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Abstract—In the literature, asymptotic studies of multi-hop
wireless network capacity often consider only centralized and
deterministic TDMA (time-division multi-access) coordination
schemes. There have been fewer studies of the asymptotic ca-
pacity of large-scale wireless networks based on CSMA (carrier-
sensing multi-access), which schedules transmissions in a dis-
tributed and random manner. With the rapid and widespread
adoption of CSMA technology, a critical question is that whether
CSMA networks can be as scalable as TDMA networks. To
answer this question and explore the capacity of CSMA networks,
we first formulate the models of CSMA protocols to take into
account the unique CSMA characteristics not captured by exist-
ing interference models in the literature. These CSMA models
determine the feasible states, and consequently the capacity of
CSMA networks. We then study the throughput efficiency of
CSMA scheduling as compared to TDMA. Finally, we tune the
CSMA parameters so as to maximize the throughput to the
optimal order. As a result, we show that CSMA can achieve
throughput as Q(ﬁ), the same order as optimal centralized
TDMA, on uniform random networks. Our CSMA scheme makes
use of an efficient backbone-peripheral routing scheme and a
careful design of dual carrier-sensing and dual channel scheme.
We also address the implementation issues of our CSMA scheme.

Index Terms—Wireless Network Capacity, Achievable

Throughput, Carrier-Sensing Multi-Access (CSMA)

I. INTRODUCTION

An important characteristic that distinguishes wireless net-
works from wired networks is the presence of spatial inter-
ference, wherein the transmission between a pair of nodes can
upset other transmissions in its neighborhood. Spatial interfer-
ence imposes a limit on the capacity of wireless networks.

The seminal paper [14] by Gupta and Kumar revealed
that the capacity of wireless networks constrained by spatial
interference is upper bounded by O(ﬁ) for n number of
mutually communicating nodes on a uniform random network,
regardless of the chosen scheduling and routing schemes.
Many similar upper bounds are derived for more sophisticated
settings (e.g., with optimal source and network coding schemes
[24]). In [6], Dai and Lee derived the upper bound O(%)
for multi-hop random access networks using a simple queuing
analytical argument. They also showed that this upper bound
is achievable only if the maximum throughput of each local
node is a constant independent of n.
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Since then, a number of solutions have been proposed to
achieve the upper bounds in various settings. Particularly,
[8] showed that by an efficient backbone-peripheral routing
scheme (analogously called “highway system”) and a two-
stage. TDMA scheme, (—=) is achievable on a uniform
random network with high probability.

So far, the studies of achievable wireless capacity in
the literature consider only centralized controls and a-priori
scheduling schemes with TDMA. On the practical front,
carrier-sensing multi-access (CSMA) networks (e.g., Wi-Fi),
which make use of distributed and randomized medium-access
protocols, are receiving wide adoption across enterprises and
homes. It is not clear whether the results related to centrally-
scheduled networks are directly applicable to CSMA networks.

To bridge the gap between practice and research, it will
be interesting to find out to what extent the capacity of
CSMA networks can be scaled. In particular, can the simple
distributed scheduling of CSMA scales network capacity as
well as central scheduling can?

The answer, according to our study, is “yes”. However, the
way to go about achieving CSMA scalability is non-trivial
and several mechanisms must be in place before scalability
can be attained. For example, the use of dual carrier-sensing
ranges in two channels will be needed; and one must be able
to assign different back-off countdown times to different nodes
in a distributed manner.

To establish our results, besides building on the past work
of others, we find it necessary to clarify and add rigor to the
previous frameworks. It is well known that spatial interference
imposes a constraint on the links that can be active simultane-
ously. Given an interference model, in general there can be a
number of subsets of links that can be active simultaneously.
Each such subset of links is called a feasible state. For a central
scheduler, all feasible states are available for the design of its
schedule'. For CSMA networks, its distributed nature does not
allow us to dictate which particular feasible state will be active
at what time. The problem becomes even more challenging
because if not designed properly, CSMA may allow a subset
of links that is not interference-safe to transmit simultaneously,
leading to the so-called hidden-node problem.

We define the feasible states allowed by the CSMA protocol
in a rigorous manner. We argue that the hidden-node problem
in CSMA networks is caused by a mismatch between the
feasible states allowed by CSMA and the feasible states of
an underlying interference model. We show how to resolve
this mismatch to create hidden-node free CSMA networks.
Most importantly, we show that hidden-node free CSMA
networks can achieve the same scaling of throughput as the
central scheduler provided the aforementioned dual carrier-

'A schedule is a sequence of feasible states that are active at different times.



sensing and dual channel scheme is in place. Our capacity-
optimal CSMA scheme not only demonstrates the theoretical
achievable throughput of CSMA networks, but also outlines a
practical way to achieve it.

II. BACKGROUND AND OVERVIEW

The basic idea of CSMA is that before a transmitter attempts
its transmission, it needs to infer the channel condition by
sensing the channel. If it infers that its transmission will
upset (or be upset by) any receiver’s on-going transmissions
(including its own receiver), then it defers its transmission.
In addition, to prevent two transmitters from beginning their
transmissions at the same time (given that they both sense the
channel to be safe for transmission), each transmitter under-
goes a random backoff count-down period before transmission.
The count-down will be frozen when channel is sensed to be
not interference-safe (i.e., transmission is collision-prone), and
will be resumed when the channel is sensed to be interference-
safe again. A transmission will be considered successful,
when the transmitter can receive an ACK packet by the
corresponding receiver, upon the completion of transmission.

Compared to the centralized TDMA scheme, the CSMA
protocol has two distinguishing characteristics:

i) CSMA is an ACK-based protocol, in which the receivers
are required to reply an ACK packet for each success-
ful transmission. Thus, bi-directional communications
need to be explicitly considered when formulating the
constraints on simultaneous transmission imposed by
CSMA. The centralized TDMA schemes in prior work
[81, [9], [14], [17], [21], [24], however, did not consider
bi-directional communications and ACK packets.

ii) CSMA is a distributed random access protocol. Each
transmitter chooses a random time instance to initiate
its transmission, and it can only rely on its limited local
knowledge to infer whether its transmission is compati-
ble with other simultaneous transmission under various
interference settings®>. Unlike the centralized TDMA
schemes, such a distributed control requires limited a-
priori coordination among transmitters and receivers.

Despite the popularity of CSMA protocols, capacity analysis
applicable to large-scale CSMA wireless networks receive
relatively little attention in the literature. A likely reason
could be that CSMA protocols are generally regarded as
synonymous to the so-called “protocol model” in many TDMA
based papers. The “protocol model” is, in fact, a simplified
pairwise interference model that serves to model interference
among simultaneous links, which neither explicitly considers
nor precisely models the aforementioned characteristics 1)-ii)
of CSMA3. As such, it is not clear 1) whether the capac-
ity results based on these interference models can apply to
CSMA networks; and 2) whether CSMA can achieve the same
throughput performance as centralized TDMA.

ZNote that the interference is not necessarily symmetric — a transmission
could upset another simultaneous transmission but not the converse.

3Gupta and Kumar’s seminal paper [14] appears to be the first to coin the
phrase “protocol model”, but without specifying any distributed protocol that
can implement the protocol model, other than centralized schemes by TDMA.

There is a considerably large body of literature about single-
hop CSMA networks [15], [19]. Here we study the more
general multi-hop CSMA networks, the results of which are
quite limited in the literature [12], [20]. We also note that
[3] has studied the capacity of multi-hop Aloha networks.
However, Aloha protocol is different from CSMA protocol
as it has no carrier-sensing operations. Also, the definition of
capacity in [3] appears to be different from the conventional
Gupta-Kumar’s one [8], [13], [14], [17], [18], [24].

In summary, our result is built upon two observations. In
CSMA networks, there are two design parameters that can be
used to adjust the behavior of a link. The first parameter is the
backoff countdown rate which decides the length of the idle
period being sensed by a link before it can initiate a trans-
mission. The second parameter is the carrier-sensing power
threshold (related to carrier-sensing range) which decides how
sensitive the link is to the surrounding transmissions when
determining the channel is busy or idle. Our first observation
is that the local CSMA scheduling algorithm with proper but
different count-down rates at different links can achieve almost
the same rate region as any centralized TDMA scheduling
scheme. Our second observation is that it is possible to tune
the carrier-sensing thresholds to allow sufficient spatial reuse
in the network, so that the optimal Q(ﬁ) throughput can be
supported. Combining these two observations, we show that
CSMA networks with calibrated countdown rates and carrier-
sensing thresholds can achieve throughput of Q(ﬁ), the same
order as optimal TDMA schemes.

A. Outline of Our Results

To explore the capacity of CSMA networks, we first for-
mulate the models of CSMA protocols to take into account
characteristics i)-ii). These models determine the upper and
lower bound on the capacity of CSMA networks, and are
functions of various CSMA parameters. We then study the
throughput efficiency of CSMA relative to TDMA, following
the same procedure as in [19] and [16]. Finally we tune the
CSMA parameters so that the capacity of a CSMA network is
maximized to the optimal order. Our approach is divided into
four parts:

1) Formulation of Carrier-sensing Decision Model
(Sec. III): Our models for CSMA protocol consist of two
components that capture two major functionalities of CSMA.

e The decision model that formally formulates the con-
straints on simultaneously active links imposed by CSMA
carrier sensing operations, such as distance-based carrier
sensing. We explicitly distinguish the decision model
of CSMA protocols from the interference model. For
instance, the fact that two simultaneously active links are
allowed by CSMA does not necessarily mean that they
do not interfere with each other. This is the well-known
hidden node problem.

o The random access scheme that captures how CSMA
access the wireless air time and space. The key challenge
is to understand the throughput efficiency of distributed
and randomized channel access mechanism of CSMA, as
compared to centralized TDMA scheme.



Uni-directional feasible family

Bi-directional feasible family

Carrier-sensing feasible family

Pairwise
carrier-sensing

Aggregate
interference

Pairwise Aggregate Pairwise
interference interference interference
Random Upper bound: O(ﬁ) [14]
network Achievable as: Q(ﬁ)
capacity by TDMA [8]

Upper bound: O(ﬁ) (this paper)
; . 1
Achievable as: Q(ﬁ)
by TDMA (this paper)

Upper bound: O(ﬁ) (this paper)
Achievable as: Q(ﬁ)
by dual carrier sensing (this paper)

TABLE I
CAPACITY OF UNIFORM RANDOM NETWORKS OVER VARIOUS FEASIBLE FAMILIES.

We establish the relationship between our CSMA models
and the interference models from the literature in Sec. III.

2) Hidden-node-free Design of CSMA Networks (Sec. IV):
There are various interference models in the literature (in-
cluding the so-called “protocol model”). They are intended
to capture uni-directional transmissions where ACK packets
are not required. In this paper, we extend these interference
models to the setting of bi-directional transmissions, under
which CSMA protocols typically operate.

It is well-known that the distributed transmission scheduling
in CSMA may not be able to prevent spatial interference,
as known as the hidden node problem [15]. Utilizing our
proposed carrier-sensing decision models, we formally define
the hidden node problem as due to a carrier-sensing decision
model violating the feasibility of a bi-directional interference
model. Furthermore, we derive sufficient conditions for pair-
wise carrier-sensing decision model (based on carrier-sensing
range) to eliminate the hidden node problem under various
interference settings (Theorem 1). Our results include the prior
one in [15] as a special case.

By eliminating the hidden-node problem, we can apply ele-
gant mathematical tools to analyze the capacity and throughput
performance of multi-hop CSMA networks.

3) Stationary State Analysis of Random Access (Sec. V):
To study the behavior of the random access scheme, we
consider an idealized version of IEEE 802.11 DCF based on a
continuous-time Markov chain model in order to capture the
essential features of CSMA. This continuous Markov chain
model has been used in various analyses [16], [19], [22].

Based on the hidden-node-free design of CSMA networks,
the long-term throughput of CSMA with random access is
characterized by the stationary distribution of the continuous-
time Markov chain model. Following the same procedure as
n [16], [19], [22], we present the stationary distribution, and
hence, the long-term throughput of hidden-node-free CSMA
networks under various carrier-sensing decision models in
Sec. V. We also show that CSMA random access schemes
can be tuned to perform as well as TDMA schemes.

4) Design of Dual Carrier-Sensing (Secs. VI-VII): On
hidden-node-free CSMA networks, we show that the current
CSMA setting with a single homogeneous carrier-sensing
operation fails to achieve the optimal capacity Q(ﬁ) on a
uniform random network. It can at most achieve a capacity of
O(ﬁ) with high probability (shown by Theorem 2).

We then show that the design of dual carrier-sensing oper-
ations can achieve the capacity of the same order as optimal
centralized TDMA. Our design is drawn from an efficient
backbone-peripheral routing scheme in [8], based on which

we show that using two different carrier-sensing ranges are
sufficient to achieve optimal capacity of Q(%)) on a uniform
random network with high probability (shown by Theorem 3).
In this paper, we not only provide insights for the opti-
mal asymptotic capacity of wireless networks by our dual
carrier-sensing scheme, but also address practical issues of
implementing our scheme. First, we address the scalability
issue during the dynamic switching between the dual carrier-
sensing operations. We propose to use two frequency channels
to distinguish the two carrier-sensing operations. Second, we
address the issue of half-duplexity across two frequency chan-
nels, which enables low-cost implementation of our scheme.
We summarize our results and related work in Table I.

III. FORMULATION AND MODELS

First, note that some key notations are listed in Table II.

TABLE I
KEY NOTATIONS

Notation Definition

N=d Set of source-sink pairs.

Ak Data rate of source-sink pair k € N5,

X Set of relaying links induced by the paths
between all source-sink pairs in N9,

ti Coordinates of the transmitter of link 7 € X.

T Coordinates of the receiver of link 7 € X.

S Feasible state, a subset of links that
can simultaneously transmit.

F, U, B,E | Feasible family, a set of feasible states.

Pix Fixed transmission power of all nodes.

No Fixed noise power.

« Power decaying factor in radio transmission.

B Minimum Signal-to-Interference-Noise ratio
for successful receptions.

A Guard-zone coefficient, used in noise-absence
pairwise SIR interference model.

[ Interference range, used in fixed range
interference models.

Ftx Communication range, used in fixed range
interference models.

res Carrier sensing range, used in pairwise
CSMA decision models.

tes Carrier sensing power threshold, used in
aggregate CSMA decision models.

A central problem of multi-hop wireless communications is
defined as follows. Given a set of source-sink pairs N°¢ and
a set of data rate {\;,k € N*}, we ask whether successful
wireless communications can be established between all the
sources and sinks in N to sustain the required rate {\, k €
N4}, possibly using other nodes as relays, subject to a certain
interference model of simultaneous wireless transmissions.

Specifically, we consider the following two degrees of
freedom in establishing the wireless communications:



1) Routing scheme that selects the appropriate relaying
nodes to connect the sources and sinks.

2) Scheduling scheme that assigns (deterministically or
randomly) the slots of transmissions at relaying nodes.

Furthermore, these wireless communications should be estab-
lished in a distributed manner with minimal global knowledge
and coordination among the nodes.

Hence, we first present several common interference models
of feasible simultaneous wireless transmissions. Then we
extend these interference models to the setting of bi-directional
communications. Next, we formulate carrier-sensing decision
models that capture distributed control of transmissions.

A. Interference Models

An interference model is defined by its interference-safe
feasible family. Some common interference-safe feasibility
families in the literature are defined as follows. To simplify
the definitions, we implicitly assume i # j.

a.0) Pairwise fixed-range feasible family:

Sewu™ [X, Il rtx], if and only if for all i, € S,
[t; — 75| > 1w and |t; — ;] < e ()

a.1l) Pairwise (noise-absent) SIR feasible family:

S e %L [X,Al, if and only if for all 4,j € S,
‘t]‘—T’i|Z(1+A)|ti—T1‘I (2)

a.2) Pairwise SINR feasible family:

S e %[ X, B8], if and only if for all i,j € S,

sinr

Pec|ti — i~
No + Ptx‘tj — Tilf

_ >3 3)
a.3) Aggregate SINR feasible family:
Seyk [X,ﬂ], if and only if for all i € S,

sinr

Pec|ts — 7|7

No + Z Ptx|tj —Ti|7
JjeS\{i}

_ >4 @)

Also, we suppose rye > rix, A > 0, @ > 2, § > 0, and
uniform power Py, at all nodes. For a.2)-a.3), Py |t; —r;| 7% >
BNp for all z € X. Otherwise, t; cannot successfully transmit
packets to r; even without interference.

The notion of feasible family applies to both pairwise and
aggregate interference models. Pairwise models a.0)-a.2) can
be captured by the use of conflict graph, whereas the notion
of feasible family is more generally applicable to a.0)-a.3).

In [14], pairwise SIR interference model a.l) is called
“protocol model”, whereas aggregate SINR interference model
a.3) is called “physical model”. The naming in this paper
emphasizes the interference of transmissions, and avoids con-
fusion with CSMA protocol models*.

4We remark that [1] also presents a “generalized protocol model” with
arbitrary interference footprint around the transmitters that models more
general pairwise interference settings, and a “generalized physical model”
that specifically applies to the Gaussian channel.

B. Bi-directional Interference Models

The interference-safe constraints a.0)-a.3) are uni-
directional, based on the assumption that the receiver is not
required to reply an ACK packet to the transmitter upon
a successful transmission. For ACK-based transmissions,
interference can occur between two transmitters, between two
receivers, and between a transmitter and a receiver. See Fig. 1
for an example of pairwise SIR interference model. Without
the reception of ACK packets, the transmitter will consider
the transmission unsuccessful and retransmit the DATA packet
later on. Hence, we need to ensure that the transmissions of
DATA packets and ACK packets of all simultaneous links do
not interfere with each other.

@

Fig. 1. In Fig. (a) the normal DATA packet transmissions from transmitters
will not interfere with each other, but in Fig. (b) there is interference when
transmitting ACK packet.

Let diSt(i,j) £ min(|tj — Ti|7 |’I“j — ti|, |’/‘j — T‘i|, |tj — fi|).
We consider the bi-directional versions of interference-safe
constraints as follows.

b.0) Bi-directional pairwise fixed-range feasible family:

S e B [X, Il rtx], if and only if for all 4,5 € S,
dist(i,7) > rea and |t; — 1] < rix 5)

b.1) Bi-directional pairwise SIR feasible family:

S € #%[X,Al, if and only if for all i,j € S,
dist(i,j) > (14 A)[t; — 74 (6)

b.2) Bi-directional pairwise SINR feasible family:

S € A%, [X, B, if and only if for all i,j € S,

sinr

Pelts — 73|~

— >0 )
No + P (dist(4, 5))

b.3) Bi-directional aggregate SINR feasible family >:

S e B¢ [X, B], if and only if for all i € S,

sinr

Pelts — 73|~

No+ 3 Pu(dist(i, 7)) "
jeS\{d}

>p ®)

Compared with the uni-direction interference-safe con-
straints, the bi-directional counterparts consider the interfer-
ence from both the DATA and ACK transmissions.

SA more precise definition should replace the denominator of the
LHS of Eqn. (8) by No+min {ZjeS\{i} Pec(min{|t;-t;], [rj-t:|}) 7,
2jes\ i} P (min{|tj-r;|,|rj-rs]}) " }. Here we choose the simpler and
more conservative form in Eqn. (8), as it is sufficient for our results.



C. Carrier-Sensing Decision Models

The interference-safe constraints a.0)-a.3) and b.0)-b.3)
capture the global spatial interference in the network. In
CSMA, a transmitter has only local knowledge of its inter-
ference condition, but not the interference conditions at its
targeted receiver or at the transmitting and receiving nodes of
other active links. The decision of a transmitter whether to
transmit is only determined by its carrier-sensing operation,
rather than by the global knowledge of spatial interference.

We define carrier-sensing decision models, in which a fea-
sible family is a set of links that may transmit simultaneously
under a carrier sensing operation. But this feasible family may
or may not be interference-safe under the uni-/bi-directional
interference models. We present two feasible families to cap-
ture carrier-sensing operations, defined as follows.

c.1) Pairwise carrier-sensing feasible family:
SeeE™ [X, rcs], if and only if for all 4, j € S,

|tj - tz‘ Z Fes (9)

In pairwise carrier-sensing decision model c.1), transmission
decision is based on the distance from other simultaneous
transmitters. c.1) is often used together with the pairwise
interference model for analysis in the literature. In fact, in
analysis and in actual implementation, c.1) is also compatible
with the aggregate interference model. For instance, [11] re-
cently introduced a novel and practical approach to implement
pairwise carrier-sensing decision model c.1) with respect to
aggregate interference model, using Incremental-Power Carrier
Sensing (IPCS).

The basic idea of Incremental-Power Carrier-Sensing
(IPCS) is that a transmitter ¢; can estimate the distance
to an individual simultaneously active transmitter ¢; by
measuring the change of interference level. Suppose that
initially ¢; measures the aggregate interference level as:
(No + ZjeS\{k} Pult; — ti|"”‘). Then when t; transmits,
the measured change of interference level at ¢; becomes
AP; = Pty — t;|~*, which reveals the distance to t;. This
mechanism proceeds as follows. Hence, each transmitter ¢;
requires to maintain a counter cnt; (initially set as 0). When
t; detects any change AP;,

o if AP; > Py r®, then cnt; < cnt; + 1.

o if AP; < —Pyr @, then cnt; < cnt; — 1.

Transmitter ¢; is allowed to transmit only if cnt; = 0. Suppose
that there is no transmitters that will simultaneously start to
transmit at the same time®, IPCS can realize pairwise carrier-
sensing decision model c.1).

On the other hand, the current IEEE 802.11 networks use
a power-threshold based carrier sensing mechanism, such that
a transmitter decides its transmissions based on the aggregate
interference level measured before the transmission:

c.2) Aggregate carrier-sensing feasible family:
S € ©°¢ [X , tcs], if and only if there is a sequence
(i1,...,4|s)), such that for each iy € S

>

je{it,sin—1}

NO + Ptx|tj - tik ‘70‘ S tes (10)

6This will be true, when we use continuous exponentially random count-
down as in the next section.

That is, when each transmitter ¢, sees the aggregate interfer-
ence level from other simultaneously active transmitters that
have started transmission before is below the power threshold
tes, 45 decides that it is allowed to transmit.

Although aggregate carrier-sensing decision model c.2) is
easier to implement than pairwise carrier-sensing decision
model c.1) (which relies on IPCS), pairwise carrier-sensing
does not depend on the order of decision sequence of trans-
mitters, which is more amenable to analysis.

IV. HIDDEN-NODE-FREE DESIGN

Using only local interference conditions, the local decisions
of transmissions in CSMA cannot completely prevent harmful
spatial interference (i.e., the hidden-node problem), or may
sometimes over-react to benign spatial interference (i.e., the
exposed-node problem). While they are well recognized in
the literature, lacking are formal definitions that comprehen-
sively consider various interference and carrier-sensing deci-
sion models. Here, we provide formal definitions to hidden-
node and exposed-node problems based on the models in
Sec.III. We then also provide sufficient conditions to eliminate
the hidden-node problem.

Because CSMA is an ACK-based protocol, we consider
a bi-directional interference-safe feasible family %X | from
one of b.0)-b.3). Given a carrier-sensing feasible family ¢’ [X ]
from one of c.1)-c.2), we define

e Hidden-node problem: if %[X] 2 %[X]

o Exposed-node problem: if %[X ] P2 A [X ]

Namely, hidden-node problem refers to situations where
the carrier-sensing decision violates the bi-directional
interference-safe constraints, whereas exposed-node problem
is where the carrier-sensing decision is overly conservative in
attempting to conform to the bi-directional interference-safe
constraints. Our definitions naturally generalize the ones in
[15], which considers only pairwise interference and carrier-
sensing decision models. For example, we illustrate an instance
of hidden-node problem for pairwise carrier-sensing decision
model and pairwise SIR interference model in Fig. 2.
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Fig. 2. In Fig. (a) the carrier-sensing decision model correctly permits the
simultaneous links for DATA packet transmission, but fails in the case of ACK
packet transmission in Fig. (b). Hence, %" [X] 2 €% [X]

As studied in [15], [22], hidden-node problem causes un-
fairness in CSMA networks. In this paper, we only consider
CSMA networks that are designed to be hidden-node free.
Besides the benefit of better fairness, more importantly, the
overall performance of a hidden-node free CSMA network is



tractable analytically. For example, the crucial Eqn. (21) of
CSMA stationary states to be presented in Sec. V is valid
only for a CSMA network that is hidden-node free.

One of our contributions is to establish the sufficient
conditions to eliminate hidden-node problem in various
interference models. We note that it is more complicated
to design aggregate carrier-sensing decision model c.2) to
prevent hidden nodes. Hence, in the following we only
consider pairwise carrier-sensing decision model c.1).

Lemma 1: If A < B= — 1, then

Uy [ X, A] 2 U5 X, B] 2 U, [X, B] (1)
Lemma 2: Let ry = max;ex|t; — 7] If
1
fxcl = (ﬁm)(% o — No)) Tt 12)
where k(o) £ Y727, 4[7(2k + 2)1k~2, then
Ugne| X, B] 2 UL [ X, el 1 (13)

Note that k(a)) converges rapidly to finite constant 52,
when a > 2. See Fig. 3.(a) for a plot of the numerical values
of k(a). We remark that that [10] considers the simpler
aggregate noise-absent SIR model. Because of the absence
of noise, using a tighter packing lattice [10] yields a tighter
constant k(«).

Lemma 3: If r] 4 > ry + 2ry, then

gZ/pr I:Xv Ixcls rtx} 2 %’EW [X7 xcls rtx] 2 %EW [X7 r>I<C|7 rtx]

r

(14)
Lemma 4: If A’ > A + 2, then
2 XAl 2 A A D x.A]  as)
Lemma 5: If 8/ > (24 =), then
Ui [X, B8] 2 5 (X 8] 2 win (X B (16)
Lemma 6: 1If 3/ > (2 + ﬁé)a, then
Ui [ X, 8] 2 35, (X, 8] 2 %35 [X. 8] (D)
Lemma 7: If ry = rirg?dti — ;| and reg > reg + 2rixs
CP X, ] 2 BR[X Nty 1] 2 6P [Xores] (18

Note that Lemma 4 can be proven by applying Lemma 5 and
letting No =0, A = & — 1 and A’ = 8'= — 1. Hence, (2 +
B8 i)a is a universal constant for both pairwise and aggregate
interference models with/without noise. See Fig. 3.(b) for a
plot of the numerical values of (2 + ).

A. Hidden-node-free Sufficient Conditions

Lemmas 1-7 establish a tree diagram Fig. 4 of subset-
relationships for the interference and carrier-sensing decision
models, under the respective sufficient conditions.

The tree diagram Fig. 4 provides us a way to design
hidden-node-free CSMA networks. Given any bi-directional
interference-safe feasible family %[X} from b.0)-b.3), and
pairwise carrier-sensing feasible family &P% [X , rCS], we start

(@ (b)

Fig. 3. Fig. (a): Numerical values of k(c), which converges raplidly to finite
constant 52 when o > 2. Fig. (b): Numerical values of (2 + S« ).
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Fig. 4. The tree diagram represents the subset-relationships for the interfer-
ence and pairwise carrier-sensing decision model.

at # [X } in the tree diagram, and follow the respective chains
of lemmas to set the respective sufficient conditions until
reaching 4™ [ X, ro|. Then, we can obtain a hidden-node-free
design. Hence, it proves the following theorem.

Theorem 1: Suppose ry = max;ecx|t; — r;|. For any bi-
directional interference-safe feasible family %[ X| from b.0)-
b.3) and pairwise carrier-sensing feasible family €*" [X , rcs] ,
there exists a suitable setting of r.s such that

(Hidden-node-free Design) : B[X| 2 €™ [X,res]  (19)

We summarize the sufficient conditions for hidden-node-
free CSMA network design in Table III.

We remark that although the virtual carrier sensing
(RTS/CTS) in IEEE 802.11 is designed to solve the hidden
node problem, using RTS/CTS in multi-hop networks does
not eliminate the hidden-node problem [23], unless the carrier
sensing range is large enough and a number of other conditions
are met [15]. The conditions for hidden-node free operation
under the RTS/CTS mode are much more complicated than
under the basic mode, even under the pairwise interference
model (see [15] for details). To keep our focus in this paper,
we will not consider the RTS/CTS mode. The extension to
incorporate RTS/CTS is certainly an interesting subject for
future studies, particularly for the hidden-node free operation
under the aggregate interference model.

V. STATIONARY THROUGHPUT ANALYSIS
While Sec. III-IV address the distributed and ACK-based
nature of CSMA, this section addresses the characteristics of
random access in CSMA, and study its achievable capacity as
compared to TDMA schemes.
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TABLE III
SUFFICIENT CONDITIONS FOR HIDDEN-NODE-FREE CSMA NETWORK DESIGN. RESULTS ARE DERIVED IN THIS PAPER UNLESS CITED OTHERWISE.

A. Deterministic Scheduling

Consider a given routing scheme and pairwise carrier-
sensing decision model c.1) (implemented by IPCS and set to
be hidden-node-free by Theorem 1). For brevity, in the follow-
ing we let %[X ] £ gow [X , rCS]. If we assume slotted time,
a deterministic scheduling scheme is defined as a sequence
(Se); where each S € ¢'[X], such that the transmitters
in each S; are allowed to transmit only at every timeslot (t
mod m). A TDMA scheme is simply a deterministic schedul-
ing scheme. Such a TDMA scheme is only a hypothetical
scheme that can serve as a “reference” scheme for the study
of the random access based CSMA network.

Suppose the bandwidth is normalized to a unit constant.
Then for each link ¢ € X, the throughput rate under scheduling
scheme (S;)fL; is:

det [(St t 1 é (20)

Z ]]. Z € St
t=1

Recall )\, is the data rate of source-sink pair k& € N*¢. With
the routing scheme, one can determine the feasible region for
(Ak)pens by solving a multi-commodity flow problem.

3|~

B. Multi-Backoff-Rate Random Access

More generally, we consider a random access scheme (e.g.,
IEEE 802.11 DCF), such that (S;)2; follows a random
sequence. We consider an idealized version CSMA random
access scheme as a continuous-time Markov process as in
[71, [16], [19], [22], which is sufficient to provide insights for
the practical CSMA random access scheme. We assume that
the count-down time and transmission time follow exponential
distribution’. The average count-down time can be distinct for
different links. Thus, we call this multi-backoff-rate random
access. We formalize the random access scheme by a Markov
chain with its states being € | X ] . There is a possible transition
between states S, S’ € €[ X |, if S = {i}US’ for some i € X.

o Transition “S — {i} US” represents that the transmitter
of link ¢ will start to transmit, after some random count-
down time.

o Transition “{i} US — S” represents that the transmitter
of link ¢ will finish transmission, after some random
transmission time.

"The main results of this paper is built upon the stationary probabilitya dis-
tribution in Eqn. (21). [19] showed that for general backoff and transmission
times that are not exponentially distributed, Eqn. (21) remains valid if the
process is stationary. In particular, Eqn. (21) has been verified to be valid for
many different backoff time distributions, including the that of Wi-Fi. Thus,
strictly speaking, the exponential assumption is not needed.

Suppose the current state of simultaneous transmissions
is &, and transmitter ¢; is counting down to transmission.
Transmitter ¢; will freeze count-down if it detects that the
channel is busy (i.e., S — {j} U S for some j # 4, and
{i,j} US ¢ €[X]). It will resume count-down when the
state of simultaneous transmissions becomes S’ such that
{i}us e €[X].

Let the rate of transition S — {i} US be v;, and normalize
the rate of transition {i} US — S as 1. Let v 2 (1;)iex.
Then (¥ [X ] , V) denotes the continuous-time Markov process
of idealized multi-backoff-rate CSMA random access.

Lemma 8: (¢[X],v) is a reversible Markov process, with
stationary distribution for each S € %[X } as

exp (X5 logvi)
Z&e%[x] exp ( ZjES’ log Vj)
Lemma 8 is well-known in the literature [19], [22]. We
present it here for completeness. The long-term throughput
is characterized by the stationary distribution of (¢'[X],v).

Therefore, for each link ¢ € X, the throughput rate under
idealized multi-backoff-rate CSMA random access is:

PP X]L ] E D RU(S)

SeC[X]:ieS

P,(S) =

2L

(22)

We can relate the throughput of a deterministic scheduling
scheme with the long-term throughput of idealized multi-
backoff-rate CSMA random access by the following result.

Lemma 9: Given a deterministic scheduling scheme
(St),, let the fraction of time spent in & € €[X] be
Pdet(S) IV LS = S). If PeYS) > 0 for all
S € %[X], then there exists count-down rates v, such that
for each link ¢ € X, it satisfies:

(S < P [(F[X],v)] @3

Lemma 9 is a slightly modified version of Proposition 2
in [16], which applies to the periodic TDMA schemes as
considered in this paper. In the technical report [4], we give
a simplified alternate proof, inspired by the set of Markov
approximation arguments elaborated in [5]. A distributed algo-
rithm is presented in [16] to adapt the appropriate count-down
rate v to satisfy Lemma 9.

The implication of Lemma 9 is that idealized multi-backoft-
rate CSMA random access can be adapted to perform at least
as well as a class of TDMA schemes under the same set



of feasible states. Lemma 9 will be useful to explore the
achievable capacity of multi-backoff-rate CSMA networks,
given the achievable capacity of the corresponding TDMA
scheme on the same €[ X].

VI. CAPACITY OF RANDOM NETWORK

In this section, we apply the results from Sec. III-V to the
capacity analysis on a uniform random network. The reason for
selecting a uniform random network is to provide the simplest
average-case analysis, without involving other complicated
random network topologies. We consider a Poisson point
process® of unit density on a square plane [0, /7] x [0, /7).
Every node on the plane is a source or a sink that is selected
uniform-randomly among all the nodes on the plane. We next
define some notations:

o N34 denotes the random set of source-sink pairs induced

by the Poisson point process.

e R denotes a routing scheme that assigns each k& € A5

a path, such that each hop is within the maximum

transmitter-receiver distance (Py./(5No)) a,

o X denotes the random set of links induced by routing
scheme R over N9,

o Z[XF] denotes a feasible family from a.0)-c.2) over the
random set of links, Xf.

o (F[XF]) denotes the set of all possible deterministic
scheduling schemes {(S; € Z [XR])m,}.

o AM(Z[XFR]) denotes the minimum data rate among all
the source-sink pairs in N3¢, achieved by the optimal

deterministic scheduling scheme:

MNZF[XR]) & max (min/\) 24
(FID 2 oo By RN 9
We now define the capacity over random networks. Since

A(Z [X]]) is arandom variable, we say that the capacity over

N34 has an order as ©(f(n)) with high probability (w.h.p.),

if there exists finite constants ¢’ > ¢ > 0 such that

lim,, o P{A(F [XR]) = ¢ f(n) is feasible} =1
liminf, o P{A(F [XR]) = ¢ - f(n) is feasible} < 1
This is the conventional definition of random wireless network
capacity [8], [14], [18], [24].

A. Upper Bound for Single Carrier Sensing

We first show that carrier sensing based on c.1)-c.2) cannot
achieve the optimal capacity Q(ﬁ)

Theorem 2: Consider a carrier-sensing feasible family
%[Xf] from c.1)-c.2), for any routing scheme R that con-
nects all the source-sink pairs in N,ﬁd,

1
\/W> (w.h.p.)
Proof: By Lemmas 3,7, there exists a suitable ryg,
such that %[XZ}] can be configured as a subset of
we” [Xf, Fucls th]- It has been shown in [14] that

1
vnlogn

80ne can consider an alternative point process where n nodes are placed on
the plane by uniform distribution. But this point process converges to Poisson
point process asymptotically.

A#[xR]) = o (25)

A(%EW [Xlza el rtx]) - O( ) (Whp) (26)

for any routing scheme R that connects all the source-sink
pairs in N3¢, Hence, it completes the proof. [ ]
Nonetheless, [8], [24] show that for any interference-safe
feasible family from a.1)-a.3), there exists a TDMA scheme to
achieve throughput as Q(ﬁ) (w.h.p.). We are thus motivated
to adopt such a TDMA-based approach to CSMA networks.

B. Backbone-Peripheral Routing

For the completeness of presentation, we briefly revisit the
efficient routing scheme in [8] (we call backbone-peripheral
routing). Partition the nodes into two classes: backbone nodes
and peripheral nodes. The backbone nodes themselves are
connected using only short-range links, whereas every periph-
eral node can reach a backbone node in one-hop transmission.
The basic idea is to use short-range backbone-backbone links
whenever possible. Since short-range links generate minimal
spatial interference, this increases the number of simultaneous
active links, and hence the throughput.

To implement backbone-peripheral routing, we first
partition the square plane [0, /1] x [0,+/n] into square cells
with sidelength s,,. Consider the cells as vertices, a path can
be formed by connecting adjacent non-empty cells.

Lemma 10: (See [8]) There exist constants cq, co, c3 inde-
pendent of n, such that when we set s,, = c1, then in every
horizontal slab of (y/n/c1 X calogn/cy) cells, there exist at
least c3 log n disjoint paths between the vertical opposite sides
of the plane (w.h.p.).

We build a backbone (called “highway system” in [8]) for
routing on a uniform random network as follows. Select a
representative node in each non-empty cell. By Lemma 10,
there is a connected sub-network that spans the plane (w.h.p.),
formed by connecting the representative nodes in the adjacent
cells. These connected representative nodes are the backbone
nodes, while the rest are the peripheral nodes. Note that the
distance between two adjacent backbone nodes is at most
\/301, while the distance between a peripheral node to a
nearby backbone node is at most cs logn (w.h.p.).

Backbone-peripheral routing scheme operates as follows.
The source first uses a one-hop transmission to a backbone
node, if it is a peripheral node. We control the packet load from
the peripheral nodes such that each backbone node is accessed
by at most by some constant number of peripheral nodes. Next,
the receiving backbone node relays the packet following multi-
hop Manhattan-routing along the adjacent backbone nodes to
the respective backbone node that can transmit the packets to
the sink in a single last hop. See Fig. 5 for an illustration of
backbone-peripheral routing.

We define a scheduling scheme under backbone-peripheral
routing consisting of two stages: (Stp)fillog2n and (SB),,
for some constants cy, cs.

1) (Backbone-peripheral Transmissions): If ¢ € StP , then
either ¢; or r; is a peripheral node. Using a spatial
assignment scheme, we divide the plane into larger cells,
each of which having an area of ©(log”n) (because the
backbone-peripheral distance is O(logn)). It is shown
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Fig. 5. Backbone nodes are a subset of connected nodes by short-range
links, whereas peripheral nodes relay all the packets to backbone nodes.

in [8] that we can always pick a non-interfering link in
each cell to transmit in every timeslot (t mod ¢y log? n)
in the first stage, for some constant c4. The throughput
rate for each backbone-peripheral link can be shown to
be @(log%n) > @(ﬁ)

2) (Backbone-backbone Transmissions): If i € StB, then
both ¢; and r; are backbone nodes. Since the backbone-
backbone distance is O(1), we use a similar spatial
assignment scheme but considering a cell with an area
c5, for some constant cs. Since each backbone node
is accessed by at most by some constant number of
peripheral nodes, there are at most O(/n) peripheral
nodes that relays packets to each backbone node. Thus,
the throughput rate at each backbone-backbone link
divided by the number of peripheral nodes that relay
packets to it is @(ﬁ)

Overall, backbone-backbone links are the bottleneck, not
backbone-peripheral links. Hence, A\, = Q(ﬁ) is achievable
w.h.p. on a uniform random network based on backbone-
peripheral routing and the above two-stage scheduling scheme.

Note that since the maximum backbone-peripheral distance

may scale as O(logn), it is necessary to decrease threshold
[ or increase power Py, as n increases for these links in the
SINR models. If we opt to keep a fixed Py, and decrease 3 , the
data rate will decrease as n increases. However, the data rate
does not decrease as fast as the target per-flow throughput,
which is O(—=). Thus, the bottleneck will remain to be at
backbone-backbone links.

VII. DUAL CARRIER-SENSING

To adopt the TDMA scheme of backbone-peripheral routing
in Sec. VI-B for CSMA networks, in this section we employ
dual carrier-sensing where multiple carrier-sensing ranges are
allowed. Namely, smaller carrier-sensing ranges can be used
among the short-range links. This effectively enables more
simultaneous links and improves the throughput.

However, it is not straightforward to implement dual carrier-
sensing in conventional CSMA protocols (e.g., IEEE 802.11),
because the transmitters may not be aware if the other active
links are short-range or long-range. To address the above
implementation issue of dual carrier-sensing, we are motivated
to adopt a system with two frequency channels, in which the

communications on the backbone-backbone links are carried
out on one frequency channel, while the communications on
the peripheral links are carried out on the other channel.

In the following, we provide a detailed study on the imple-
mentation of dual carrier-sensing on two frequency channels.
First, Sec. VII-A considers a system that is full-duplex across
the two frequency channels. Then, Sec. VII-B considers a
system that is half-duplex across the two frequency channels
that is simpler to implement, but whose conditions for hidden-
node free operation are more subtle.

A. Full-duplexity across Two Frequency Channels

Thus far, we have assumed that the communication on
a channel is half-duplex in that when a node transmits, it
cannot receive. This is typically the case if one strives for
simple transceiver designs. We will continue to assume that
a node cannot transmit and receive on the same channel
simultaneously. However, we assume full-duplexity across
different frequency channels in that simultaneous transmission
and reception on different channels are allowed. Specifically,
when a node transmits on frequency 1, it could receive on
frequency 2; and when a node transmits on frequency 2, it
could receive on frequency 1.

Carrier-sening Mechanism: With such set-up, the peripheral
nodes will transmit and receive on one of the frequency
channels, referred to as the peripheral channel. The backbone
nodes will transmit and receive among themselves on the
backbone subnet using the other frequency channel, referred
to as the backbone channel. When transmitting to or receiving
from the peripheral nodes, however, the backbones nodes
will use the peripheral channel. Thus, a backbone node can
conceptually be thought of as consisting of two virtual nodes:
a virtual peripheral node for communicating with peripheral
nodes associated with it; and a virtual backbone node for
relaying packets over the backbone network. This design
decouples the operation of the peripheral access subnet from
that of the backbone highway.

Formally, we partition X into two disjoint classes: XB
for backbone-backbone links, and X" for backbone-peripheral
links. Assume r8 < rP_. The feasible family that captures the
above carrier-sensing mechanism is defined as:

d.1) Full-duplex pairwise dual carrier-sensing feasible fam-
ily: S € €0V [(XB,rB), (XP,rE)]. if and only if for all

i,j €8,
[tj =t >

such that i,j € X and c € {B, P}.
That is, a peripheral node will carrier-sense the peripheral
channel only. A backbone node will carrier-sense the
peripheral channel if it wishes to transmit to a peripheral
node, and will carrier-sense the backbone channel if it wishes
to transmit to a backbone node.

27)

Throughput: We now show that carrier-sensing model
d.1) can achieve throughput as Q(ﬁ) on two independent
frequency channels.



Theorem 3: Consider full-duplex pairwise dual -carrier-
sensing model d.1) on a uniform random network based on
backbone-peripheral routing. Let X2 and X be the ran-
dom set of induced backbone-backbone links and backbone-
peripheral links, respectively. Using multi-backoff-rate random

access scheme, there exists suitable (r2,rF.), such that

N[0 ). (2P L)) = 2 J=) owhp) @8)
Proof: First, recall (SF){i; log 7 and (SB)es,, the two
stage TDMA schemes in backbone-peripheral routing. Note
that each of SP and S is a feasible state in some uni-
directional pairwise fixed-range feasible families a.0), where
the transmitter-receiver distance is O(logn) and O(1) respec-
tively. By Lemma 3, we can obtain respective families of bi-
directional pairwise fixed-range feasible families that include

(SP)°8" " and (SB)e2,, with larger ranges rP, and rB,,

independent of n. We then select (S'} )5} 2" and (82,
that can cover the schedules links in (SF){; og? n and (SB)5,
Note that since r « and r >, are set independent of n, such
selections can only incur at most a constant mult1ple of the
sizes by cg and ¢7. Hence, we can use (S')5 llog " and
(& E )i~ in the backbone-peripheral routing scheme without
altering the order results on capacity.

Since the two frequency channels are independent by
Theorem 1, we can obtain suitable settings of rE and r¥,,
such that P [ X B, rB] and €™ X", (] are hidden node free
in their respective channels with respect to any interference
model b.0)-b.2), and

ST e [XB,r8] for all t = 1...cglog”’n

’C&

(29)

S'c CEP[XP,P] forall t = 1...c;

7CS

(30)

Next, we employ Lemma 9 to establish a lower bound of
the throughput of random access on each of ¢P[X®, rE] and

’CB

&P [XP,rE], by the throughput of a corresponding determin-

’ Cb
istic scheduling scheme as follows:

o Foreach S € {S’P o log ", we set P4(S) = O(—L—)

log? n

« For each S € {S'7}7,, we set PUt(S) = O(1)
For feasible state S other than (S’ P)fﬁlog " and (S'2)¢7,, we
set P4¢t(S) to be a small non-zero value, such that the sum of
probabilities of these states is a constant, independent of n.

Hence, this satisfies the sufficient condition in Lemma 9 that
PIt(S) > 0. It is easy to see that €y [(XB,rE)), (X7, rE))] is
just a product of €™ [XB rB] and €[ X, rB]. Since such
a deterministic scheduling scheme can achieve throughput as
Q(ﬁ) on a uniform random network w.h.p., it completes the
proof by Lemma 9.

|

B. Half-duplexity across Two Frequency Channels

We now consider a system that is half-duplex across the two
frequency channels to ease implementation further. A node
can still receive on different channels simultaneously (for
the purpose of carrier-sensing both channels simultaneously
rather than receiving data targeted for it). However, we

place a restriction on simultaneous transmission and reception
on the same channel or different channels, as elaborated below.

Half-duplexity Constraints: We introduce the following con-
straints to formulate half-duplexity:
(i) a node cannot transmit on channel 7 and receive on
channel j at the same time, whether ¢ = j or ¢ # j.
(ii) a node can only transmit on at most one frequency
channel at any time.

Constraint (i) is mainly to simplify implementation. When
a node transmits, its own transmitted signal power may over-
whelm the received signal. Although in principle, the use of a
frequency filter may be able to isolate the signals somewhat,
the transmit power may be very large compared with the re-
ceive power (i.e., extreme near-far problem), such that leakage
or crosstalk from the power at the transmit band may not
be negligible compared with the receive power. Reference [2]
contains a discussion on the need for the assumption of half-
duplexity when the transmit and receive frequency channels
are the same, but the underlying rationale and principles are
the same when the cross-frequency leakage is not negligible.

Constraint (if) is mainly due to the fact that in ACK-based
CSMA schemes (e.g., IEEE 802.11), there is an ACK packet
in the reverse direction after the transmission of a DATA
packet. If the nodes transmit on two frequency channels
and the DATA packets are of different lengths, one of the
DATA frames may finish first and the station may end up
transmitting DATA and receiving ACK packets at the same
time, thus violating constraint (7).

Carrier-sening Mechanism: We now describe the carrier-
sening mechanism under constraints (i) and (ii) as follows.
The mechanism is illustrated in Fig. 6. The basic idea is that
we allow a shorter carrier-sensing range to be used among
backbone-backbone links, whereas a longer carrier-sensing
range to be used in both channels when there is an active
backbone-peripheral link in the neighborhood.
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Fig. 6. There are two carrier sensing ranges as in Fig. (a). In Fig. (b) short-
range backbone-backbone links will use a shorter carrier-sensing range among
themselves, while in Fig. (c) longer carrier-sensing range will used when there
is any active backbone-peripheral link.

First, we consider the case of a backbone-peripheral link,
where its carrier-sensing range is r.. In this case, either a
peripheral node desires to transmit to a backbone node, or a



backbone node desires to transmit to a peripheral node. The
transmission cannot be allowed if there is any simultaneous
transmitters within the carrier-sensing range rf, in either
peripheral channel or backbone channel. Since rf, > B this
implies precluding transmission in backbone channel under
carrier-sensing range r2,.

The reason for this requirement is because of the following
consideration. Suppose that a peripheral node wants to transmit
to its access backbone node. It is possible that the backbone
node is in the midst of a communication with another back-
bone node. To make sure that the peripheral node does not
initiate a transmission to the backbone node in that situation,
the peripheral node also has to perform carrier-sensing on
the backbone channel. In practice, further implementation
optimization is possible (skipped here due to limited space).

Next, we consider the case of a backbone-backbone link,
where its carrier-sensing range is rE.. In this case, a backbone
node wants to transmit to another backbone node. The trans-
mission is not allowed if 1) there is any simultaneous trans-
mitters within the carrier-sensing range r2 in the backbone
channel, or 2) there is any simultaneous transmitters within
the carrier-sensing range r-, in the peripheral channel. The
former condition is obvious. The latter condition is due to the
fact that the target receiver backbone node may be in the midst
of a communication with a peripheral node. Again, further
optimization is possible with the latter case. Here, we simply
set the carrier-sensing range in the later to be rf, since the
order results we want to establish are not compromised.

The feasible family that captures the above carrier-sensing

mechanism is defined as:

d.2) Half-duplex pairwise dual carrier-sensing feasible fam-
ily: S € G [(XB,r8), (X7, rE,)]. if and only if for all
i,j €S,

’

[t; —t;| > max{rS, re},

Ccs? ' Cs

€2y

where i € X¢ j € X< and c,c’ € {B,P}.
That is, there is a dynamic switching process of carrier-

sensing ranges, depending on the presence of the classes of
active links.

Throughput: Since we are considering half-duplexity across
two frequency channels, the proof of throughput is different
than Theorem 3. To show that carrier-sensing model d.2) in
the presence of half-duplexity can achieve the throughput as
Q(ﬁ), we first need to determine rf, and r8. We have
to formally show carrier-sensing decision model d.2) can be
implemented practically, by considering dual channel interfer-
ence models that explicitly incorporate the constraint of half-
duplexity across two frequency channels. Thus, we define the
aggregate interference model in such case as follows:

e.l) Half-duplex bi-directional dual channel aggregate SINR
feasible family: S € ;5. [(X®,8),(X",B)]. if and
only if

1) S= U & where each 8¢ € ZE (X<, ],
ce{B,P}

2) (half-duplexity constraint) for any pair 7,5 € S,

{ti,Ti} N {tj,Tj} = .

Similarly, one can define the respective dual channel
interference models for a.0)-a.3),b.0)-b.2).

Theorem 4: There exists a suitable setting of (r,rP),
depending on B and the maximum transmission distance in
X°€, such that

BB [(XB,8), (X, 8)] 2 6P [(XB,rB), (XP,r0)]

7' cs y'cs

Theorem 4 establishes a hidden-node-free design for the
dual carrier-sensing decision model. The proof of Theorem 4
is to apply the single-channel hidden-node-free design (Theo-
rem 1) on two independent frequency channels, and then show
the half duplexity constraint in e.1) will not affect the setting
of hidden-node-free design in d.2).

Similar to Theorem 3, by Theorem 4 we can immediately
show that d.2) can also achieve throughput as Q(ﬁ)

Theorem 5: Consider half-duplex pairwise dual carrier-
sensing model d.2) on a uniform random network based on
backbone-peripheral routing. Using multi-backoff-rate random
access, there exists a suitable setting of (r2,,r".), such that

Ccs? ' cs

1
A((g}fg":’f [(XB7 r?s)a (Xpa "ES)D = Q(%) (Whp) (32)

We remark that our CSMA capacity scaling-law results also
hold for dense networks (where all n nodes are packed in a
fixed area [0, 1] x [0, 1]), because the construction of backbone-
peripheral routing also applies to dense networks [8].

VIII. CONCLUSION

This paper contains a number of new results and ideas
that lend insights and solutions to maximize the achiev-
able capacity in CSMA wireless networks. We formulate
a comprehensive set of CSMA models, considering various
distributed decision controls and common interference settings
from the literature. We establish the relationship between our
CSMA models with the existing interference models from the
literature. This can characterize both the upper and achievable
bounds on the capacity of CSMA networks to be @(%)

We show that, based on an efficient backbone-peripheral
routing scheme and a careful design of dual carrier-sensing and
dual channel scheme, hidden-node-free CSMA networks can
achieve throughput as ( ﬁ), as optimal as TDMA schemes
can on a uniform random network. Along the journey, we also
show that normal, single, and homogeneous carrier sensing
operation is insufficient to achieve the capacity as optimal as
TDMA schemes can on a uniform random network.
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IX. APPENDIX
Lemma 11: For ~ > 1, it is straightforward that
L < ﬂ = i
No +vB No + B
Lemma 12: Let ry, = max;e x|t; —r;|. If there exists ryq >
rix such that |t; —r;| > ryq for all 4,5 € S, then
Yjes\ [t =il 7Y < k(a)(rer — 1) =@

where k(o) = Y07 4[m(2k + 2) k.
Proof: 1t is adopted from [18] (Lemma 3). See the
technical report [4] for a complete proof. ]
Corollary 13: By Lemma 12, if there exists res such that
[t; —t;| > re for all ¢, 5 € S, then

> jes\iy It — til ™ < k(a)(res) ™

<7B (33)

(34)

(35)

Lemma 1: If A < Bé — 1, then

UEX A 2 ULLX B 2 UG XL B (36)
Proof: %5 X, Bl 2 %28 [ X, ] is trivial.
wE' X, Al > % [ X, B] follows from:
Puxti — Pu[ti—7i]
R 2 = ﬁ 2 B 37)
= |t; —ri| > Bt — 7l

|

Lemma 2: Let ry = max;ex|t; — r;]. If

1 Ptx —a _é
v 2 (g (e —No) T G
where k() £ Y27 4[n(2k + 2)]k~, then

q{:Er[ 7/8] 2 %PW [Xv el rtx} (39)

Proof: Suppose S € %P
Lemma 12, we obtain:

W[X, rxd,rtx} and ¢ € S. By

PtX|t' - Ti|7a > Pura”
No + Z Ptx|t | ® = No+ Ptxk( )(rxcl - rtx)_a
Jjes\{i}
(40)
Hence,
_1
Ixel Z (Ptx k(o) (P rtx NO)) =+ Fex (41)

Pix f’tx

= N0+Ptxk(a)(rxcl_rtx _a - 6 = 8 € %ag [X’ ﬁ]

sinr

Lemma 3: If v | > ryq + 2r, then

xcl

gZ/fEW [X7 Ixcls rt><] 2 %Frw [X7 el I'tx] 2 %EW [X7 r>/(c|7 I’tx]
42)
Proof: By Lemma 4 and set A = r,q/rx — 1 and A’ =
r:(cl/rtx -1 u
Lemma 4: If A’ > A + 2, then
UL (X, A 2 BY[X,A] DU [ X, A]

Sir Sir

(43)

Proof: By Lemma 5 and set Ng = 0, A = Bé — 1 and

A =p'% —1. m
Lemma 5: If 8/ > (2 + B=)°, then

UL (X, 8] 2 Ao [ X, 8] 2 UL [ X, 5]

sinr sinr sinr

Proof: First, note that Py, |t; —r;|~* > SN forall i € X.
Otherwise, t; will be unable to transmit to r; even without
interference. Second,

Ptx|ti -
No + Py (dist (4, j))
= (s (Bt = mil = = No) ) " > dist(i. )

—é < 0 and Py|t; —

(44)

7’2'|7a

— < B
(45)

-

The last inequality is due to the fact that
7|~ > BNo.

We need to show that

Su{i} ¢ B, [X, 8] = SU{i} ¢ %5 [X

sinr

(24 B7)°]

(46)
Suppose SU{i} ¢ %% [X, ] for some given link i. Then

there are four cases as follows.



. Poti—mi] ~ : fe d
1) SuppOSC W < ﬁ for some ] € S. This is

trivial that S U {i} ¢ %5 [ X, B].

sinr

2): Suppose for some j € S that

Pult; — ri| ™
< 47
No + Pulrj — ri| =@ h “7)
Without loss of generality, we also assume
|t7; - 'I"Z'| Z ‘tj — ’I’j‘ (48)
Otherwise, if |t; — ;| > |t; — r;|, then
_1
|rj —ri] < (i(P‘Xt — 1| —No)> ;
’ " IO
P —a «
< (%( Flty =7l —NO))
Therefore, we can equivalently assume
Pixlt; «
k | 7'7| <Band |tj—’l“j‘2‘ti—’l“i|, (50)

by inter-changing 7 and j.
Next, we obtain:

[ty =il < rj —ril + [t = 7]

<< ' (P“|t i T — No))ia + |t;-r;| by Eqns. (47),(45)
1
S(P%(Ptx timrg| O — No)) + |ti-r;] by Eqn. (52)
_ 1
<(1 +5—%)(P1tx (Bt~ — No)) x
(5D

The last inequality is due to the fact that when Ny > 0,

e (Bt — il =™ = No) > [t; —ri| (52)

By Lemma 11, setting v = (1 + B‘é)“, we obtain:

Pec|ts — 73|~

1
1+5=)* (53
No + Ptx‘t]‘ — 7’7;|7a ( ﬂ ) ( )

< (1487 %)%8 =

3): Suppose % < f for some j € S. This is
shown in a similar way as Case 2.

4): Suppose for some j € S that

Pelts — 73|~
< 54
No + Puft; — )|~ ’ oY
In addition, we assume
Pult; — 7]~
t | T]| 6 (55)

NO+PtX|t 7T.j| a

Otherwise, it reduces to Case 1 by inter-changing ¢ and
j. Hence, we obtain:
1

(P{X(Ptxu =il = NO))_;

1 (Ptx t _7,2| o NO)>_

Q=

(56)

< |t — ¢t |<(
Sty gl <[t -l

Next, we obtain:

[t; =il < Jtj =7l + [y — tal + [t — 74l

< ftyri] + (B (B ltyrs ™ = No) )+ |ti-ril by Ean. (55)
< (1+287%) (3 (%

ti-ri| a—NO)) °

(57)

by Eqns. (56),(52)

(2+pB7%)°
< BL+287%)" =

By Lemma 11, setting v = , we obtain:

Pudti — i~
No + Pult; — 1|~

(2+p2)"
(58)
Therefore, S U {i} ¢ % [X p']. This proves Eqn. (46). m

Lemma 6: If ' > (2 + B )<, then

Usn: [ X, B] 2 B5.[ X, B8] 2 %35, [X. 8] (59
Proof: Suppose S € %E [X , [ﬂ We need to show
Su{i} ¢ BE[X, 8] = Su{i} ¢ %E[X,(2+B%)]
(60)
First, we assume
Pty —rj |~ >3
No-+Pu (dist(j,i))
Ptx‘tj*le 5 = ‘t 7'" < ,Bil(dlst( . ’L)) (61)
Poc (dist(,)) "~ e o
and
Pilti—rs| — > B
No+Pex (dist(i N) T
Ptx‘t 7T1| ﬂ :> |t | < ﬁ (d t( )) (62)
el -1 ist(7,
Pix (dlSt('L,J)) ‘ J
Otherwise, we complete the proof by Lemma 5, such that
SU{i} ¢ %% [X, 2+ 87)°] (63)
Next, we obtain:
[ty =il < [t; =l +Irs —ril
< 573‘7‘jj7‘1“+|’l”j—’l”i| by Eqn (62)
= |t]‘ — ’I’i| < (]. + 5_E)|Tj — T‘Z‘|
[t; =il < [t =il + [t; — i
= t; — 7 < (14 B79)|t; — ti] by Eqn. (61)
[ty =7l < [t =yl Iy —tal + |t — il
= |tj—ri| < (1+2873)|r; —t by Eqns. (61),(62)
(64)
Therefore,
It; — i < (14287 =) - dist(i, 5) (65)

Also, since SU {i} ¢ 22 [ X

sinr

, 8], we obtain:

Pt —ri| <8
Not+ 3 Pu(dist(i,)))
JESV{i} o
= > (dist(i, 5)) > g (B [timri *-No)
ges\lit
= 3 (14287 tj-ri > - (P‘X\t -r;|"*-Ng) by Eqn. (65)
Jjes\{i}
. (66)
By Lemma 11, setting v = (24 8~ «)?, we obtain:
Pults —mi| = 1 1
<pBA4+287=)=(2+p=)"
No + Zj;éi Peclt; — 7i|® ( ) ( )
(67)
Finally, we complete the proof by combining with Lemma 5.
|
Lemma 7: If ry = Inax|t — ;| and reg > reg + 2rixs
i€X
™ [Xv rxcl} 2 %E [Xu Ixcls rt><] ) P [X7 rcs] (68)



Proof: It can be proven in a similar fashion as Lemma 3,

where we replace constraint [t; — ;| > rya by [t; — t;] > res.

|

Lemma 8: (€[X],v) is a reversible Markov process. The
stationary distribution for each S € ¥[X] is:

_ o (Pieslogr)
ZS/G%[X] exp ( ZjeS’ log Vj)
Proof: Eqn. (69) satisfies the detailed balanced eqn:

P,(S)

(69)

exp (Eje{i}us log Z/j): exp (Ejes log l/j) - exp (log l/i)
= P,({i}US)=P,(S) v

Hence, (¢'[X],v) is a reversible Markov process, Eqn. (69) is

the stationary distribution. ]

Theorem 4: There exists a suitable setting of (5, rF),

depending on 8 and the maximum transmission distance in
X¢, such that

FE(XB,8), (XP, B)] 2 el [(XB,r2), (XP,rE)] (70)

s Fes 2 Fes
Proof: First, we note that
By [(XB,5), (XF, )]
Ucegppy ST 18 € B [Xcvﬁ]}
U{S1ijes {turtnit,r} =2}
By Theorem 1, for each c € {B, P}, there exists a suitable

rés, depending on 3 and the maximum transmission distance
in X such that

(71)

PBlane [X 8] 2 6P X 1] (72)
Also, it follows that
{Uecior &°| A Ak }P (73)
:—) %haf [(X ’ rcs)’ (X ’ rcs)]
Next, we need to show there exists suitable rc, such that
{Slijestrnit,n =2} o

w B P
2 Cglfaf [(XB7 rIcs)7 (XP7 r’ )]

Ccs

If i € X and 5 € X€, then Eqn. (74) follows from the tree
diagram Fig. 4 that there exists a suitable r'c,, such that

cs?

BE[X,A] D™ [XC ] (75)

Sir
for any A® > 0. Else if i € X© and j ¢ X°©, then without
loss of generality, we consider i € X and j € X¢, and
r'ss > r'ce. Then, Eqn. (74) follows from the fact that there
exists a suitable r'S,, such that

cs?

FUXEU(7),A% 267 [X°U ), 5] 2 e [xe )
(76)
for any A€ > 0. Finally, we take the maximum carrier-sensing

range among rS, and r'c,, for each ¢ € {P,B}. Hence, we

complete the proof. ]

Chi-Kin Chau is a Senior Research Fellow at the In-
stitute for Infocomm Research (I?R), Singapore. He
is also affiliated with University of Cambridge as a
primary researcher for the International Technology
Alliance in Network and Information Science (ITA)
program. He was awarded a Croucher Foundation
Research Fellowship at the EE Dept., University
College London. He has been a regular visiting
scholar invited to IBM T. J. Watson Research Center
(Hawthorne, US), BBN Technologies (Boston, US),
University of Massachusetts (Amherst, US), Shang-
hai Research Center for Wireless Communications (Chinese Academy of Sci-
ences), and the Chinese University of Hong Kong. He received the Ph.D. from
University of Cambridge (supported by a Croucher Foundation scholarship),
and the B. Eng. (First-class Honors) from the Dept. of Information Engineer-
ing, the Chinese University of Hong Kong. His research interests concern
diverse areas of networking, communications, and randomized algorithms.

Minghua Chen received his B.Eng. and M.S. de-
grees from the EE dept. at Tsinghua University in
1999 and 2001, respectively. He received his Ph.D.
degree from the EECS dept. at UC Berkeley in 2006.
He spent one year visiting Microsoft Research Red-
mond as a Postdoc Researcher. He joined the Dept.
of Information Engineering, the Chinese University
of Hong Kong, in 2007 as an Assistant Professor.
He received the Eli Jury award from UC Berkeley
in 2007, the ICME Best Paper Award in 2009, and
the IEEE Transactions on Multimedia Prize Paper
Award in 2009. His current research interests include complex systems,
distributed and stochastic network optimization and control, peer-to-peer
networking, wireless networking, and network coding.

Soung Chang Liew received his S.B., S.M., EEE.,
and Ph.D. degrees from MIT. From March 1988
to July 1993, Soung was at Bellcore (now Telcor-
dia), New Jersey, where he engaged in Broadband
Network Research. Soung has been Professor at the
Dept. of Information Engineering, the Chinese Uni-
versity of Hong Kong, since 1993. Soung’s primary
research area is wireless networking. Soung and his
student won the best paper awards in IEEE MASS
2004 and IEEE WLN 2004. Separately, TCP Veno,
a version of TCP to improve its performance over
wireless networks proposed by Soung and his student, has been incorporated
into a recent release of Linux OS. In addition, Soung initiated and built
the first inter-university ATM network testbed in Hong Kong in 1993.
More recently, Soung’s research group pioneers the concept of Physical-
layer Network Coding (PNC) for application in wireless networks. Besides
academic activities, Soung is also active in the industry. He co-founded two
technology start-ups in Internet Software and has been serving as consultant
to many companies and industrial organizations. He is currently consultant for
the Hong Kong Applied Science and Technology Research Institute (ASTRI),
providing technical advice as well as helping to formulate R&D directions
and strategies in the areas of Wireless Internetworking, Applications, and
Services. Soung is the holder of four U.S. patents and Fellow of IEE and
HKIE. Publications of Soung can be found in www.ie.cuhk.edu.hk/soung.




