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A Framework for Characterizing
Disaster-Based Network Survivability

Soung C. Liew, Member, IEEE, and Kevin W. Lu, Member, IEEE

Abstract— This paper formulates a general framework that
includes and extends the existing definitions for network sur-
vivability. Based on this framework, network survivability is
characterized by a survivability function rather than a single-
value survivability measure, and various quantities of interest
can be derived from the function. Examples are the expected
survivability, the worst-case survivability, the r-percentile surviv-
ability, and the probability of zero survivability. The survivability
function is especially useful for the study of large-scale disasters.
For illustration, we derive the survivability function in closed
form for a simple ring network under link failures, We also
discuss the general procedure for finding survivability functions
for complex networks, and show that the survivability function
reveals useful information about a network. This framework
provides a unified and practical approach to analyzing and
designing highly survivable communications networks.

I. INTRODUCTION

NTEREST in reliable and robust communications networks

has been on the rise recently [1]-[3]. The studies of network
integrity generally fall under three major categories.

1) Network availability deals with the fraction of time the
network is in service [4]. For example, a metric was proposed
to measure the loss of traffic in units of DS3 min/year [5].

2) After-failure survivability assumes that some failure has
occurred. Usually, the worst-case single or isolated failure
(e.g., a single link failure) is considered [1], [3].

3) Disaster-based survivability considers what happens in
the wake of a disaster. The occurrence of a disaster event
is a given. In the case of a large-scale disaster, several link
failures, for example, could happen simultaneously. In general,
the network may fail totally, partially, or not at all [6].

Most recent work on network survivability belongs to the
first two approaches. This paper clarifies several important
issues and proposes a probabilistic framework for the study
of disaster-based survivability. To date, the characterization
of network survivability still lacks a unified framework, par-
ticularly one that also applies to large-scale disasters. Our
formulation both includes and extends the existing definitions
for network survivability.

Since network survivability deals with network integrity in
the wake of some undesirable event, an issue, then, is the
specific event being addressed and the meaning of network
integrity. Examples of undesirable events are severe thun-
derstorm, tornado, hurricane, earthquake, fire, flood, tsunami,
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Fig. 1. A ring network with node failures due to a thunderstorm.
cable cut, an undetected software bug, and other disasters
that in some way or another affect the normal operation of
the overall network. Since different types of disasters may
occur with different frequencies and may affect the network
differently, network survivability under different disaster types
should be studied separately.

It is important to specify clearly the disaster type of interest.
Given that the disaster in question has occurred, there are
also many ways to describe network integrity. For instance,
it could be defined as the traffic volume, the number of
connected subscribers, the network operator’s revenue, the
grade of service, or other network characteristics that are
related to the remaining “goodness” of the network. The point
of emphasis here is that before we embark on a definition of
network survivability, it is also important that we first specify
what feature of the network we wish to capture. If the selected
feature, say x, of the network can be quantified, such as in the
above examples, we can then define network survivability, S,
as the fraction of z that remains after an instance of the disaster
type under consideration has happened.

In general, S is a random variable rather than a fixed
quantity, and we propose that network survivability be char-
acterized by a survivability function rather than a single-value
survivability measure. As an example, consider Fig. 1, in
which we want to study the number of remaining nodes
connected to a central node in a ring network under, say, a
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Fig. 2. Various quantities of interest based on a survivability function.

severe thunderstorm. Some of the nodes may be destroyed by
lightning. Depending on which nodes are destroyed, the value
of S may be different. Suppose that the set of inoperative
nodes can be characterized probabilistically; then we have a
sample space E = {e} consisting of all subsets of nodes, each
assigned a probability measure representing the likelihood the
subset of nodes are the ones that malfunction. Thus, for each
sample point e, we have a probability P, and a survivability
S., where S, is the fraction of nodes connected to the central
node. From this, we get the survivability function

P[S=s]= ) P

e:S.=s

M

the probability that a fraction s of the nodes are connected to
the central node.

The reason for concentrating on a survivability function
rather than a single survivability value, as in many previous
studies, is that a number of different quantities of interest
can be derived from the function, each capturing a partic-
ular network characteristic. For instance, we can obtain the
expected survivability E[S], the worst-case survivability s*,
the r-percentile survivability s,, and the probability of zero
survivability P, as follows:

E[S]=) sP[S =] @

8
*

3)
s “

= min §
P[S=3]>0

= max
P[S<s]<r/100

Py =P[S=0]. (35)

Note that larger values of E[S], s*, s,., and (1—Fp) correspond
to networks that are more survivable, but each parameter
captures a different aspect of network survivability. For il-
lustration, we show the above quantities based on a fictitious
survivability function in Fig. 2.

As a detailed example of using the framework, Section II
considers a simple ring network under link failures whose
survivability function can be derived in closed form. The
network survivability function in general cannot be obtained
so easily, and the use of a computer may be necessary.
Section III discusses the general procedure for calculating

survivability functions; and Section IV follows the procedure
to find survivability functions for a network. Finally, Section
V summarizes this paper.

II. SURVIVABILITY OF A CENTRALIZED
RING NETWORK UNDER LINK FAILURES

We now discuss in detail an example of simple ring network,
and define its network survivability as the fraction of nodes
connected to the central node under link failures. We assume
that all links are bidirectional. This, for example, could be a
self-healing ring with the central node being the central office
and the other nodes being the remote terminals in a subscriber
loop network [3]. To simplify derivation, we also assume the
number of nodes to be very large.

Let us first suppose that n link failures have occurred, and
that a link failure is equally likely to be located anywhere
within the network. For simplicity, we assume the locations
of the n failures to be independent (although we can certainly
accommodate dependency among failures in our framework by
judiciously mapping probabilities to sample points). We want
to derive the corresponding survivability function, P[S = s|n].
The value of n will be randomized later. Certainly, for n =0
or 1, no node will be disconnected from the central node. So,
we shall assume n > 2 in the following. To the extent that
the number of nodes is very large, S becomes a continuous
random variable rather than a discrete random variable, and we
should focus on its probability density function ps(s|n) rather
than its probability distribution function. The problem becomes
similar to that of making n random cuts on a rubber band of
unit length, and finding the length s € [0, 1] of the segment
containing the central node. As shown in the Appendix, the
probability density of s can be found to be

ps(sln) =n{n —1)s(1 — s)”_Q. 6)

Note that the above expression is for n > 2. Forn =0or 1,
the survivability is 1 with probability 1. Figs. 3 and 4 show
the probability density and distribution functions, respectively,
for various values of n > 2. We see that the probability
density function tends to “skew” toward lower values of s as
n increases, conforming to our intuition that the survivability
of the network becomes worse as the number of link failures
increases. The various single-value survivability measures that
we mentioned previously can also be easily derived as follows:

1
2
E[S|n] = / sps(shods = ——~ @
*= min s=0 ®)
ps(s|n)>0

9
sp=10: (/0 ps(s|n)ds = r/100>

(~(1—8)"—nb(1 — 6)" "+ 1=r/100) (9)
0. (10)

Py

Notice that although the worst-case survivability is O, the
probability of zero survivability is 0. This is due to the
continuity of random variable S.
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Fig. 3. Survivability density functions for a ring network.
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Fig. 4. Survivability distribution functions for a ring network.

In general, the number of link failures n is also a random
variable for a given disaster type. Let N. be the random
variable associated with the number of cuts. Then,

ps(s) =) _ps(sin)P[N, = n]
= 6(s = 1)(P[N. = 0] + P[N, = 1])

+ 3 n(n—1)s(1 —s)""2P[N, =n] (11)
n=2
where 6(z) is the impulse function [7]. Let

Ne(z) =3 2"P[N, = n]

n=0

12

be the moment-generating function of N, and let Nc(2)(z) be
the second derivative of N, with respect to z [8]. Then,

ps(s) = (s = 1)(P[N. = 0] + PN, = 1))

+sNP(1 - s). 13)

For the Poisson distribution, which is applicable to a large
uniform network

P[N, =n] = (®)"e™" /n! (14)

where 7 is the mean number of cuts for the disaster type
under consideration
Ne(2) = ™Y, (15)
Thus, we have
ps(s) =6(s —1)(e ™ +me ™) +n2se” .  (16)

It is easy to derive the following survivability quantities:

E[S) = % - e-ﬁ(l + %) (17)
s*= min s=0 (18)

Pps(s)>0

6
$r=6: (/ ps(8)ds = r/lOO)

0
=0:(1-e™(1+7b) =r/100) (19)
Py=0 (20)

III. GENERAL PROCEDURE FOR
FINDING SURVIVABILITY FUNCTION

The previous section deals with a simple case where the sur-
vivability function can be found in closed form. For more gen-
eral networks, or with other definitions of network integrity,
the survivability may not be so easily obtained. Automated
computation using a computer program may be necessary. The
general procedure is as follows:

1) specify disaster type to be studied;

2) define “goodness” of networks;

3) list the sample points {e}, or all combinations of events
that may happen under the disaster type being considered;

4) determine the survivability S;

5) determine or assign probability of each event e; and

6) calculate survivability function P[S = sl=3.. 5.=s Pe-

We now describe the above steps in more detail. Before
calculating the survivability function, one should first specify
the type of disaster and the definition of the “goodness” of
networks. This is important since different disaster types may
have different effects on networks. For instance, a severe thun-
derstorm may render more than one node inoperative, whereas
a cable cut usually destroys only transmission between two
nodes. Thus, damage to the network and the probabilistic
characterization will be different in these two cases. Moreover,
we may also obtain different results depending on the features
of the network for which we are calculating survivability. For
example, definitions for “goodness” may be the number of
subscribers connected to a central node, as in the example of
the preceding section, or the revenue collected by the network
operator. If some subscribers contribute to the revenue more
than others, the survivability based on these two definitions
would be different. This also suggests that the network oper-
ator could give high priority to the network survivability of
major subscribers.

The next step is to list all possible combinations of events
that could happen under the given disaster type. However, this
may not be as simple as it sounds. The ring network in the
previous section is a special case in which the sample points
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Fig. 5. A network for survivability characterization.

can be enumerated easily. Given a more general network and
a different definition for “goodness,” listing all the sample
points may be difficult and can only be done effectively by
a computer. In addition, the sample space may simply be too
large, and we may want to eliminate sample points which are
very unlikely to happen.

Once the sample points have been listed, the next step is to
calculate the survivability measure for each sample point. This
calculation will depend on our definition of survivability. If
the definition is the number of nodes connected to a particular
central node, as in our example above, then we would need
an efficient algorithm that can determine whether there is a
path to and from the central node for each node. Instead
of concentrating on a general algorithm that can determine
the survivability of any given network, one may want to
identify more efficient algorithms by exploiting the particular
network structures being considered. For instance, the solution
to the ring network above can be obtained exactly without any
sophisticated algorithm.

To each sample point, we can assign a probability measure
representing the likelihood of its occurrence. Strictly speaking,
assignment of probabilities to sample points should be based
on past observations or experience. However, if the disaster
under consideration happens so rarely (e.g., a nuclear attack)
that past observations are not available, then one will need
to use his or her judgement when assigning probabilities. In

TABLE 1
DS3 DEMANDS BETWEEN NODES OF A NETWORK
Node Pair | DS3’s Node Pair DS3’s
1 6 3 6 17 1
2 6 2 6 18 5
3 6 4 6 19 1
3 7 1 6 22 2
4 6 4 7 8 1
5 6 3 14 15 2
6 7 11 15 21 3
6 8 1 16 18 1
6 9 1 17 18 1
6 10 3 18 19 1
6 11 1 18 20 2
6 12 4 21 22 4
6 13 1 22 23 1
6 15 2 22 24 2
6 16 1 Total DS3’s 69

this case, a study of the sensitivity of results to variations in
probability assignment is also necessary in order to establish
the confidence level one would have of the results. For
special cases in which the problems being considered have a
homogeneous or uniform structure, we can assign probabilities
uniformly. For example, in our ring network in the previous
section, each link is equally likely to fail.

Once the above steps have been done, it is routine to calcu-
late each point of the survivability function by summing the
probabilities of all sample points with the same survivability.

IV. FINDING SURVIVABILITY FUNCTION FOR A NETWORK

For illustration, this section follows the general procedure
described above to find survivability functions for the network
shown in Fig. 5. This network consists of 24 nodes and 26
links, and the number associated with each link is its length in
miles. We assume a total of 69 DS3 (44.736 Mb/s) fiber-optic
transmission systems between 29 node pairs as individually
listed in Table I. For those node pairs with more than one
route between them, we choose the shortest one; that is, no
diverse routes are assumed.

Following the general procedure in Section III, we first
specify hurricanes, which may cause multiple link failures,
as the disaster type for study. Second, we are interested in
the total number of surviving DS3’s under link failures. This
definition of network integrity corresponds to the revenue
generated by the DS3’s. For single link failures caused by
localized disasters such as a cable cut, the network surviv-
ability can be easily found by counting the number of DS3’s
lost for the particular link as listed in Table II. However, for
the network of 26 links, there are 226 = 67, 108, 864 possible
combinations of link failures under a large-scale disaster such
as a hurricane. For simplicity, we assume that more than
four link failures are highly unlikely. Thus, there are 17,901

possibilities of link failures, including 26 single, =325

6

2
. 26

double, 3 = 2600 triple, and 4 )= 14 950 quadruple

link failures. Then, for each event e, the survivability S. is

simply the number of surviving DS3’s divided by the total
of 69.
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TABLE I
DS3’s LosT DUE TO LINK FAILURES OF A NETWORK
Failed Link | DS3’s || Failed Link | DS3's
1 2 3 1 15 6
2 3 5 12 16 6
3 6 9 13 15 5
3 7 1 13 17 4
4 5 4 14 21 3
S 6 7 16 18 6
6 7 25 17 19 4
6 8 10 17 20 2
6 9 1 18 20 4
7 10 13 19 24 2
8 15 8 21 23 4
10 12 10 2 23 5
11 14 S 2 24 4

To determine the probability P, of each event e, we assume
that link failures are independent and the probability of a link
failure is proportional to its length, [;; that is,

P[link i fails] = el;, 0<e< QD
max;
The probability of no link failures is then
Plno link failure] = [ (1 - ets). (22)

7

In practice, ¢ is set to reflect the extent of damage expected
of the hurricane, and hence we define

p

3
max[;
1

= 0<p<1. 23)

With e determined, the probabilities of single, double, triple,
and quadruple link failures are simply as follows:

Pilonly link i fails]

= ¢el; H(l —ely) (24)
n#i
Plonly links ¢ and j fail]
=l [ Q-el) (25)
n#i,j
Pfonly links %, 7, and & fail]
=Sl ] (1-eln) (26)
nti,jk
Pfonly links %, j, k, and m fail]
=il [] (1 - eln). 1))

n#i,j,k,m

Based on the values of S, and P, derived above, we are
ready to calculate the survivability function in (1). Although
there are 17901 events in total, many of them have exactly
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Fig. 6. Survivability function of a network under large-scale disaster.
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Fig. 7. Survivability function of a network under large-scale disaster.

the same survivability. In addition, for clarity of illustration,
we condense all survivabilities within the intervals (0.027 —
0.01,0.02¢ 4+ 0.01] to the points 0.02i, 2 = 1,2, - -, 50. Figs.
6 and 7 show the survivability (density) functions for p = 0.1
and 0.2, respectively. It is worth noting that, when we increase
p from 0.1 to 0.2, the probability of no link failure (at
s = 1) decreases significantly from 0.341 to 0.11, the expected
survivability E[S] decreases from 0.925 to 0.834, and the 10-
percentile survivability s* is unchanged simply because it is
independent of p. Although the worst-case survivability is
about 0.28, it corresponds to two events of quadruple link
failures (links 3-6, 5-6, and 67 with link 6-8 or 8-15), and its
probability is less than 10=6. On the other hand, for s = 0.92
and p = 0.2, there are 117 possible events with a combined
probability of 0.123. The observations above suggest that the
survivability function can reveal more insightful information
than just the worst-case survivability or any other single-value
measure alone.

V. CONCLUSIONS

We have described a general framework for characterizing
network survivability that includes and extends the existing
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definitions. Based on this framework, network survivability is
characterized by a survivability function rather than a single-
value survivability measure; and various quantities of interest
can be derived from the function. Examples are the expected
survivability, the worst-case survivability, the r-percentile
survivability, and the probability of zero survivability. In par-
ticular, we derived the survivability function in closed form for
a simple ring network under link failures. We also discussed
the general procedure for finding survivability functions for
complex networks, and showed that the survivability function
reveals useful information about a network. Although our
illustrating examples assume link failures to be independent,
our framework can accommodate situations that involve de-
pendency among failures; the added complexity for computing
the survivability function remains to be studied further. In
short, this framework provides a unified and practical approach
to analyzing and designing highly survivable communications
networks.

APPENDIX

This Appendix derives the results in (6). Since S is con-
tinuous here, there are an infinite number of sample points in
the sample space E. To avoid this nonessential technicality,
we first artificially make the sample space finite by dividing
the rubber band into many small segments, each of length As.
The desired result is obtained by letting As approach zero. If
there is no more than one cut on each segment, which is true
when As is very small, the size of the sample space, or the
number of ways the n cuts can be done, is

(%) (g e0) =@

(AD)

Since each of these sample points is equally likely,

P, ~ (As)" forall e (A2)

and

PlS=sln)= ) P.=Ny(ds)" (A3)

e:S.=s

where N, is the number of ways to make n cuts that result
in a survivability of s.

To find Ny, let’s first denote the cuts by C1,Cy,---,Cp. As
far as survivability is concemned, only the two cuts adjacent to
the central node, C; and C,., are important (see Fig. 8), since
their locations completely define the value of S. Out of the n
cuts, there are n(n — 1) ways of choosing two cuts to be C\
and C,.. The number of ways one can arrange the remaining
(n — 2) cuts in the segments away from the central node and
outside C; and C, is

1-s\/1-s 1-s 1-s\"?

(As)(As 1>.”(A54(n_3))~(As> )
(A4)
Given that the segment containing the central node is of length
s, there are s/As ways of putting the two adjacent cuts,
ranging from putting C; right next to the central node and C'.
at a distance of s to the central node, to putting C,. right next
to the central node and C; at a distance of s to the central

node (see Fig. 8). Thus,

1-s\""" s
Ns:n(n—l)( As) v

(A5)

By definition,

P[S = s|n| —n

_ _ \n-2
s (n—=1)s(1—35)""%. (A6)

palln) = fim,
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