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Abstract— A theoretical foundation for evaluation and
comparison of a very broad spectrum of fast packet-switching
techniques is developed in this paper. Based on this frame-
work, we investigate the complexity of various packet switch
designs, and demonstrate the advantage of dilation as a
switch-design technique. Packet switches are classified ei-
ther as loss systems or waiting systems, according to whether
packets losing contention are dropped or queued. In a loss
system, the packet loss probability can be made arbitrary
small by providing enough paths between inputs and out-
puts. We focus on the question: How does the switch com-
plexity grow as a function of switch size for a given loss prob-
ability requirement? A uniform approach to this problem
is developed here. We show that for an N x N switch, the
required number of switch eléments for both the parallel-
banyan network and the tandem-banyan network is of or-
der N(logN)?, whereas the complexity of a dilated-banyan
network is of order NlogN(loglog N). Within the class of
waiting systems, we show that the parallel banyan networks
in a Batcher-parallel-banyan network can be replaced by a
dilated-banyan network without sacrificing the nonblocking
property. Thus, as with parallelization, dilation can also be
used to increase the throughput of a waiting system. In
addition, we also explore the application of dilation in a
large modular switch design which is realized by an inter-
connection structure consisting of Batcher-dilated-banyan
networks and statistical multiplexers.

I. INTRODUCTION ,

ASYNCHRONOUS Transfer Mode (ATM) has been widely
accepted as a basis for packet transmission in future broad-
band communication networks [1]. Besides packet trans-
mission systems, high-speed packet switches are essential
elements in high-performance integrated communication
networks for providing multimedia services. Various packet
switches proposed in the literature are based on intercon-
nection networks, originally intended for multiprocessor
interconnects in highly parallel computer systems [2,3,4].
These switches make use of interconnection of many small
switch elements in their overall architectures. An attrac-
tive feature of these switches is their regular topological
interconnection pattern, which can be easily implemented
by VLSI technology.

This paper develops a theoretical foundation for eval-
uation and comparison of a very broad spectrum of fast
packet-switching techniques within the framework of per-
formance and complexity studies. The goal is to provide
insight into the design of very large switches. Within this
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framework, we investigate the complexity of various packet-
switch designs proposed to date and demonstrate the ad-
vantage of dilation as a design technique in reducing switch
complexity. The previous investigations of dilated net-
works [2,3] have not included an order-of-complexity study,
and we believe comparison switches according to their fun-
damental complexities are essential to a complete under-
standing. Some switch design issues are clarified in the
following to put things in the proper context.

Packet -contention is one of the fundamental problems
that must be overcome in designing packet switches. For
switches based on interconnection of sinall switch elements,
we must be concerned with two kinds of contention: output-
port conflicts for the overall switch due to multiple input
packets destined for the same output address, and inter-

‘nal collisions due to packets simultaneously routed to the

same outgoing link at an individual switch element. Obvi-
ously, both contention problems can be solved completely
by methods that allow all packets to reach their desired
destinations. This could be achieved in an N x N switch
by speeding up the switch operation by N times or provid-
ing N direct paths from each input to all outputs, where
N is the number of input or output ports. In either case,
even if all packets were to have the same destination, they
could be switched within the same packet cycle. Buffering
at the output port is still needed since the output trunk
may not be able to handle all arriving packets at once.

It should be emphasized that the output buffers are not
the reason why the contention problems are solved; rather,
contention is eliminated by allowing up to N packets to
reach the same destination. Buffering is required at each
output port because of the limited transmission capacity of
the output trunk, and each output port behaves essentially
like a statistical multiplexer.

When the switch dimensions are large, switching mech-
anisms that let N packets reach the same destination in-
crease design complexity and become impractical. As long
as only fewer than N packets can reach the same output
address, the contention problems remain, and they must be
dealt with in other ways. There are only two alternative
solutions: the switch can drop excess packets that cannot
be switched, or it can buffer them for output access in the
next time slot. Accordingly, switches based on intercon-
nection networks can be classified either as loss systems or
waiting systems, depending on how contention is resolved.

In all the loss systems under consideration here, pack-
ets are either dropped or switched to the outputs immedi-
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ately. By providing sufficient paths from inputs to outputs,
packet-loss probability can be made as small as desired.
The maximum number of packets that can be received by
an output address in one time slot, or packet cycle, will
be called the group®ize. Since switch complexity generally
increases with group size; one would look for the minimum
group size to meet the packet loss probability requirement
in practice. In addition, if the group size is more than 1,
packet buffers are needed at outputs, since the output port
may not be able to transmit all arriving packets at once.

For waiting systems with the nonblocking property, such
as the Batcher-banyan switch [5,6], there is no internal con-
flict, and excess packets are buffered at the input ports.
Waiting systems that are blocking, such as the buffered-
banyan switch [2,3], require internal buffers at the switch
elements where conflict arises. Internal buffers bring about
undesirable traffic-cmanagement complexity for comniuni-
catlon networks that utilizes these switches at their nodes,
since more queueing stages must then be considered in or-
der to meet the desired grades of service for an end-to-end
connection; that is, multiple queueing stages are associated
with each node of the communication networks. Therefore,
we will only focus on internally-unbuffered switches as far
as walting systems are concerned. In these systems, output
conflicts are resolved before packets are allowed to enter
the switch fabric [5,6,7]. Packets may be buffered only at
inputs or at both inputs and outputs (in the case where
the group size is more than one), and will not be lost ex-
cept through buffer overflow. The throughput of a waiting
system is limited by head-of-line (HOL) blocking, caused
when packets waiting at the heads of input queues prevent
subsequent packets from output access, even if the subse-
quent packets were destined for idle outputs [6,8,9]. This
limitation can be relaxed by increasing the group size so
that more HOL packets can access their destination out-
puts simultaneously [6,10,11,12,13,14] .

To summarize, we propose the following definitions to
characterize precisely two classes of internally-unbuffered
switching systems:

o Loss system

— The switch fabric has no input or internal buffers;
packets may be queued at outputs if group size
1s more than one.

— Packets may be dropped internally or at outputs
due to contention. The loss probability can be
made arbitrarily small by adjusting the group size
or some related switch design parameters.

¢ Waiting system

— Qutput conflicts are resolved by some contention-
resolution mechanism before packets are switched.
Packets may be queued only at inputs or at both
inputs and outputs, but not internally.

— The throughput of the switch can be made arbi-
trarily close to 100size or other design parame-
ters.

This paper focuses on various packet switches which make
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use of dilated-banyan networks [2,3] to improve perfor-
mance. The basic idea of the dilated-banyan network is
to expand the internal link bandwidth in order to reduce
packet-loss probability in the case of loss systems, and to
increase switch throughput in the case of waiting systems.

For comparison purposes, we also examine the Knockout
switch [15], the parallel-banyan network, and the tandem-
banyan network [16] as other known representatives of the
class of loss systemns. We focus on the question: How does
the switch complezity, in terms of the number of the fun-
damental switch elements required, grow as a function of
switch size for a given loss probability requirement? The
order of complexity of the Knockout switch is known to be
N2, This paper shows that the order of complexity of both
the parallel and tandem-banyan networks is N(log N)?,
and that the order of complexity of the dilated-banyan
network is N log N(loglog N). To our best knowledge, the
dilated-banyan network has the lowest order of complex-
ity among all the loss systems proposed to date. Further-
more, because the factor loglog N grows very slowly with
N, the dilated-banyan network is very close to meeting
the Nlog N Shannon’s lower bound on switch complex-
ity [17]. As a side note, we have recently discovered a
dual shuffle-exchange network [18] that meets the Nlog N
bound. However, since our purpose in this paper is to
classify various proposed fast packet-switching techniques
according to a uniform measure of switch complexity, we
will detail the N log N switch in a separate paper.

Perhaps the best-known waiting system is the Batcher-
banyan switch, which consists of a Batcher sorting network
followed by a banyan network [6,19,20,21]. To our knowl-
edge, it has the lowest order of complexity, N(log N)?,
among all known waiting systems with self-routing and
nonblocking properties. Although the Benes switch has
a lower order of complexity, N log N, it is not self-routing
in that an external routing algorithm is needed to set up
the states of individual switch elements before packets are
allowed to enter the switch fabric. The Batcher-banyan
switch design is based on the fact that the banyan network
is internally nonblocking if the input packets are sorted
according to their destination addresses [6,7,10,19,20]. Us-
ing multiple banyan networks in parallel after the Batcher
network [12], we can generalize the self-routing and non-
blocking properties of the regular banyan network to allow
multiple packets to access the same output address. We
show in this paper that the parallel banyan networks can
be replaced by a dilated-banyan network without sacrific-
ing the nonblocking property, thus demonstrating that di-
lation can also be employed in a waiting system to improve
switch throughput.

This paper is organized as follows. Section II provides
some basic results on the throughput of multistage inter-
connection networks. Based on these results, Section III
studies the complexity of various banyan-based loss sys-
tems for given loss probabilities, assuming uniform random
traffic. We establish that among all loss systems proposed
to date, the dilated-banyan network has the lowest com-
plexity measure. Section IV proves that the dilated-banyan
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Fig. 1. An 8 x 8 banyan network with dilation degree 2.

network is nonblocking when the input packets are sorted
and the number of packets destined for any output is no
more than the dilation degree. In addition, the dpplica-
tion of dilated networks in a large modular switch design
is also addressed. Finally, we summarize our main results
in Section V.

II. PRELIMINARY THROUGHPUT AND PACKET-LOSS
PROBABILITY EQUATIONS

In order to establish the relationship between the complex-
ity and capacity of various loss systems based on inter-
connection networks, throughput and loss probability as
functions of switch design parameters are calculated below
under the assumption of uniform random traffic. We will
use "log” to indicate the logarithm to the base 2, and ”in”,
the logarithm to the base e. A regular N x N banyan net-
work is constructed from 2 x 2 switch elements organized
into n = log N stages, with each stage having & switch
elements. The switch elements of adjacent stages are in-
terconnected in such a way that there is one and only one
path from any input to any output in the overall network.
Packets are routed through the network in a decentralized
and distributed manner by performing the self-routing al-
gorithm {6,7,10,19,20,22]. Packet loss may occur in an un-
buffered network when two packets arriving at a switch
element are destined for the same output hnk.

Intuitively, the loss probability can be reduced if the
bandwidth of each link is increased so that more than one
packet can be forwarded to each output address. The band-
width d of an internal link (or the number of packets that
can be forwarded to each output address simultaneously) is
called the dilation degree of the network. An 8 x 8 banyan
‘network with dilation degree d = 2 is shown in Fig. 1. The
overall interconnection structure is the same as that in the
regular banyan network, except that connected switch ele-
ments are linked by a multiplicity of d channels in the d-
dilated-banyan network. Thus, the regular banyan network
can be considered as a special case of the d- dilated banyan
network with d = 1. The switch elements are themselves
2d x 2d switches with two output addresses. Each output
address has d associated output ports. Consequently, up

to a maximum of d packets can be forwarded to the output
address in any given time slot. If more than d packets are
destined for the same output address, then d packets would
be forwarded and the remaining packets dropped from the
system. Thus, by making d large, we can achieve arbitrar-
ily small packet loss probability. The drawback, of course,
is that the switch becomes complex as d increases.

In the following, we review the exact loss probability
calculation. Since this analysis does not yield much in-
sight into the complexity measure of the d- dilated-banyan
network, an approximate analysis will then be used to es-
tablish the switch complexity. Some results in this section
were presented in [2] and [3] originally. Simplified deriva-
tions are provided here to make the paper self-contained
and consistent.

. Let Rpn(j) be the probability that j packets are for-
warded to an output address of a switch element at stage
m, where 0 < j < d. Only d packets are forwarded when
more than d packets are destined for the output address.
Assuming that packets are equally likely to be targeted
for any output (uniform random traffic), the probability of
having ¢ packets entering a switch element at stage m + 1
is

Smi1(i) = 3 Bon(K) Rin (i — ), (1)
k=0

since Ry, (k)R (i—k) is the probability that there are k and
i—k packets on the upper and lower input-channel groups,
respectively. The probability that j of these packets are
destined for a particular output address is (;)Q_i. Thus,

}jgjsmﬂ(i)(j)z; o ifj<d
Ei:d Sm+1(i) Ek:d (;)2“1 ifj =d

With the initial condition

Rm+1(j) = { (2)

LA ifj=1
RO(])—{O ifj#1

where X is the offered load, R,,(j) can be found recursively.
The packet-loss probability for the overall switch is simply

d - .
Ploss =1- —'—“‘““"—‘—Z]:O JRH(J) - (3)
A

The result above does not relate P, to n, d, and A
explicitly, and therefore, it is not amenable to the study
of switch complexity. The approximate analysis below will
be used in the next section to study how dilation degree d
is related to n for given Pj,ss and A.

There are two groups of d input ports for each switch
element. In general, with d > 1, input ports of the same
group are not independent of each other in the sense that
finding a packet on one port is correlated with finding pack-
ets on other ports. For analytical tractability, however, we
will make the simplifying assumption that the input ports
are independent. Let P, denote the probability that there
is a packet at an input channel of a switch element at stage
m-+1. With the independence assumption, the probability
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of finding a packet at an output channel of this switch ele-
ment (or an input channel of a switch element in the m + 2

stage ) is
d k 2d—-k
1 2d\ [ Pn P,
z{g’“(k) (5) (-%) +

PAGICNCE N

k=d+1

1 2d
Pn— > (k—d)x
k=d+1

92 f_"l k . P, 2d-k ”
k 2 2
Suppose we treat m as a ” continuous” variable and expand
Pr41 as a Taylor series:

Pm+1 =

dP, 1d°P,

Py = B+ 0+ 5 gms T

If %,?— is small for n > 2, then (4) can be viewed as the
recursion relation for the following differential equation

For d = 1, the above equation has an exact solution

1 42
P, = = , (6)
im+ 3 mA+d4

where Py = A is the offered load on each input port. The
overall packet-loss probability is then given by

P, nAX
Pross =1 - PR (7)

The above simple results, which have been shown in [3]
to be excellent approximations, will be used in the next
section to derive complexity bounds for parallel and tan-
dem banyan networks. For d > 1, (5) can not be so easily
solved. However, the complexity of the dilated-banyan net-
work can be estimated from the packet-loss probability for
a switch element at stage m defined by

Qm =

I

24 k
l 2d Pm—l
7, 2 -0 (6) (5
(1 _ Pm_1>2d—-k ’
2

m > logd. - (8)

Note that @, = 0 for m < logd because there can be no
more than d/2 packets at each input group of switch ele-
ments at stages 1 through logd. That is, even under full

Input 1
Input 2
InputN _m
Packet vew e
filter 1 2:‘1 NJE T I:‘l $
Knockout Knockout
concentrator} concentrator
10 2]senl Ve
Statistical
multiplexer ="
Output 1 Qutput N

Fig. 2. The knockout switch.

loading conditions, when all input ports of the overall net-
work have a packet, it takes at least logd + 1 stages before
contentions between packets may occur. Now, intuitively,
the sequence of loading {P,,,} should be monotonically de-
creasing with respect to stage number m. This intuition
can be easily verified by (5), which shows that the deriva-
tive of P,, with respect to m is always negative. Taking
the derivative of (8), we can show that dQm,/dm is also
negative. Thus, we have

The above monotonic sequence is easy to interpret; the loss
probabilities become smaller and smaller as the loading be-
comes lighter and lighter. In the next section, the complex-
ity of various switch architectures will be calculated based
on the discussion 1n this section.

ITI. Loss SYSTEMS

Contention in loss systems is resolved by dropping some of
the packets in conflict and allowing the rest to reach their
destined outputs without any queueing delay at the inputs
or within the switch fabric. Perhaps the most straightfor-
ward way of implementing a loss system is with a cross-
bar switch, in which one and only one packet would be
allowed to access a given output in one time slot. For
a large crossbar switch, it can be easily shown that the
maximum throughput is limited to 63.2% under uniform
random traffic [8,9]. Furthermore, the packet-loss proba-
bility is likely to be very high, even if the load were far
less than 63.2%. For the generic output-buffered switch
[8,9], all arriving packets are allowed to access their out-
puts immediately without dropping any packets. Switch
complexity will necessarily be very high in order to achieve
zero loss probability this way.

The Knockout switch [15] (Fig. 2) attempts to strike
a balance between the two extremes of allowing only one
packet and allowing all packets with a common destination
to access an output. It makes use of the fact that under
uniform random traffic, it is statistically unlikely that more
than a certain number packets, say K, will be destined
for the same output simultaneously. Thus, by allowing



736

Packet filter for marked packets

1 b 5 ;
2 4 st g_. 2nd . O Kth 2
. | Banyan Banyan : Banyan [].
¢ | Network |} § Network | § Network |] £
N l —— N

-A.. Packet filter for unmarked packets

- Statistical multiplexer

Qutput 1 Qutput N

Fig. 3. The tandem-banyan switch.

up to a maximum of K arriving packets to access each
output, the loss probability can be made very small. For
instance, it has been shown that under full loading, K = 8§
is sufficient to achieve a loss probability of 107¢, regardless
of the switch size [15].

The complexity of the Knockout switch architecture in
[15] is of order K N?, where N is the number of ports. In
Appendix A, a derivation shows that K is upper-bounded
by a quantity K* which is independent of switch size NV for
a given loss-probability requirement Pj,,;, agreeing with
the results in [15] that K approaches an asymptotic value
rather than growing indefinitely as N increases. Since K
is largely independent of N for a given loss probability
requirement, the complexity as a function of N is of order
N2

In the following subsections, we address the complex-
ity of a different class of loss systems based on banyan
networks. For these networks, contention resolution is dis-
tributed and performed internally and throughout the switch
fabric. Consequently, packets could be dropped anywhere
within the networks. Our focus deals with how switch com-
plexity grows as a function of switch size for a given loss
probability requirement.

A. Tandem-Banyan Network

The tandem-banyan switching fabric was originally pro-
posed in [16]. The basic switch structure consists of K
banyan networks connected in series (see Fig. 3). Except
for the last banyan network, each cutput of a banyan net-
work is connected to both an input of the subsequent banyan
network and a concentrator (statistical multiplexer). With
this set-up, a packet would be routed to the concentrator if
it reaches the correct output, and to the subsequent banyan
network otherwise. Thus, each packet can have up to K
attempts to reach its destined output.

Deflection routing is employed within each banyan net-
work; whenever there is a conflict at a 2 x 2 switch element,
one packet would be routed correctly while the other would
be marked and routed in the wrong direction. In order
to optimize the number of correctly routed packets, the
marked packet would have a lower priority than an un-
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Fig. 4. Packet loss probability versus number of banyan networks K
in tandem under full loading: simulation results.

marked one for the rest of its journey within the current
banyan network. That is, it is not necessary to route a
packet in any particular direction once it is marked because
it will reach the wrong output anyway. At the output of
this banyan network, a marked packet will be unmarked
and forwarded to the next banyan network, and a new at-
tempt to route the packet to its desired output is initiated.
A packet is considered lost if it still fails to reach the desired
output after passing through all the X banyan networks.
Figure 4 shows our simulation results for packet-loss prob-
ability, Pl,ss, versus number of banyan networks, K, under
full load for various switch sizes. The curves clearly show
that the number of banyan networks required to achieve
loss probabilities below a certain threshold increases with
the switch size N. To study the functional dependence of
K on N for a given Pj,,,, Appendix B applies (7) in suc-
cessive banyan networks and derives the following result:

For a tandem-banyan swiich, assuming packets at succes-
sive banyan nelworks are uncorrelated with each other and
that the inputs they occupy are uncorrelated with their des-
tination oulputs, the required number of banyan networks
K s given by

Alog N
1
: (10)

where X is the offered load and Py ts the required loss
probability. ’

K=

(1 - Plosa) - 1nPIo.ss,

The 1mplication of the above statement is that X is of or-
der log N, and the complexity of the overall tandem banyan
switch is of order N(log N)?, the same as the complexity
of the Batcher-banyan switch (see Section IV.B)! It should
be noted that the assumption of noncorrelation of input
packets is an optimistic one. This can be seen from Fig. 5,
where we plot K as afunction of n = log N from simulation
results and from analytical results with the noncorrelation
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Fig. 6. The parallel-banyan switch.

assumption. Clearly, the simulation results have a higher
K value for a given n than the analytical results. Taking
this into account, we find that even under the optimistic
assumption, the complexity of the tandem-banyan network
for a given loss probability is of order N(log N)?.

B. Parallel-Banyan Network

We next consider a switch with K parallel banyan net-
works, as shown in Fig. 6. Suppose that an incoming
packet is routed randomly to one of the K networks. Then,
the load to each banyan network is reduced by a factor
of K, giving rise to a correspondingly lower Pi,,s. Using
equation (7), with the load set to %, we find that

ni

Plo.ss = TIA+4K

(11)

This yields the following result:

For a parallel-banyan switch with random routing, the num-

ber of banyan networks required to achieve a certain loss
probability Pyoss 15

Poyo—Lnd  AlogN

(
K= ~
4 4 PIos.s

(12)

for small P,y .

An alternative routing scheme is to broadcast an incom-
ing packet to all the K parallel banyan networks, and use
filters at the outputs to remove redundant packets. With
broadcast routing, the load to each banyan network is still
A, but a packet is lost only if all its replicas fail to reach its
destination output. For this strategy to work properly, we
must adopt a random contention-resolution scheme in each
of the parallel banyan networks so that when two packets
attempt to access the same output of a 2 x 2 switch ele-
ment, the winning packet will be chosen at random. Oth-
erwise, with a fixed contention-resolution scheme (e.g., al-
ways choose the packet from the upper input port), pack-
ets that are dropped in one banyan network will also be
dropped in other banyan networks. Even with the random
contention-resolution scheme, the event of a packet being
dropped in one banyan network is not independent of the
events of its replicas being dropped in the other banyan
networks, because all banyan networks have the same set
of input packets. For simplicity, if we further make the
assumption that the contention-resolution processes in dif-
ferent banyan networks are independent, then

P = ni K
loss = Y +4

From this, we get the following result:

(13)

For a parallel-banyan swiich with broadcast routing, the
number of banyan networks required to achieve a certain
loss probability Py, is

K= log Pioss _ 4+ ArlogN)

_log<1—-n—)::)~ 4

The number of parallel banyan networks needed for broad-
cast routing is less than the number needed for random
routing, and it is close to the upper bound obtained for the
tandem-banyan structure. In any case, as with the tandem-
banyan switch, the complexity of the parallel-banyan switch
is of order N(log N)? with either routing scheme. By com-
paring (10) and (14), we also notice that the parallel-banyan
network is uniformly worse than the tandem-banyan net-

(=In Proys). (14)

work.

C. Dilated-Banyan Network

We now investigate the performance and complexity of
the dilated-banyan network. Figure 7 plots Pj,ss versus d
for dilation networks of various dimensions, based on the -
exact analytical calculation given in Section II and assum-
ing 100% offered load. Compared with the results of the
tandem-banyan network, Pi,,; is smaller in the dilated-
banyan network if d = K. We also see that the dilation
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degree d required for a fixéd Po,, is not a strong function
of n. In fact, the curves indicate that d increases much less
than linearly with n = log N for a fixed Pj,s,. This can be
seen more clearly from Fig. 8, where we plot d versus Py,
(the solid lines) for various values of required Py, under
full loading.

It is interesting to compare the performance of the the
dilated-banyan network with that of the Knockout switch
(15]. Intuitively, the Pjo,, of the Knockout switch would be
smaller than that of the dilated-banyan network if K = d
. This is because no packet would be lost in the Knockout
switch if K or fewer packets were destined for any output
address, whereas the possibility of internal conflicts in the
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dilated-banyan network implies that packets could be lost
even if no more than d = K packets were destined for
any external output address. Setting K = d, however,
results in an unfair comparison because the corresponding
complexity of the dilated network is lower than that of
the Knockout switch. Figure 8 shows that for n = 10
(N = 1024) and full loading, d = 9 for Ploss = 10-% and
d = 12 for Py, = 107°. This compares with K = 8 and
K = 11 in the Knockout switch [15] for the same Poys,
respectively. Thus, we see that d in the dilated-banyan
network does not need to be much higher than K in the
Knockout switch to achieve the same loss probability.

. We now examine the complexity of the dilated-banyan
network. In Appendix C, The following result is established
under the assumption of uniform random traffic:

For a dilated-banyan switch, assuming that the packets on
the input ports of each 2d X 2d switch element are indepen-

dent,
d d-1
A (1A
d 4d

(log N —logd)

4
S Plo.ss
. d d-1 d
< (log N —logd) (A l__:\_ 2 - (15)
- 4 d 4d rd

where d is the dilation degree required to meet loss proba-
bility Pioss.

The dotted lines in Fig. 8 correspond to an approxima-~
tion based on the upper bound above. The fact that the
upper-bound approximation is actually lower than the ex-
act analysis at certain portions of the curves indicates that
the independent-input-ports assumption in the approxima-
tion is optimistic with respect to the actual situation. As
can be seen, however, the d values in the approximation
and exact calculation do not differ by more than 1. Ap-
pendix C also shows that

dlogd = loglog N — log Pioss + O(d), (16)
where O(d) is a function of order d. This implies that
for a fixed Psubloss requirement, dlogd is O(loglog V).
Now, as shown in Fig. 9, the 2d x 2d switch elements in
the d- dilated network can be implemented by 2d 1 x 2
switch components and two 2d X d concentrators, which
in turn can be realized by a running-adder address gener-
ator and a reversed-banyan network [12,20,22]. With this
design, the order of complexity of each switch element is
O(dlogd). Since there are altogether (N/2)log N switch
elements, the order of complexity for the overall switch
fabric is O(N log N(loglog N}). In other words, for a fixed
Pioss, the dilated-banyan network has a lower order of com-
plexity than the tandem-banyan network and the parallel-
banyan network.

Now, the complexity study outlined above is relevant to
implementation only if we consider switches with very large
dimensions (i.e., large N and d). In practice, if we restrict
ourselves to small d, then, in order to make Pj,s, small,
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2dxd
concentrator | .

2dxd
concentrator | .

Complexity ~ O(d log d)

Fig. 9.
complexity dlogd.

An implementation of 2d x 2d switch element with order of

we can cascade several dilated networks in tandem, gen-
eralizing the idea of the tandem-banyan network. Upon
examining (15), we see that the upper and lower bounds
differ by a factor of 72-7%, which is independent of the of-

fered load A. In fact, roughly speaking, given a fixed d
and N, Pj,ss is proportional to the dth power of the of-
fered load A. This means that reducing the offered load
would improve the packet-loss rate more noticeably in a
switch with a larger d than one with a smaller d. In a
tandem-banyan switch, the offered load is successively re-
duced in subsequent banyan networks. Replacing the regu-
lar banyan networks with the dilated-banyan network will
ensure that the load decreases much more quickly and that
the required Pi,ss can be achieved with fewer networks.

Before moving onto the next section, it is worth compar-
ing our results with the conclusion of Reference [3], which
states: “Although dilated networks provide asymptotically
better performance, for practical numbers of processors di-
lated and replicated (i.e., parallel) networks have similar
performance”. This assertion has been substantiated in
[3] by -graphical plots of loss curves for switch size up to
N = 20 for dilated and parallel networks of “similar com-
plexity”. Closer examination reveals that the above con-
clusion is based on an unfair comparison of dilated and par-
allel networks. Specifically, to arrive at the alleged similar-
complexity common denominator, Reference (3] assumes
the parallel network to consist of generalized banyan net-
works in which the dimensions of the switch elements are
2d x 2d rather than 2x 2. However, as we have already men-
tioned, the 2d x 2d switch elements in the dilated network,
unlike those is the generalized banyan network, has only 2
rather than 2d output addresses. Consequently, the 2d x 2d
switch elements in the dilated network is less complex than
those in the parallel network. This fact has been ignored in
Reference [3]. Otherwise, the dilated network would have
been shown to be superior to the parallel network, even for
moderate switch size.

IV. WAITING SYSTEMS

We now turn our attention to the Batcher-banyan switch
and its variants as representatives of waiting systems in

which switching is accomplished by a combination of sort-

ing and nonblocking routing processes. A contention-resolution

mechanism is required to resolve output conflicts before
selected packets are allowed to enter the routing stage.
The throughput is limited to 58.6% if only one packet can
be switched to an output port in one time slot [9]. To
improve the throughput, more than one banyan network
can be arranged in parallel so that multiple packets can
be switched to the same output simultaneously. This en-
hanced scheme was employed in the Sunshine switch [10].
The group size in this case is equal to the number of par-
allel banyan networks. There are a number of other ar-
chitectures that exploit the same concept to increase the
throughput [7,12,13,14]. It has been shown in [11] that the
overall throughput can be increased to 95% for a group
size greater than or equal to 3. In the next subsection,
we will show that the set of parallel banyan networks that
follows the Batcher network can be replaced by a single
dilated-banyan network. That is, when the output space is
expanded through dilated internal links, the nonblocking
property is still preserved; therefore, the Batcher-parallel-
banyan network and Batcher-dilated-banyan network are
functionally equivalent.

Another technical challenge associated with the Batcher-
banyan switch is scalability. If we attempt to scale up
the switch size by interconnecting multiple Batcher-banyan
switches in stages, then the overall system is no longer self-
routing and nonblocking even though éach switch moduile
is. Depending on the actual interconnection structure used,
we may face a number of undesirable system problems,
such as the need for centrally controlled load-balancing
and path-hunting algorithms during call setup. A modular
Batcher-banyan switch has been proposed in [7] to avoid
these problems. Each switch module constitutes a Batcher
network and a set of routing subnetworks, including paral-
lel binary trees and banyan networks. The integration of
these routing subnetworks into an equivalent dilated net-
work is also addressed below.

A. Nonblocking Condition of Dilated-banyan Networks

An interconnection network is nonblocking if packet col-
lisions can be completely avoided and if internal buffers are
not needed. It is well-known that the banyan network is
nonblocking if incoming packets are ordered according to
their destination addresses and that there are no output
conflicts. The Starlite switch [20], a combination of the
Batcher sorting network and banyan routing network, is
based on this principle. Intuitively, the nonblocking condi-
tion for the dilated-banyan network should be much more
relaxed than for the regular banyan network, because of
the substantial reduction in the probability of packet colli-
sions at each switch element. Formally, a d- dilated-banyan
network is nonblocking if the active inputs (inputs with ar-
riving packets) zj,...,z; and the corresponding outputs
Y1, - - ., Y satisfy the following.

1. (Monotone): y1 <y2 <--- Sy OryL 2 Y2 >0 2
Yk-
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2. (Dilation): No more than d packets have the same
destination address. ,

3. (Concentration): Any input between two active inputs
is also active. That is, z; < w € z; implies input w is
active.

The above is certainly a straightforward generalization of
the nonblocking condition for a regular banyan network,
and a proof is given below.

Suppose that internal blocking occurs because there are
more than d packets destined for the same local output of
a 2d x 2d switch element at stage k in an N x N dilated
network. Consider d + 1 of these packets and denote their
external input addresses by 27 < 23 < --- < 2447 and
their corresponding external output addresses by 11 < yo <
+++ < Ya+1- It has been shown in the Appendix of [22] that

(zj —z) > 2"7F;

and
(yj —w) <2°7F -1,

for any two of the d 4+ 1 packets, ¢ and j with 7 > 1. It
follows that

il

(Tay1 — 21)
> d2" k.

Therefore,

_ Tde1 — T
(yg41 —y1) <27 k“lﬁ'(—tl—“—l)"

- 1. ()

Now, consider the input ports between the two input
ports occupied by packets d + 1 and 1, inclusively. By the
concentration condition above, each of these input ports is
active and has a packet. Therefore, there are altogether
(z441 — z1) + 1 packets among these input -ports. Each
packet has an associated output destination, and it is easy
to see that

the minimum number of distinct destination
addresses among the packets
S, (zg41 —z1) + 1,
- d
since there can be at most d packets with the same desti-

nation by assumption. In addition, by the monotone con-
dition,

the mazimum number of distinct destination
addresses among the packels

< (Yaer —y1) + L.
Therefore,

; - +1

(Ya+1 —m)+12> w‘gﬁ)—“' (18)
It is obvious that (17) and (18) can not hold simultaneously.
Thus, the dilated network must be nonblocking under the
conditions listed above.

+ t + 13 L] 4

O AT

w{fe]iel{+
[PAFE .
-|{*jl=] |+
| ][] |~
| o] [ | form
| [l [+

SN |

(€441 —2d) + (2a — 2am1) + -+ (22 — 21"

—

Fig. 10. A 32 x 32 modular Batcher-banyan switch with 4 modules

B. Modular, Dilated Batcher-banyan Networks

" A switching node in the public broadband network may
require access to as many as 10000 high-speed ports. The
sorting performed by the Batcher network requires bit syn-
chronization of all input packets in every time slot. This
stringent timing requirement limits the size of a Batcher-
banyan network. A modular approach, based on divide-
and-conquer, has been proposed in [7] to scale up the switch
size while preserving its nonblocking and self-routing prop-
ties.

An N x N modular Batcher-banyan switch consists of K
switch modules. Each module is an M x N packet switch,
where M = N/K is called the base dimension. A 32 x 32
gwitch with 4 modules is shown in Fig. 10. The basic idea
of this modular approach is to partition the set of inputs
into K subsets. Each subset is sorted by a Batcher network.
The sorted sets are then routed to their destinations by an
expansion network, which is a combination of M binary
trees (each of size 1 x K) and K banyan networks (each of
size M X M). The M x N expansion network also performs
the self-routing algorithm and it is nonblocking under the
same condition as a regular banyan network.

The complexity of a modular Batcher-banyan switch,
courting the total number of sorting and routing elements,
is by no means optimal. The number of all switch elements
of an N x N switch with K modules is

K (%logM(l—i—logM)) +

K (M(K —1)+ KQM log M)
N .
= —4—(10gN —log K)(1 +1logN —log K) +

NK -1+ ]—\%If‘—(logN —log K},

(19)
which is monotonically increasing with respect to the num-
ber of modules K. The extra cost, however, is compen-
sated by many other advantages that we may gain from
this modular approach, such as improvements in the relia-
bility, maintainability and performance {7].

In each switch module, the M binary trees and K banyan
networks can be integrated and replaced by an expansion
network with dilation degree d = K. This point is illus-
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Fig. 11. A 4 X 8 expansion network and its equivalent dilated expan-

sion network

trated by an example shown in Fig. 11. The 4 x 8 ex-
pansion network, consisting of 4 binary trees and 2 banyan
networks, is equivalent to a 4 x 4 network with dilation
2. It should be noted that the logical paths in the origi-
nal banyan networks should keep their independence in the
equivalent expansion network in order to route the packets
to the correct output ports. As illustrated in this exam-
ple, the thin-line paths and bold-face paths should not be
mixed. If K = d is too large to be implemented, then an
M x N expansion network can be replaced by %’- expan-
sion networks, each with dilation degree d. The group size
of each output port can also be enlarged in a straightfor-
ward manner in a dilated expansion network to improve
the overall throughput of the switch further.

V. CONCLUSION

We have developed a theoretical foundation for evaluation
and comparison of a broad spectrum of fast packet switch
architectures within the framéwork of performance and
complexity studies. Based on this framework, we have in-
vestigated the throughput and complexity of various packet-
switching techniques proposed to date, with an emphasis
on comparison with designs based on the dilated-banyan
network. Specifically, the relationships between dilation
degree, internal-link bandwidth, complexity, and switch
throughput are established.

The switches under consideration have been classified ei-
ther as loss systems or waiting systems according to how
packet contention is handied. The complexities of vari-
ous loss systems based on banyan networks have been es-
timated for given throughput and loss-probability require-
ments. Qur main discovery is that the complexity of dilated-
banyan networks is of order N log N{loglog N), while the
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complexity of all the other proposed fast-packet switches,
including parallel banyan networks, tandem banyan net-
works and Batcher-banyan switches, is of order N(log N)?;
the only loss system that has a lower order of complexity
is the Nlog N dual shuffle-exchange network [18] that we
have discovered recently, and this will be reported else-
where. In addition, we have also established the non-
blocking condition of dilated-banyan networks. This result
implies that Batcher-dilated-banyan switches, operated as
waiting systems, can be constructed to meet any through-
put requirement.

On the whole, our work suggests that dilation is a pow-
erful design technique for improving performance and re-
ducing complexity in a large switch. We have argued this
from the complexity as well as throughput viewpoints, A
far as implementation technology is concerned, since dila-
tion involves multiple, parallel links from one location to
another, multiplexing techniques (e.g., wavelength-division
multiplexing in the optical domain) is a natural way for re-
ducing the interconnection complexity. This further moti-
vates the use of dilation as a path-diversification technique
as opposed to other techniques which do not make use of
parallel-running links.

As a final note, this paper concerns dilation at the micro-
scopic level for individual 2 x 2 switch elements. The use of
dilation for interconnecting nonblocking switch modules of
larger dimensions to construct a very large overall switch-
ing network has been treated in [12]. Since our results are
related to switches of very large dimensions (i.e., larger
than can be realized with a single VLSI chip), they sug-
gest that dilation should be applied at both microscopic
and macroscopic levels in order to make best use of its
power. Thus, the nonblocking switch modules in a large
switch architecture can be replaced by blocking but dilated
switch modules. To reduce the complexity of interconnect-
ing these switch modules, multiplexing techniques can be
applied to the parallel links connecting them.
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APPENDICES

The derivations of (10), (15), and (16) are given here. The
following relations will be useful in our derivations.

2 3

In(l+z) = z—%—+—z§-+~-~; l2| < 1,
Iog(1+z) ~ (loge)z |z] <« 1. (20)
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nl = n"e "V 271’11(1 + 6(71));

where ¢(n) > 0 is a decreasing function of n.
N-K N N-K\ /N
< < ; <1< N-K.
() =L)< () () osiswex
(22)

APPENDIX A
COMPLEXITY OF KNOCKOUT SWITCH

Suppose that Pj,s, is the loss probability of the Knockout
switch with group size K. Then

1300 () (-5)

(Stirling’s  Formula), (21)

PIoss -
=K 41
B lNif{il N i K44 X i N-K—i'
T Y& \k+i)\N N

(5)
-k i N-K—i'
2:40 g (I{]j- i’) (%) (1‘ ‘]/\\7) (A1)

. It follows from (22) that

2 >

1/ AN\ /N A MWK /v-1
re < 5 (5) (R)e-05=(5) (<)
K ‘ K :
< ’\_’<____>‘_____
- K! 7 KKe-K oK

Taking the logarithm of the above inequality, we have

f(K) = K(logK —logh—loge) +

1 1
-2-10g K+ 3 log 2%

S ~logP;033. (AQ)

Since f is an increasing function with respect to K, the
above inequality implies that K. < K*; where the upper
bound K* is the root of f(K) = —log Pyyss. For example;
K* = 9.7 when A = 1 and Pj,,, = 107%. This is indeed
an upper bound for K = 8 needed to achieve Pj,s, = 1075
[15].

APPENDIX B
COMPLEXITY OF TANDEM-BANYAN SWITCH

Let Ly = %\& be the probability that a packet still fails
to reach its destination after traveling through k& banyan
networks, where X is the initial offered load and Ay is the
load per link offer to the input of (k+1)** banyan network.
Let p;, be the carried load on each output of the the k**
banyan network. It follows from (6) that

4N
= — = Az -
Akl Ak = Pr+1 s
n)\k2
= 2 (B.1)
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We then immediately have the recursive formula of the loss
probability

al? .
L = k .
k+1 aLk +4) (B 2)
where a = An = Alog N. From Eqn. (B.2), we get
—4L
— L = . B.
Liyr — Ly el 11 (B.3)

Using the Taylor Series approximation technique introduced
in Section II, we can transform the above difference equa-
tion into the following differential equation:

dly _ —~4 Ly
dk aly +4

Simple integration and matching of the boundary condi-
tions, Lo = 1 and Lxg = Pigss, gives

Mog N

K=
4

(1 — Pz(,“) —1In on”. (B4)

APPENDIX C
COMPLEXITY OF DILATED BANYAN SwiTCH
We know from Section II that both the sequence of load-
ing {Pn} and the sequence of loss probabilities {Q,,} at
intermediate stages are monotonically decreasing. Also,
we know that if the dilation degree is d then Q,, = 0 for
m < logd. By the definition of loss probability, we have

Py - P,
Ploss - ""'}3;)“—“
_ (Py=P)+(Py—Py)+---+(Pno1— Pp)
= X
_ Py Piogd—1
= Q1+Q2P0+~-~+Qlogd T +
Plogd Pn—l
Qlogd+1 PO ++Qn PO

< (n—logd) Quogati- (C-l)‘

The above is basically a union bound (i.e., the overall
loss probability is upper-bounded by the sum of loss prob-
abilities at different stages), which is likely to be very good
when Pl (and therefore Q) is small. To find a bound -
for Qiogdt1, substituting Poga = A/d into (8) gives

Qlog d+1

- L3 a-a(¥) () (-2)"
- (A/id)d gz (iidd> (%)i (1— %)d—i(c.z)

1

where we have made the index change i = j — d. Now,

() =GO gD
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Substituting the above into (C.2) and simplifying by Stir-
ling’s formula (21), we have

1 /2\* AN od
<=(2} (1-2) —=—=—.
Qiogd+1 < 1 (d) ( 4d> =
Thus,

1/20\¢ AN\t 24
Pross < (n—=logd)= | = 1-— —=
toss < (n = logd) 7 (d) ( 4d) Vrd
To get a lower bound for Pj,,,, continuing from the first
line of (C.1), we have

(C.3)

P,
Ploss 2 _PEO(QIOS a+1 + Qrogatz + -+ + Qn)

> (1= Pioss)(n—logd)Qn.
From (8) and with the index change i = k — d,

C(Pac1/D G~ 2\ (Paat Pui '
o~ B (20) (%) (-5

' (C.5)

(C.4)

Now,

()= () a2 ()

Substituting into (C.5) and simplifying

(/)1 = Poa)? (1 AN
4 4d ’

where we have made used of the facts that P,_1 > P, =

(A/d)(1 — Pioss) and P,_; < A/d. Substitution into (C.6)
gives

Ploss 17X 4 A d-1
L= Puows )T 24‘(3) (I’za) (n—logd). (C.7)

If we are only interested in very small Py, then

Ploss
(1 - Plo.ss)d+1

Making this approximation, we obtain

: (%)d (1 - %)H (n —logd).

Combining (C.3) and the above, we have

(n — logd) A)d( A\

~ 2 2| - —_—— <

4 i) 7@ < Ploss
< (n —logd) (é)d L2 d-1 gd
S T \3g ) e

We now investigate the relationship between d and n for
some fixed A and Pj,,,. Taking the logarithm of (C.3),

Qn 2

(C.6)

~ PIos.s(l + (d+ l)PIoss) ~ P1055~

Ploss Z

(C.8)

log Pross < log(n —logd)— 2+ dlogA — dlogd +
A 1 1
(d-—l)log(l—ﬁ)+d—§log7r—§logd
< logn—2+dlogh —dlogd+d —
1 1
*2-10g7('—-2-10gd

Thus,

logn — log Piyss > dlogd + f(d), (C.9)

where
1 1
f(d)=2~dlogh —d ~ slogr + glogd = O(d)
Taking the logarithm of (C.7),

logplo_g_g - (d+ 1) log(l - PIO.’S)
> log(n —logd) — 2+ dlogA — dlogd +

\ .

(d—1)log (l— :Q) +d

logd
n

> logn+log(1— )-—2+dlog)\—

dlogd+ (d — 1) log l—i +d:
4d
Now,

(d - 1)log (1~4‘/\g> 2 (4= 1)log (1_7})

since d > 1, and

logd logd
log(l— n ) Zlog(l—m)

by substitution from (C.9). Hence,

logn — log Piess < dlogd + g(d), (C.10)
where
logd ‘
g(d) = —log (1 - m) +2—dlogh -

(d=1)log (1 - %) —d— (d+ 1) log(L ~ Pioss)
= 0(d)
From (C.9) and (C.10), we conclude that.

dlogd = loglog N — log Pioss + O(d), (C.11)

and therefore dlogd = O(loglog N).
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