used as
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Fig. 4. Three-stage Clos switch architecture.

stand-alone concentrators or expanders rather than components
of an overall switch.

Referring to Fig. 1, to the extent that packets at different in-
put ports within the same group are uncorrelated, the switch
module reduces to that shown in Fig. S in which s = n. For
simplicity, this paper focuses on the structure shown in Fig. 5,
assuming any correlations between packets of different input
ports are small and negligible. An output group [2], [S5] corre-
sponds to an output address, and a packet can access any of the
r output ports of its output address. In any given time slot, at
most r packets can be cleared from a particular output group,
one on each of the r output ports. Furthermore, we assume
packets are destined for a particular output group (address)
rather than a particular output port. That is, it does not matter
which particular output port a packet accesses as long as the
output port belongs to the correct output group. Reference [2]
provides several designs of channel-grouping switch modules.
It turns out that channel-grouping switch modules have smailer
complexity (in terms of switch element counts) than ordinary
switch modules of the same dimensions.

We focus on the performance of the input queueing and out-
put queueing buffering strategies under geometric traffic. The
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Fig. 5. The asymmetric switch module with uncorrelated inputs.

paper is a generalization of the work reported in [6]-[8] in two
respects: the switch dimensions as well as the traffic character-
istics have been generalized. With input queueing, an arriving
packet enters a FIFO buffer on its input and waits for its turn
to access its destination output. With output queueing, a logical
FIFO buffer is allocated to each output group, and arriving
packets destined for this output group are immediately placed
into its FIFO. For simplicity, we assume infinite buffer queues
for both input queueing and output queueing in our mean delay
analysis.

The organization of this work is outlined as follows. Section
II describes the geometric traffic model that we use to model
bursty traffic. Section III investigates the maximum throughput
and mean delay of input-buffered switch modules, and discusses
the maximum throughput degradation due to head-of-line
blocking under various settings. Section IV considers the mean
delay of output-buffered switch modules. Finally, Section V
concludes this work and discusses issues that deserve further
attention.

II. TRAFFIC MODEL

We consider ATM transport in which data streams are parti-
tioned and transferred in cells (or packets) of fixed size. On a
conceptual level, time is therefore divided into slots corre-
sponding to the cell transmission time. For peiformance anal-
ysis, we assume synchronous switch operation in which cells
arrive at the beginning of each time slot, and cells gaining ac-
cess to their output lines are cleared by the end of, each time
slot. To quantify the traffic characteristics, we focus on the uni-
form geometrically bursty traffic model in which an input alter-
nates between active and idle periods of geometrically distrib-
uted duration [9]. During the active period of an input, packets
destined for the same output arrive at the input continuously in
consecutive time slots (see Fig. 6). Termination of the active
period is a renewal process, and it occurs with probability p
after each active time slot. Thus, the probability that the active
period (burst) will last for a duration of i time slots ( consists of
i packets) is

Piy=p(1-p) ", i=z=1 (1)

Note that we assume there is at least one cell in the burst. This
geometric burst-length assumption yields a mean burst length
of

I =Ez;= 2 iP(i)=1/p. (2)
i=1

The idle period is also geometrically distributed and is charac-

terized by another parameter g. The probability that an idle pe-

riod lasts for j time slots is

0(j)=q(1-q). j=o0 (3)
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Fig. 6. Geometric packet arrivals to an input.

Unlike the duration of an active period, the duration of an idle
period can be 0. The mean idle period is given by

=3

E = 2j0(j) = (1= 9)/q. (4)
Given p and g¢. the offered load p can be found by
o = Ep/(E, + Ep). (5)

For simplicity, we focus on uniform output destination distri-
bution in which any burst has equal probability of being des-
tined for any output group. In addition, there is no correlation
between different bursts. Note that the uniform random traffic
model discussed in [6] and [7] is a special case with p = | and
q = p, i.e., the burst length is deterministic, and it is always
one packet long.

III. INPUT QUEUEING

In this section, the maximum throughput of asymmetric in-
put-buffered switch modules with channel grouping is obtained
by numerical analysis, and the mean delay by simulation.

In an input-buffered switch, when there are multiple packets
at the heads of input queues destined for the same output group,
only up to r packets may access the output group. As a result,
some inputs idle because the first packets in their queues are
blocked. Meanwhile, subsequent packets in the queues, which
may be destined for other available output groups, are also
blocked because of the FIFO queueing discipline. This is often
referred to as head-of-line blocking [6], [7], and it is well known
that head-of-line blocking limits the maximum throughput of a
symmetric input-buffer switch (r = 1, n = g = ) to 0.586
under the uniform random traffic condition (p = 1). Although
the maximum throughput when » = 1 can be derived in closed
form (including when p # 1), a general closed-form solution
is not possible when r > 1. Nevertheless, a similar approach
could be taken to a point where the solution could be found by
numerical analysis. The same analysis yields the throughput of
the switch module as a concentrator (n > g) or an expansion
network (n < g).

To find the maximum throughput, we consider the situation
in which the input queues are saturated so that one can always
find packets in every queue. In particular, there is always a
packet at the head of each queue, waiting to access its desti-
nation. Only after this packet is cleared can the next packet

~move to the head of the queue.

We define the free input queues to be input queues with pack-
ets transmitted in the previous time slot. The subsequent packet
in a free input queue immediately moves to the head, ready to
access its output destination in the current time slot. This sub-
sequent packet could be from the same burst as the cleared

packet, in which case the destination remains the same, or it
could be from a new burst, in which case it is equally likely to
be destined for any output group. For our traffic model, the
probability that the subsequent packet belongs to the same burst
is givenby 1 — p = (/ — 1)/l. Now, strictly speaking, for any
finite buffer queue and / > 1, the mean burst length of bursts
that arrive at the head of queue is not /, even though the mean
burst length of the incoming traffic to the queue is /. This is
because of the finite packet loss probability due to buffer over-
flow. For instance, if we overload the switch with a load of 1,
then the mean burst length that arrives at the head of queue is
actually /p*, where p* is the maximum allowable throughput.
As far as analysis is concerned, the situation becomes even
worse because the burst length is not strictly geometrically dis-
tributed after packets are dropped. Nonetheless, the queue
would also saturate even if the offered load is just slightly over
p*, and in this situation the effective burst length would still be
close to 7 and roughly geometrically distributed. For simplicity,
therefore, we assume this to be the case for our saturation anal-
ysis. This assumption is further justified by later results which
show that the maximum throughput approaches an asymptotic
value very quickly as / increases; that is, the maximum through-
put is not a strong function of / for moderate ! values.

We now set up the framework for derivation of the maximum
throughput. Consider a tagged output group i. Let 4; be the
number of new bursts destined for output group i that move into
the heads of free input queues in the beginning of time slot j.
Note that under random uniform traffic (I = 1), 4; is also the
number of packets destined for output group / since there is no
distinction between bursts and packets. Under bursty traffic (/
> 1), A; does not include packet arrivals that belong to the
same bursts as the packets just cleared. Let D} be the number
of bursts that terminate at the end of time slot j. Under bursty
traffic, D/ is the number of departed packets minus departures
which are subsequently replaced by packets of the same bursts.
Let C; be the number of head-of-line bursts that are destined
for output group i at the beginning of time slot j, and let G| be
the number of head-of-line bursts left at the end of time slot j.
Then,

j'+| =Gj+A}+l (6)
where
G;=Cj; - Dj. (7)

Note that C} includes the bursts that are granted output access
as well as the bursts that are blocked during time slot j.

By the assumption that packet output destinations are uni-
formly distributed across all output groups, all output groups
face the same situation, and the superscript i can be dropped.
The subscript j can also be dropped as the system approaches
equilibrium. To simplify analysis, we will assume n, g = o
while keeping a fixed value of g /n. This approximation is valid
when n is large (e.g., n = 16). As in [8], it can be shown that
lim, ,— o Pr[4 = k] = e "(pp,)*/k!, where pp, is the aver-
age arrival rate of new bursts, and p, the offered load per output
group. For n = oo, there is no correlation between G and A4,
and the moment-generating functions of the parameters in (6)
are related as follows:

C(z) = G(z) 4(2) (8)
where
A(Z) — e*pp(){l*?). (9)
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The key to finding the maximum throughput lies in the ob-
servation that the sum of the numbers of backlogged bursts over
all output groups at the beginning of each time slot must be n,
because there is always a head-of-line burst at each of the n
input queues under the saturation condition. Since C'(1) is the

expected number of backlogged bursts per output group, we
have

C(1)=n/g. (10)

The maximum throughput per output group can be found by
equating C'(1) obtained from the analysis based on (8) with
n/g.

Let us define P, = Pr[C = i]. Then,

G(z)

I

__ZO G(z|C = i)P,

i

P, + [p + (1 —p)z]P,

2
+ {pz + <1>p(1 -p)z+ (1~ p)zzz}Pz

o r—1 5
+lp 4 . p (1 =p)z
<r—l
+
2

+ E]O zj|:p’ + <:>p’"'(l - p)z

r

2

)p""(l - p)’2?

+

AN

)p"z(l -p)2’

+o 4+ (1 ‘p)rZ'}Pru'

po(2r = ppo) — r(r = 1)(2 —p) +

c(1) =

From (8) and (11), we obtain

. {Z’[p +(1-p)z] =2[p+(1 —p)Z]r}P,-

/A~ [p+ (1 - p)z]’

r

C(z) =1

(12)

The equilibrium probabilities P;,, i = 1, -+, r — 1, can be
obtained using a standard method described as follows. It can
be shown by Rouche’s Theorem [10] that the denominator of
C(z)hasr — 1zeros, g, k = 1, » - -, r — 1, with magnitudes
less than 1. Since C(z) is a moment-generating function, it must
be analytical for all |z| < 1, and therefore, z;, k =1, * -+ , r
— 1 must also be zeros of the numerator of C(z). Thus, given
Z, k=1,-+,r — 1, wehave r — 1 linear equations relating
runknown P,’s. The normalization requirement C(1) = 1 gives
us the other equation needed: £/20 (r — i )P; = r — p,.

To summarize the above, the maximum throughput for an
output group p, can be found numerically as follows. Starting
with a guess of py, we first solve forz,, k =1, -+, r — 1,
with the following r — 1 complex equations

- 2k 2k
A(z)" [p+(1-pa]= zk<cosT7r + isin -—r—7—r>

k=1, ,r=1

(13)

The following r linear equations are then solved to find P;.

r—1

Z{aglp+ (1 =pa) —dlp+ (1 - pal'jp=0

r—

!
(r—1i)P, =71 — py
i=0

(14)
A new p, is found by

r—1

Z[r(r= 1) —iti = D)2 - p)P,

2(r

The above can be simplified to
r—1

Ga)= X [p+(1- p)z]'P,

=0

+ z”[p + (1 — p)z]rlzc_(z) - :go P,-z’]» (11)

— Po) N g (15)

The three steps are repeated with the new p,, and the process
is iterated until the solution converges to the desired accuracy.
The maximum throughput per input is related to p, by

4
p* == py.
n

(16)
The above is the general method for finding p*. Various specific
cases described below are amenable to simpler analysis, and
they are described as follows.
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(r arbitrary, p = 1): For uniform random traffic (p = 1),
the second step of the numerical iterations can be eliminated
because it is not necessary to explicitly solve for P, i = 1,

+, r — 1. In this case, instead of 2r — 1 zeros, there are
only r zeros in the numerator of C(z), and they are all equal to
the roots of the denominator, z = land z,, k = 1, - - -, r —
1. We can directly express C(z) in terms of z; as follows.

K(z—1)(z—z) "
27/A(z) — 1

Cz) = (z~21)

(17)

where K = p(r — pg) /(1 — 2} -+ - (1 — z,_,) is a normal-
ization constant found by setting C(1) = 1. Differentiating (17)
with respect to z, and setting z = 1 yields

v pol2r =) —r(r=1) § 1
¢ = 2(r = po) +k§|l-zk'

(18)

(r arbitrary, p — 0): In the limiting case when the average
burst length [ = o (p — 0), (12) becomes

s

lim C(z) = =2

p—0

(r — i)z'P;

(19)

r = poZ

By definition, C(z) = L{~, P;z'. Multiplying both sides of (19)
by (r = poz), and equating the coefficient of z' on the left side
with that on the right side, we obtain

ifi <

Pi:{PoPi—l/" r
ooPi_/r  ifi=r.
This simplifies to
ohPy /it ifi <
P, = { ° . (20)
poPo/(rir'™")  ifi=r
where
-
P, = = (21)

i (r—i)pb/it
i=0

which is obtained by normalizing C(1) = 1. It is remarkable
that (20) is the exact result of the M /M /r queue with A /p, the
ratio of the arrival rate to the service rate, equal to py. This,
however, does conform to the intuitive understanding that as p
— 0, the geometrically distributed burst length becomes expo-
nentially distributed.

Differentiating C(z) in (19) and setting z = 1, we obtain

’i i(r = i)P;, + po
C'(l) = i._m—_ (22)

Equating (22) with n/g gives us a polynomial of po, from which
we can obtain p, numerically. For specific values of r and n/g
listed below, p* = pyg/n can be obtained in closed form by
solving for the roots of the corresponding second-order poly-
nomials directly.

§/<1+5> ifr=1
n n
p*: 2
2§< <§> +1—§> if r
n

(V162 — 6)/7 = 0.961 ifr=3and g/n = 1.

2

(23)

For the interested readers, it turns out that p* at r = 4 and g /n
= 1 can be easily approximated. Consider r = 4 for an exam-
ple. We know the corresponding p* must be very close to 1
since p* at r = 3 is already close to 1. Substituting p* = (1 —
€) into C'(1) = 1 and ignoring the second and higher order ¢
terms, we get ¢ = 0.007. The resulting p* = 0.993 agrees with
the exact result to three decimal places. For general g /n and r,
however, the numerical root-finding method is needed to find
p*.

(r = 1, p arbitrary): Finally, for r = 1 and arbitrary p, the
numerator of C(z) in (12) has only one root, z = 1, and p* can
be solved in closed form:

(L+g/n)— \/(1 +g/n)’ — 2pg/n
> .

p* =

We are now ready to examine results generated by the above
analysis. Table I(a) lists the maximum throughput per input port
for various values of r and g/n under uniform random traffic.
The column in which g/n = 1 corresponds to the special cases
studied by [8] and [11]. For a given r, the maximum throughput
increases with g /n because the load on each output group de-
creases with g/n. For a given g/n, the maximum throughput
increases with r because each output group has more output
ports for clearing packets. This is analogous to increasing the
number of servers in a queueing system. As shown in the table,
when g /n is fairly large (say, g/n > 4), there is less incentive
to use channel grouping to increase the throughput because the
throughput is already close to 1. When g /n is small (say, g/n
< 2), however, the use of channel grouping can increase the
throughput substantially. For concentrators (g/n < 1), in-
creasing the number of output ports per output address from 1
to 2 approximately doubles the maximum throughput.

As the average burst length / increases (or p decreases ), the
maximum throughput degrades. As shown in Fig. 7, the maxi-
mum throughput in general approaches an asymptotic value
rather quickly as / increases. In particular, the maximum
throughput for / > 5 is essentially equal to the asymptotic value.
Table I(b) lists the asymptotic maximum throughput as / = oo.
As shown, the difference in maximum throughput between the
two extreme cases of p = 1 and p — 0 is very small. Further-
more, it can be seen that the qualitative results for uniform ran-
dom traffic described above also hold here. In addition, it can
be easily verified that for a fixed r (i.e., for a particular row in
the table), the percentage change in maximum throughput by
varying p from 1 to 0 is the greatest when gr/n =1,ie., when
the switch dimensions are symmetric. For instance, for r = 2,
g/n = 1/2 yields the greatest percentage change in maximum
throughput.

If there were no head-of-line blocking, then the maximum
allowable throughput per input would be min (1, gr/n). This
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TABLE I
MAXIMUM THROUGHPUT FOR AN INPUT QUEUE WITH g/n KEPT CONSTANT WHILE BOTH g AND n —
@p=1
8
n
r ¥ = H 1 1 i 1 2 3 4 8 16 32
1 0.031 0.061 0.117 0.219 0.279 0.382 0.586 0.764 0.838 0.877 0.938 0.969 0.984
2 0.061 0.121 0.233 0.426 0.531 0.686 0.885 0.966 0.984 0.991 0.998 0.999 1.000
3 0.092 0.181 0.346 0.613 0.736 0.875 0.975 0.996 0.999 0.999 1.000 1.000
4 0.123 0.241 0.457 0.768 0.875 0.959 0.996 1.000 1.000 1.000
8 0.245 0.476 0.831 0.991 0.998 1.000 1.000
16 0.487 0.878 0.999 1.000 1.000
32 0.912 1.000 1.000
byp=0
8
n
1 | 1 ] |
r n 16 g s 3 3 1 2 3 4 8 16 32
1 0.030 0.059 0.111 0.200 0.250 0.333 0.500 0.667 0.750 0.800 0.889 0.941 0.970
2 0.061 0.117 0.221 0.390 0.481 0.618 0.828 0.944 0.974 0.985 0.996 0.999 1.000
3 0.091 0.176 0.328 0.565 0.678 0.823 0.961 0.994 0.998 0.999 1.000 1.000
4 0.121 0.234 0.432 0.715 0.828 0.937 0.993 0.999 1.000 1.000
8 0.241 0.460 0.791 0.987 0.997 1.000 1.000 1.000
16 0.477 0.849 0.999 1.000 1.000
32 0.891 1.000 1.000
e F (i.e., fixed g/n), the degradation is the biggest when gr = n,
gn=1, r=3 and the degradation becomes progressively smaller as we de-
viate from this point. Thus, whenever the switch dimensions
© P become asymmetric ( gr # n), the throughput advantage of the
S N=1, r=

MAXIMUM THROUGHPUT
0.6
T

L gn=0.5, r=2
gin=1, r=1
- |
o
g/n=0.5, r=1
S L ) L
0 10 20 30 40
MEAN BURST LENGTH

Fig. 7. Maximum throughput as a function of mean burst length.

is because we cannot load each input line with load greater than
1 or each output group with load greater than r. We can there-
fore define the degradation due to head-of-line blocking as
A(r, g/n) = min (1, gr/n) — p*. (25)
Since min (1, gr/n) is also the maximum throughput of the
output-buffered switch module, A(r, g/n) can be interpreted
as the throughput advantage of the output-buffered switch mod-
ule over the input-buffered switch module. Table II(a) and (b)
show the A(r, g/n) values forp = 0 and p = 1, respectively.
It can be seen that for either a row (i.e., fixed r) or a column

output-buffered switch module over the input-buffered switch
module diminishes. This can be explained intuitively as fol-
lows. When gr < n, both input queueing and output queueing
are limited by the fact that there are fewer number of output
ports than input ports, and head-of-line blocking is not the main
limiting factor in input-buffered switch modules anymore. When
gr > n, the maximum throughput of output-buffered switch
modules is still limited by 1, while that of input-buffered switch
modules improves because the detrimental effect of head-of-line
blocking is alleviated by the fact that more head-of-line packets
can be cleared now. The table also reveals that for a fixed num-
ber of output ports gr, decreasing the number of output ad-
dresses g while increasing the channel group size r also alle-
viates the head-of-line blocking effect and decreases the
maximum throughput difference between the two buffering
strategies.

As an example of the application of the above results, con-
sider the two-stage switch architecture in Fig. 3. According to
our results, the expanded Batcher-Banyan switch modules would
have no significant throughput limitations if N/n = 32.

Analysis of the mean delay of input-buffered switch modules
is difficult, so simulation is used here. For input queueing, a
contention resolution scheme is needed in order to resolve con-
flicts when there are more than r packets destined for the same
output group. Whereas the maximum throughput of input-buff-
ered switch modules under geometric traffic is insensitive to the
particular contention resolution scheme adopted (as long as no
head-of-line packets are withheld from clearance when there are
free destination output ports), the mean delay does depend on
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TABLE I
INCREMENT OF MAXIMUM THROUGHPUT FOR AN OUTPUT QUEUE OVER AN INPUT QUEUE A(r, g/n) = min (1, gr/n) — p*
(@ p=1
8
n
r = = 5 : i i 1 2 3 4 8 16 32
1 0.000 0.002 0.008 0.031 0.054 0.118 0.414 0.236 0.162 0.123 0.062 0.031 0.016
2 0.002 0.004 0.017 0.074 0.136 0.314 0.115 0.034 0.016 0.009 0.002 0.00t 0.000
3 0.002 0.007 0.029 0.137 0.264 0.125 0.025 0.004 0.001 0.001 0.000 0.000
4 0.002 0.009 0.043 0.232 0.125 0.041 0.004 0.000 0.000 0.000
8 0.005 0.024 0.169 0.009 0.002 0.000 0.000
16 0.013 0.122 0.001 0.000 0.000
32 0.088 0.000 0.000
by p=0
13
n
r = = i : : i 1 2 3 4 8 16 32
1 0.001 0.004 0.014 0.050 0.083 0.167 0.500 0.333 0.250 0.200 0.111 0.059 0.030
2 0.002 0.008 0.029 0.110 0.186 0.382 0.172 0.056 0.026 0.015 0.004 0.001 0.000
3 0.003 0.012 0.047 0.185 0.322 0.177 0.039 0.006 0.002 0.001 0.000 0.000
4 0.004 0.016 0.068 0.285 0.172 0.063 0.007 0.001 0.000 0.000
8 0.009 0.040 0.209 0.013 0.003 0.000 0.000 0.000
16 0.023 0.151 0.001 0.000 0.000
32 0.109 0.000 0.000

the contention scheme. Our simulation experiments assume a
random strategy in which a random input port, say Port,,,, is
chosen to have the highest priority at the beginning of each time
slot. The priorities of the input ports for that time slot are then
ordered in a cyclic manner: Port,,, Port,, | (modn) :
Port,p + o — 1 (modny- Fig. 8 shows the graphs of the mean delay
versus the input offered load for various values of r and g/n,
fixing n at 32, and / at 1 and 16. Simulation results show that
for a given r and g/n, but n > 32, the mean delay is closely
approximated by the results of n = 2. For all cases shown,
enough packet statistics are collected so that the 95% confi-
dence interval is no more than +6% of the collected mean delay
value.

As shown in the figure, for uniform random traffic (/ = 1),
the mean delay is rather low except for offered loads close to
the maximum allowable throughput. This is, however, not the
case for the bursty traffic (/ = 16), where the maximum delay
increases rather quickly as the offered load increases. Compar-
ing casestor = 1, r = 2, and r = 4, we also see that as traffic
becomes bursty, the mean delay does not degrade as much for
large r than for small r. To further illustrate this point, we plot
in Fig. 9 the mean delay for various cases with n = gr (the
dotted lines) as a function of / for an offered load of 0.5 (the
asymptotic maximum throughput whenn = g, r = l and p —
0). As shown, the slopes of the mean delay versus [ curves
decrease quite rapidly as r increases. Thus, in general, channel
grouping improves the mean delay, as well as the maximum
throughput, under bursty traffic conditions.

IV. OutpPuT QUEUEING
For output queueing switch modules, we assume there is a
single FIFO queue for each output group. Arriving packets des-
tined for a given output group are immediately placed on the
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Fig. 8. Mean delay versus offered load of input-buffered switch modules.

corresponding output queue. Unlike input queueing, there is no
head-of-line blocking in output queueing, and the maximum
throughput per output group is bounded by r. Except for cases
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Fig. 9. Mean delay of input- and output-buffered switch modules as a
function of the average burst length for an offered load of 0.5.

withr > land / > 1 (i.e., p < 1), the mean delay of output-
buffered switches can be obtained using the same framework
for deriving the maximum throughput of input-buffered
switches. In the following, we consider the three cases (r = 1,
p=1),(r=1,p<1),and (r > 1, p < 1), separately,

(r = 1, p = 1): The situation faced by an output group is
described precisely by the framework used to derive the maxi-
mum throughput of input-buffered switches, except that arriv-
ing packets are immediately presented to the output group for
clearance, and do not have to first proceed to the heads of input
queues. Unlike the derivation of the maximum throughput,
however, p, is interpreted as the given offered load here.

We shall use the same notation as in the maximum throughput
derivation. Consider a particular output group. Given an output
offered load of p, per group, the expected number of back-
logged packets for an output group at the beginning of a time
slot is given by C’(1) in (18). By Little’s Law, the mean delay
is

o2r —po) —r(r= 1) 1’5 1

2(r = po)Po pok=11 =1z
(26)

T=C(1)/po =2

r—1

po(2r = ppo) = r(r = (2 = p) + X [r(r=1) = i(i = D}(2 = p)P,

ets still arriving [9]. However, as shown below, simpler anal-
ysis is sufficient for deriving the mean delay.

The situation for r = 1 is closely related to the M /G /1 queue;
bursts are analogous to customers and burst lengths to durations
of service. As far as the mean delay of a packet is concerned,
it does not matter whether we finish serving (clearing) packets
of one burst before serving packets of the next burst, or serve
packets of the backlogged bursts in an arbitrary order, since the
unfinished work, or the number of remaining packets, is the
same in either case. Without losing generality, we focus our
attention on the former burst-by-burst service discipline.

There is a subtle difference between the M/G/1 queue and
our situation, however. In the M /G /1 queue, when a customer
arrives, it arrives in its totality, whereas, in our case, packets
in a burst arrive in consecutive time slots. Nonetheless, the
waiting time of a packet has the same distribution as that of a
burst, and it can be obtained from M/G/1 analysis. To see
this, consider the jth packet in a burst. Suppose that the waiting
time of the burst (or the first packet), or the time the burst spends
waiting in the queue before it is served, is W. Although the jth
packet arrives j — 1 time slots later than the first packet, it is
also served j — 1 time slots later than the first packet. Thus,
the waiting time of the jth packet is also W. Notice that not only
are the mean waiting times of the burst and its packets the same,
the waiting times are also identically distributed under the burst-
by-burst service discipline.'

By Little’s Law, the mean delay of a burst is C'(1 )Y/ Ppo-
where C’(1)is given by (15). Therefore, the mean burst or
packet waiting time is C'(1)/pp, — 1/p, and the mean packet
delay is

2 = ppo .

T=C)/ppo = 1/p+ 1= 35—

1/p + L.
(28)
(r>1,p < 1): Whenr > 1 and / > 1, things become
more complicated because the analogy between bursts and cus-
tomers breaks down. To see this, consider the following. If there
are fewer than r customers in an M /G /r queue, then some of
the servers are not active. For a switch, however, even if there
are fewer than r backlogged bursts in the output queue, as long
as there are at least r packets, all the r output lines would be
active, and multiple packets from some bursts are served simul-
taneously. Nevertheless, this observation implies that M /G /r
analysis can be used to obtain an upper bound to the actual mean
delay. That is, given an offered load p,, the mean packet delay
is upper-bounded by C’(1)/ppo, — 1/p + 1. where C'(1) is
given by (15). This yields

T < - 1/p + 1 (29)
2(r = po)pPLo
where P, i =0, - - -, r — 1, are obtained by solving (13) and
(14).

where z;, k = 1, - -+, r — 1 are the r — 1 roots of

exp [__‘O_O(lr_—i)] = zk[cos <2k77r> + isin <2le1r>}

k=1, (27)

(r=1,p < 1): When! > 1, a complete analysis involves
a two-dimensional Markov chain which keeps track of the num-
ber of backlogged packets and the number of bursts with pack-

,r— 1.

A lower bound to the mean delay can be obtained by consid-
ering a modified system in which all packets in a burst are as-
sumed to arrive simultaneously in the beginning of the burst.
The basic idea is as follows. In the modified system, the arrival
instants of all packets in a burst are shifted to the arrival instant

'This implies that the probability P{W > b] obtained from M/G/1
analysis can be used as an upper bound for the packet loss probability of a
finite buffer queue of b packets deep.
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of the first packet. In contrast to the original system, the mod-
ified system allows all r output lines to be utilized even when
the burst arrives at a queue with fewer than r — 1 backlogged
packets. Consequently, the departures of some packets are also
shifted to earlier instants in the modified system. After the mean
delay of the modified system is found, it is easy to compensate
for the extra delay due to the shift in arrival instants. It is, how-
ever, difficult to compensate for the shift in departure instants
or else we would have found an exact solution. Nevertheless,
by compensating only for the shift in arrival epochs, a lower
bound to the mean delay of the original system is obtained.
In the following lower-bound analysis, instead of focusing
on bursts, we focus on packets, and use C and A to denote the
number of backlogged packets and the number of packet ar-

rivals, respectively. We essentially have a G/D/r system in
which
Ciy=max (0, C —r) + 4 (30)

where the moment-generating function of 4; is given by

A(z)

‘2 A(z|k) Pk bursts arrive]
-0

> k K —poo
=3 Pz (ppo) e ™
k=0 |1 = (1 - p)z k!
- .

exp | —Peoll 3 |

1 - (1 -p)z
Using an analysis similar to that in the derivation of the maxi-
mum input-queueing throughput, we obtain

il

(31)

r

M

(27 = )P,
C(z) = A(zx) ———. 32
(2) =4 =5 (32)
This gives
po(2r — po) + 2p(1 — —r(r—1
c(ly = ol 0) 0ol p)/p ( )
2(r = po)
r—=1 1
by (33)
k=11 — 2
where z;, Kk = 1, »+ -, r — 1 are obtained by solving for the
roots of
—pool1 — 2 ' 2% 2%
exp i——uz = zk[cos <_7r> + i sin <—T>}
[1=(1~-p)z]r r T

k=1,--- (34)

The delay of a packet in this G/D/r queue is then given by
C'(1)/po.

We now compensate for the extra waiting time due to the
earlier arrival assumption. Given a packet is in a burst of length
k, its expected extra waiting time in the modified system is (k
— 1)/2. The probability that a packet is in a burst of length &
is k(1 — p)*~'p2. The expected extra waiting time is, there-
fore,

.r— 1.

E Ui = -pe 9)

k=1

Thus, we have
- C1
75 S
Po

(t =p)/p. (36)
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Fig. 10. Mean delay versus offered load of output-buffered switch

modules.

It is worth pointing out that both the upper bound and lower
bound described above become the exact solution when p= 1
or when r = 1.

Based on the above analysis, Fig. 10 shows the mean delay
versus the offered input load ( gp,/n) for various values of r
and g/n ratio, when / = | and when [/ = 16. Cases with (r =
1,2,0ord4, /= 1)and r = 1,/ = 16) are numerical results,
whereas cases with (r = 2 or4, [ = 16) are simulation results.
The figure also compares the analytical upper and lower bounds
with the simulation results. Although the simulation assumes n
= 32 and the analytical results assume n — oo, this slight dis-
crepancy would not invalidate the following discussion, since
the results are not very sensitive to n forn > 16.

As expected, comparing Fig. 10 with Fig. 8, the mean delay
versus throughput performance of output queueing is uniformly
better than that of input queueing for all cases. As in input
queueing, however, bursty traffic tends to degrade the perfor-
mance significantly. Also similar to input queueing is the fact
that as the traffic becomes bursty, the mean delay does not de-
grade as much for large r than for small r. This point is further
illustrated in Fig. 9, where we plot the mean delay for various
cases with n = gr as a function of / for an offered load of 0.5.
As in input queueing, the slopes of the mean delay versus /
curves decrease quite rapidly as r increases. It is also interesting
to observe that for a fixed number of output ports gr, the dif-
ference in mean delay between input queueing and output
queueing also decreases as r increases. So, channel grouping
tends to decrease the performance gap between the two buffer-
ing strategies.

For cases with » > 1 and / > 1 shown in Fig. 10, the upper
bound (dotted lines) is rather close to the exact solution when
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r = 2, especially at regions of low mean delay. When r = 4,
the upper bound is not very good at high mean delay. This shows
that a switch with channel grouping has significant better delay
performance than an M /G /r queue when r is large. In contrast
to the upper bound, the lower bound is poor when the .mean
delay is low. This is not surprising if we recall that the G/D/r
queue associated with the lower bound allows all r output lines
to be utilized, even 'when a burst arrives when there are fewer
than r — 1 packets in the queue. This artificial advantage occurs
rather frequently when the offered load is low, but disappears
when the buffer occupancy is high. In fact, the lower bound
approximates the exact solution better than the upper bound at
high mean delay.

V. CONCLUSIONS

This paper has quantified the throughput and mean-delay per-
formance of a class of n X gr asymmetric packet switch mod-
ules with channel grouping at the outputs. These switch mod-
ules constitute the building blocks of many large switch
architectures, and it is important to understand the performance
of the switch modules in order to design the large switches
properly. ;

Both input-buffered and output-buffered switch modules have
been studied. It is shown that increasing the number of output
ports per output address can significantly improve the delay-
throughput performance of both buffering strategies, particu-
larly when the ratio of the number of output addresses to the
number input ports, g /n, is small. This agrees in principle with
the idea originally propounded in the knockout switch [12], [3].
If we fix the line expansion ratio ( gr/n), the performance is
better for larger r. In other words, decreasing the number of
output addresses while fixing the numbers of output and input
ports improves the performance. However, reducing the num-
ber of output addresses implies reduced switching and, to the
extreme that there is only one output address, no switching is
performed. Thus, the result simply says one would perform
switching to the extent that it is necessary. ‘‘Overswitching’’
not only degrades performance, but also increases switch com-
plexity.

We have also shown that the mean delay performance of both
buffering strategies degrades significantly as traffic becomes
more bursty, although the maximum allowable throughput of
the input-buffered switch module decreases only slightly. In
general, however, channel grouping at the outputs tends to de-
crese the degradation in delay performance due to bursty traffic.

Although output queueing has uniformly better delay-
throughput performance than input queueing for all switch di-
mensions. the advantage of output queueing over input queueing
decreases as the switch dimensions become more and more
asymmetric (for cases with n < gr as well as n > gr). Intui-
tively, for gr < n, the performance limitation is mainly due to
line concentration (i.e., fewer output ports than input ports).
But this limitation applies to both input and output queueing
switch modules. For gr > n, the effect of head-of-line blocking
on input queueing switch modules is alleviated because of line
expansion, and the performance approaches that of output
queueing switch modules. In short, n = gr is a special case in
which the difference in performance between input and output
queueing is the largest. The performance gap between the two
buffering strategies also decreases when we increase r and de-
crease g while keeping gr constant. In fact, the largest perfor-
mance gap is found in the previously studied case [6], [7] with
n=gandr=1.

Finally, some research issues deserve further attention to ex-
tend the understanding of input and output queueing Stralegles
in high-speed packet switches.

1) For simplicity, we have assumed that the traffic patterns
on different input ports are uncorrelated. Strictly speakmg this
is not true when the input ports are also grouped, as in'the sec-
ond stage of the switch architecture shown-in-Fig.'3. In fact,
two packets of the same burst may arrive simu[tang,ous_ly'on two
input ports of the same group when switch modules: with chan—
nel grouping are cascaded. It would be interesting to see how
the results here need to be modified under this situation:

2) The study of nonuniform traffic distribution n Which more
packets are destined for some outputs than others also requires
further attention. In particular, how would input-buffered and
output-buffered switch modules compare with each other under
nonuniform but geometrically distributed traffic?

3) When the burst length is not geometric, the maximum
throughptt of the input-buffered switch module would in gen-
eral depend on the contention resolution scheme assumed. For
instance, when the burst length is deterministic, the optimal
strategy is the burst-by-burst service discipline in which we fin-
ish serving the packets of one burst before starting on the next
burst. In fact, it can be shown that the maximum throughput in
this case is the same as that of the uniform random traffic case,
for arbitrary burst length /. It is interesting to investigate the
sensmvuy of our results to the particular bursty traffic model
adopted.
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