A Framework for Statistical Multiplexing onto a
Variable-Bit Rate Output Channel

Chan-weng Lai and Soung C. Liew
Department of Information Engineering, The Chinese University of Hong Kong

Abstract— This paper investigates soft multiplexing,
an issue that arises in VP-based ATM networks. The
main distinguishing feature of this form of multiplexing
(as opposed to traditional statistical multiplexing) is that
the output channel is a variable-bit rate VP. The concepts
of work conservation and greediness were introduced to
study soft multiplexing systematically. We assume that
the overall multiplexed output traffic is regulated and po-
liced by a Leaky Bucket. Before allowed to access the out-
put channel, each input traffic stream is also controlled
by a Leaky Bucket. It is shown that although strict
performance guarantee can be provided to each input
traffic stream by independent Leaky-Bucket operation,
output-channel utilization can be rather low, and it can
be improved significantly by if we allow some interactions
among the Leaky Buckets of the input streams. In partic-
ular, we show that two simple soft-multiplexing schemes,
excess token passing and token borrowing, can achieve
higher output-channel utilization, better delay and loss
performance without sacrificing guarantee to each ses-
sion.

Keywords— ATM Networks, Multiplexing, Leaky Buck-
ets, Flow Control, Packet Networks, VP/VC
I. INTRODUCTION

The Asynchronous Transfer Mode (ATM) has been ac-
cepted as the mechanism for transporting information
in Broadband Integrated Services Digital Networks (B-
ISDN). Optical transmission links with transmission rate
in the range of Mb/s to Gb/s are expected to be widely
used in these networks. Many services (including com-
pressed video), on the other hand. will only need from
several kb/s to a few Mb/s of bandwidth. If a virtual
circuit is used to carry each information stream, a physi-
cal link will then contain a huge number of simultaneous
virtual circuits, as depicted in Fig. 1(a). It is prohibitive
to have to monitor, control, and manage the traffic flows
of thousands of virtual circuits on each link. To tackle
this problem, the concept of virtual channels (VC) and
virtual paths (VP) has been conceived [1, 2].

A VP is a collection of VC’s to be transported and
switched as a unit. The resulting network is structured
into a hierarchy of three levels: VC, VP, and transmis-
sion levels [1, 2]. The VP-level network interconnects
VC switching nodes, where VC’s are multiplexed onto
VP’s. At VP switching nodes, VP’s are in turn multi-
plexed onto physical links without the VC-level routing
and control information being examined. By managing
the network at the VP level, the VC level can concen-

trate on service handling.

As illustrated in Fig. 1(b), the two-layer arrangement
presents a new multiplexing problem at the VP level.
Specifically, unlike a physical link, a VP does not have a
hard limit on the bit rate, and if it behooves the network
to do so, the bit rate of the VP can be allowed to vary.
One may to so, for instance, to deal with the dynamic
changing of traffic conditions in the network. Thus, as
far as the VC’s contained in the VP are concerned, they
are being multiplexed onto a variable-bit rate output
channel. This will be referred to as soft multiplezing in
this paper. Most existing multiplexing disciplines, such
as Generalized Processor Sharing (GPS)[3, 4], Round
Robin (RR)[5] and Stop-and-Go Queueing[6, 7, 8], as-
sume fixed-rate output channel. Multiplexing onto a
fixed-rate output channel will be called hard multiplez-
ing.

In this paper, we assume that the input traffic of each
VP (output traffic of a soft multiplexer) is monitored
and controlled by a Leaky-Bucket[9, 10, 11]. We also
assume that an appropriate hard multiplexing discipline
(e.g. GPS multiplexing [3, 4]) will be used to multiplex
VP’s onto physical links in a way that guarantees per-
formance on each VP provided the input traffic of each
VP conforms to the pre-agreed Leaky-Bucket parame-
ters. Thus, we shall only confine our attention to the
performance issues within the soft multiplexer.

We explore several soft multiplexers that use a Leaky
Bucket for the control of the traffic of each VC (each
input to the soft multiplexer). In the simplest case,
all these Leaky Buckets work independently to provide
strong performance guarantee. The drawback is that
the VP bandwidth can not be shared efficiently among
the VC’s. Two schemes are proposed to achieve efficient
bandwidth sharing while maintaining a certain degree
of performance guarantee to each VC. The first employs
ezcess token passing in which excess tokens of a Leaky
Bucket will be passed to others. The second employs
token borrowing in which busy VC’s can borrow tokens
from others.

In Section II, some fundamental concepts of soft multi-
plexing are introduced. In Section III, a soft multiplexer
with independent Leaky Buckets is considered. Sections

4b.2.1

0743-166X/95 $04.00 © 1995 IEEE

447

IV and V discuss the mechanisms and the effects of ex-
cess token passing and token borrowing. Finally, the
advantages of the proposed mechanisms are verified by
simulations in Section VI.

II. FUNDAMENTAL CONCEPTS
OF SOFT MULTIPLEXING

Let us first review hard multiplexing. A physical link
with transmission rate C' is either in idle state or busy
state. It transmits at rate C' in busy state and at zero
rate in idle state. The unused bandwidth (transmission
capacity) during the idle state cannot be saved for future
usage. As shall be explained, in Leaky-Bucket-controlled
soft multiplexing, the unused bandwidth can be saved
(up to a certain degree) for later use.

The concept and operation of a Leaky Bucket is simple
[9, 10, 11]. Each Leaky Bucket is associated with two
parameters : the bucket size § and the token generation
rate p. Tokens are generated at a constant rate p, and a
cell must acquire a token before it can be transmitted on
the virtual connection. Unused tokens are accumulated
in a bucket that can hold at most é tokens. When the
bucket fills up, any newly generated but unused token
will be discarded. The maximum transmission rate of a
Leaky Bucket can either be bounded or unbounded. In
the simplest case, which is assumed in this paper, the
maximum transmission rate is unbounded and is infinite
when the bucket is not empty, and it is p when the bucket
is empty. The practical meaning of the former is that
the output rate can match the maximum aggregate input
arrival rate when the bucket is not empty. By saving up
tokens in the bucket, bandwidth usage can be deferred.

We say that a traffic with rate function R(t) sat-
isfies the burstiness constraint of a virtual connection
(imposed by the Leaky Bucket), or according to Cruz’s
notation[13, 14], R ~ (4, p) if

[rwas st oty -2) M

for all z, y satisfying y > . It can be easily seen that
traffic with R(t) satisfying (1) can be immediately trans-
mitted when regulated by a Leaky Bucket with param-
eters § and p. Also, note that O ~ (8, p), where O is the
output traffic of a Leaky Bucket with parameter § and

Multiplexing systems are usually described using the
terminology of queueing theory. Arriving packets are
considered as work load arrivals and the multiplexer is
a server serving such work load. A server is said to be
work conserving if it is busy (i.e. transmitting packets)
whenever there are packets waiting in the system[12].
This definition of work conservation has an underly-
ing assumption that the server onmly serves at a con-
stant rate(i.e. the transmission rate is fixed) and such

servers, named hard servers in this paper, are either in
idle state or busy state. However, when the output chan-
nel is Leaky-Bucket controlled, the server should be a
soft server which is capable of serving at variable rate.

The definition of work conservation needs to be re-
examined in a soft server. The basic idea of work con-
servation is not to waste server capacity when there is
demand for service. In a Leaky-Bucket controlled sys-
tem, server capacity can be saved up as tokens in the
bucket and used later. Thus, unless the bucket over-
flows, no server capacity is wasted. Thus, a soft server
is said to be work conserving if no token will be wasted
whenever there are packels waiting in the system. This
definition reduces to work conservation of a hard server
when the bucket size is 0. Table 1 illustrates the service
rate, S, of a work conserving soft server under different
states when there are packets waiting. Note that the ser-
vice rate S should not be confused with the maximum
transmission rate of the VP, which is the upper bound
on the service rate. In this paper, we assume for sim-
plicity that the maximum transmission rate is infinite
when the bucket is not empty, and it is the token gen-
eration rate p when the bucket is empty. We have the
freedom to choose S, and the server is work-conserving
if the choices conform to the Table 1’s specification.

Table 1.
state bucket state service rate
1 full S>p
2 not full & not empty | S = any rate
3 empty S<p

We see that in states 2 and 3, no token will be wasted
even if S < p because the unused tokens can be accu-
mulated in the non-full bucket. In state 1, if there are
packets waiting, no token will be wasted because S > p,
and bucket overflow is not possible. Tokens will only be
wasted when there is no backlog and the bucket is full,
but this is unavoidable.

Another important concept is that of a greedy soft
server. A soft server is said to be greedy if the server
will serve at infinite rate when there are tokens in the
bucket and at token generation rate p when the bucket
1s empty. In other words, the server always serves at
maximum transmission rate of the VP. Table 2 lists the
service rate, S, of a greedy soft server under different
states. An arrival will consume a token immediately
if one is available, and co-existence of tokens and cell
backlog is impossible. Thus a greedy server minimizes
the average delay. Note that given the same input traf-
fic patterns, all greedy systems have identical average
queue length and waiting times, regardless of the order
in which the packets are served. According to the above
definitions, a greedy soft server is also work conserving
because the bucket will never be full (i.e. no token will
be wasted) while some cells are waiting. In addition,

4bh.2.2

448

when the bucket size is 0, work conserving and greedy
servers are the same. Since a physical link can be consid-
ered as a virtual connection with zero bucket size, work
conservation and greediness for a physical link server are
therefore also the same.

Table 2.
state bucket state service rate
1 full S = oo
2 not full & not empty S = oo
3 empty S=p

For a multiplexer whose output traffic is policed by
a Leaky Bucket before it enters the VP, cell delay and
loss can be separated into three parts: those in the mul-
tiplexer, those in the VP Leaky Bucket and those in
the VP. As mentioned earlier, by forcing the aggregate
output traffic A to conform the burstiness constraint of
the VP (i.e. A ~ (4 p)), there will not be any loss and
delay due to the second part and the third part is also
bounded. In this paper, we only examines multiplexer
whose output conforms to the constraint. Therefore, an
efficient soft multiplexer should aim at minimizing the
first part. In addition, a certain degree of fairness and
performance guarantee must be maintained among the
inputs being multiplexed.

In summary, a good soft multiplexer should achieve
the following goals: 1) A ~ (6, p); 2) low loss and delay
in multiplexer; 3) high utilization of output capacity; 4)
guaranteed performance of each session. Work conser-
vation and/or greediness can be imposed to achieve 1),
2) and 3), while individual Leaky Buckets for regulating
the inputs (see next section) can be used to achieve 4).
As will be seen later, there are tradeoffs among these
goals.

I11. SorT MULTIPLEXER WITH

INDEPENDENT LEAKY BUCKETS
Fig. 2 shows the structure of a soft multiplexer which
consists of a number of independent Leaky Buckets, one
for each of the NV input VC’s, and a FCFS multiplexer.
Outputs from these Leaky Buckets are multiplexed onto
the VP with burstiness constraint (6, p) in FCFS bases.
Let the bucket size and token-generation rate of the ith
Leaky Bucket be denoted by é; and p;. When setting
Zf{__l 6; = 6 and 2?;1 pi = p, it is easy to show that the
aggregate output traffic of the multiplexer conforms to
the burstiness constraint of the VP, (6, p). To prove this,
consider the following. Denote the Leaky Bucket of the
ith session as LB; and the output traffic rate function
of LBi as R;. Then Ri ~ (6i,p,~) or

[i <si+pty -2)

for all z and y satisfying y > =. If we sum inequality (2)

fori=1...N, we get

y N
/ S Ri(t)dt < 6+ ply — 2) 3)

i=1

which implies By + Rz + - - -+ Ry ~ (6, p). Thus delay
and loss in the VP Leaky Bucket is zero and delay and
loss in VP are bounded.

This independent operation is analogous to fixed-rate
allocation in hard multiplexing where there is no band-
width sharing among sessions. With both soft and hard
multiplexing, throughput of each session ¢ is guaran-
teed at rate p;. The implementation is also straight-
forward. An obvious drawback of fixed-bandwidth al-
location, however, is poor utilization of network band-
width. For example, in soft multiplexing, an input may
be idling with a overflowing bucket while another active
input may suffer undue delay and loss.

‘We shall use fluid-flow approximation [3] for our dis-
cussion in this paper. For illustration, let us consider
a situation in which there are two sessions, s; and sg,
as depicted in Fig. 3. There are two graphs, one for
each session. In each graph, the darkened solid line cor-
responds to the cumulative arrivals of the session, the
lower line corresponds to the cumulative number of to-
kens accepted into the bucket (all tokens must be ac-
cepted into the bucket before they can be acquired by
cells), the upper line equals to the lower line plus the
token originally in the bucket at time 0. At time ¢3, s;
has run out of tokens (i.e., A1(t) > & + K1(¢)). While
s suffers a delay from t3 to t4, there are extra tokens
stored in LBy. In principle, this delay is avoidable and
can be shortened because many tokens of s, are being
wasted in the interval (0,%2) because of bucket overflow.

To examine whether this soft server is work conserv-
ing, we define [;(t) to be the number of tokens in LB;
at time ¢ and {(¢) to be the number of tokens in the VP

Leaky Bucket at time ¢. Then Zf\;l l;i(t) < I(t) when
any of the N Leaky Buckets overflows and some others
are not full. This means that I() — 3>, l;(t) tokens
in the VP Leaky Bucket can never be used, or in other
words, certain bandwidth of the VP is wasted. Thus,
waste of tokens in soft multiplexer implies waste of to-
kens in the VP Leaky Bucket. Since it is possible that
some sessions are backloged while others are wasting to-
kens, this multiplexer is not work conserving.

IV. ExceEss TOKEN PASSING
This section explores the use of excess token passing to
minimize the number of tokens wasted in the above sys-
tem. The mechanism of excess token passing is simple.
Whenever a bucket in the soft multiplexer is filled up, a
newly generated token will be passed to others instead
of being discarded.

4b.2.3

449

In token passing, R; ~ (é;,p;), for i = 1...N no
longer holds. However, the output of the soft multi-
plexer should still satisfy the VP burstiness constraint,
as argued below. Cells can be released into the VP only
if it can be granted a token. Therefore, the total number
of output cells within a time period cannot exceed the
number of tokens in the system at the beginning of the
period plus the number of tokens generated during the
period. Therefore,

N Ly N N
S [R@d < Su@+Y pt-2)
i=1v7 i=1 i=1

N N

S6+d> ply—2)
i=1 i=1

= S+p(y—z)

An excess-token passing soft multiplexer still provides
the same guarantee to sessions as the one with indepen-
dent Leaky Buckets does. In addition, a session ¢’s back-
log will always be cleared at rate > p;. Because newly
generated tokens in the multiplexer will be discarded if
and only if all Leaky Buckets overflow, ZZN:1 L) =11,
for all . Thus, the bandwidth of the VP will be wasted
if and only if all Leaky Buckets in the soft multiplexer
overflow. Since no cell will be waiting when all buckets
in soft multiplexer overflow, excess-token passing multi-
plexers are work conserving.

The fluid flow diagram in Fig. 4 gives us a clearer
picture of excess token passing. Comparing with Fig. 3,
fewer tokens are wasted, because in the interval (¢1,13),
excess tokens of sy are transferred to s{, and also in
(t3,t4), excess tokens of s; are transferred to s;. When
sy suffers a delay in independent case (Fig. 3), both
of the sessions can be served without any delay after
adopting excess token passing.

This system appears much like General Processor Shar-
ing(GPS) multiplexing [3] if the share of excess tokens
passed to session i is —&T’ where B is the set of

. 7

sessions having a non—full]f)icket. One characteristic of
GPS is that unused bandwidth of an idle session can be
shared by active sessions. This is also the main spirit
of excess token passing. The main difference between
them is that a session in our system may save up tokens
for later bursts. Only excess tokens from a full Leaky
Bucket are passed to other sessions. A soft multiplexer
with excess token passing can be described as follow.
Each of the NV sessions is associated with a positive real
number, ¢1,$a, -+, ¢n. Let Ti(r,%) be the number of
tokens received by session i in (7,t]. A soft multiplexer
with excess token passing ensures that:

Ti(r,t) _ i . _ o

T}(T,t)z@"]—l’z’ , V. 4)

IA

for a session 7 which has a non-full token pool in the in-

terval (1,t]. We can see that every session 7 is guaranteed

an effective token generation rate of p; = i*"‘Tp By
]

]
setting ¢;’s, we can distribute the tokens generated to

sessions according to the their individual requirements.
The larger ¢;, the larger share of token session i gets. If
we set bucket size to zero, system with excess token pass-
ing is equal to GPS systems (i.e. 8 = 0,Vi and 6§ = 0).

V. TOKEN BORROWING

While excess token passing minimizes the number of to-
kens wasted, token borrowing aims at improving the de-
lay/loss performance in soft multiplexer. In token bor-
rowing, whenever the bucket of a session becomes empty
and backlog occurs, it may borrow tokens from others
and return them later. For the same reason we men-
tioned in excess token passing, the aggregate output of
a system with token borrowing satisfies the burstiness
constraint of the VP, too.

Figure 5 illustrates the conceptual structure of a token-
borrowing soft multiplexer. On top of the Leaky Buckets
is attached a coordinator which monitors the states of
all Leaky Buckets and moves tokens among the buckets.
This coordinator maintains a vector B = (By, Bs, -+, By)
in which B; is an integer indicating the number of tokens
session ¢ has borrowed if B; is negative, or the number of
tokens session i has lent out if B; is positive. A session
with B; > 01s called a lender and a session with B; < 0
is called a borrower. Initially, B; (¢ = 1,...,N) will be
set to 0. A real number A, 0 < h <1, is used to indicate
whether tokens can be borrowed from a session. If the
number of tokens in bucket 7 is less than h* é;, session 1
stops lending tokens to others. The following illustrates
how token borrowing works:

Token Borrowing Mechanism :

If session j begins to be backloged, the coordinator will
try to transfer to it a token from a leaky bucket ¢ which
has more than h * §; tokens. Then, B; will be decre-
mented by 1 and B; will be incremented by 1. The
system may evolve to a situation in which all buck-
ets i(1 = 1-.-N) contain less than h * é; tokens. At
that time, the coordinator will stop transferring tokens
around.

Token Returning Mechanism :

A newly generated token for a borrower 7 will be passed
to the coordinator if there is no backlog for session j.
The coordinator will return this token to ome of the
lenders, say session ¢. Then it decrements B; by 1 and
increments B; by 1. A borrower may also be forced to
return the newly generated token if a lender begins to
be backloged when all buckets 7 (¢ = 1,..., N) contain
less than & x 6; tokens.

Let us now consider the fluid flow graphs in Fig. 6 to
illustrate the mechanism of token borrowing. A differ-

4b.2.4

450

ence to the previous fluid flow graph is that the lower
line indicates K;(t)+ L;(t), where L;(t) is the number of
tokens borrowed in at time ¢ if it is positive, or the num-
ber of tokens lent out at time ¢ if it is negative. When
session 1 runs out of tokens at time ¢;, the coordinator
will let it borrow from session 2. Therefore, K (t)+L2(t)
decreases in the interval (¢;,12) since tokens are being
lent out. During this interval, B; decreases and B in-
creases. After ¢5 (end of burst of session 1), newly gen-
erated tokens of session 1 will be returned to session 2
with adjustment of B; and Bj until both B; and B
become 0. We can see that both of the sessions can be
served without delay/loss.

Parameter h is used to control the trade-off between
performance and guarantee. When h = 1, no tokens will
be lent out and the system is analogous to the one with
independent Leaky Buckets. As mentioned in section II,
this system provides strong guarantee but marginal per-
formance. When h = 0, a backloged session can borrow
freely from others whenever there are some non-empty
buckets. Therefore, mean delay and loss are minimized.
However, QoS of lenders may be affected by borrowers.
Fig. 7 shows a situation in which session 2 is affected by
a misbehaving session that always transmits at its peak
rate. Without token borrowing, session 2 can be served
without delay. However, after adopting token borrow-
ing with k = 0, delay occurs whenever a burst with
rate Cy > p1 + p2 = p arrives. This is because session
2’s bucket will always be empty due to session 1’s bor-
rowing, and when a burst of session 2 arrives, although
session 1 is forced to return its newly generated tokens,
the total token generation rate p = py+p2 < C3. Session
2’s performance can be guaranteed only if Cy < p1 + pa.

In general, lender ¢ can be guaranteed if the following
is satisfied when lender ¢ begins to be backloged:

pi + pr(t) > C;

where pg(t) is the token returning rate at time {.

Assume that there are N sessions, let B(t) represent
the set of borrowers and N B(t) be number of borrowers
at time t. Similarly, the set of lenders and the number
of them at time ¢ are represented by L(t) with NL(t).
In the worst case, all NL(t) lenders become backloged.
The newly generated tokens of the N B(t) borrowers will
be shared by the N L(t) lenders and a lender ¢ can have
a token returning rate of

(5)

ZieB(t) Pi 6)
NL(t)
assuming the returned tokens are distributed evenly among
all the lenders. So the lenders can be guaranteed if
ZiEB(t) Pi
NL(t)

Pr(t) =

Ci<pi+ (7)

In the extreme case, there is only one borrower and all
others are lenders. If we assume all the sessions i are
homogeneous with peak rate C; = C and p; = p’ for all
i, the criterion becomes

) > ﬁN——c (8)

If (8) is satisfied, lenders can be guaranteed. However,
this is a rather stringent requirement and the allocated
rate p’ must be very close to the the peak rate C.

Another method to guarantee the lenders is the detec-
tion of misbehaving sessions. By examining the vector
B, the coordinator can find out those sessions that have
borrowed an exceeding number of tokens from others.
The coordinator can send warning signals to the sources
or refuse to transfer tokens to these sessions.

Excess token passing can work together with token
borrowing. In this situation, the resulting soft multi-
plexer is work conserving. If A = 0, a session can borrow
from others whenever there are some non-empty buckets
and a cell will be buffered only when all the buckets are
empty. In other words, packets will be served immedi-
ately if there are some tokens. Therefore, the resulting
soft multiplexer is also greedy.

VI. SIMULATION RESULTS

The simulation experiments assume there are three ho-
mogeneous sessions modeled by the two-state Markov
chain in Fig. 8 with both mean on period and mean off
period equal to glas. During an on-period, cells would ar-
rive with rate S = 24000cells/s. Thus the mean arrival
rate r is about 5Mb/s. We set §; to be the mean burst
length, which is 400 cells, for alli. A buffer with size 400
was attached to each Leaky Bucket. Since we are only
interested in the range r < p; < S, we may vary p; in
(12000, 24000), for alli. In Fig. 9(a) and (b), the cell-loss
probability and delay of the token-passing scheme are
compared with those of the independent Leaky-Bucket
scheme. We see that for the same load (;’:) , both cell-
loss probability and delay can be improved by one to two
orders of magnitude with token passing. For a fixed loss-
probability or delay requirement, the sustainable load of
each session can be higher. It means that, for a fixed set
of multiplexed sessions, a smaller VP is needed. This is
rather encouraging in that we can improve the perfor-
mance a lot without losing fairness.

The effects of token borrowing are presented in Fig. 10(a)
and (b). When the threshold of token borrowing h = 1,
the resulting soft multiplexer is the same as an inde-
pendent Leaky-Bucket system. Fig. 10(a) shows that
cell-loss probability can be improved significantly when
we change h from 1 to 0.99. Although improvements
can still be observed when h is decreased further, they
becomes progressively less significant. When h = 0.99,

4b.2.5

451

a session will not lend out tokens unless its token pool
is 99% full. Therefore, with A = 0.99, a session is highly
guaranteed. it is therefore interesting that we can im-
prove the cell-loss probability by one order of magni-
tude while maintaining a high degree of guarantee. This
result shows that when some sessions are running out
of tokens, it is very likely that there are other sessions
which have buckets that are more than 99% full. If to-
ken borrowing had been disabled, the newly generated
tokens of these buckets would have been discared with
high probability. Token borrowing allow us to put these
tokens to good use by transferring them to the needy
sessions. This is similar to the effect of excess token
passing except that, in token borrowing, the tokens are
lent out rather than transferred and a borrower must
later return what he has borrowed.

The hybrid system of token passing and borrowing has
also been studied. In Fig. 11(a) and (b), the upper solid
line is for the independent Leaky Buckets case. The mid-
dle three lines correspond to the case of token borrowing
and are reproduced from Fig.10. The lower three lines
correspond to the hybrid system. We see that, in the lat-
ter case, the curves keep shifting downwards until A = 0.
Note that when h = 0, the soft multiplexer is greedy and
the best average performance can be achieved. However,
there is less guarantee for each session.

We now examine the fairness of soft multiplexers by
comsidering a scenario in which one of the sessions mis-
behaves and injects unexpected long bursts into the VP.
Fig. 12, the upper bunch of curves corresponds to the
M@kavmg session and the lower bunch of curves corre-
spomds to the normal sesstons. We see that, even though
the misbehaving session would borrow tokens from the
normal sessions, all sessions are better off when excess
tokens passing and token borrowing are enabled. This
is true even in the case of A = 0 when the guarantee to
each ‘session is reduced to its minimum. This is inter-
esting because the independent Leaky-Bucket operation
is supposed to provide protection of a session from mis-
behaving sessions, and yet our results indicate that this
protection does not necessarily leads to better guaran-
teed performance. It should be emphasized, however,
that the loss-probability performance shown is an aver-
age over a long time period. Further study is needed
to better understand the dynamics of the interactions of
the sessions at particular time instants.

VI1I. CONCLUSIONS
This paper has investigated soft multiplexing, an issue
that arises in VP-based ATM networks. The main dis-
tinguishing feature of this form of multiplexing is that
the output channel is a variable-bit rate channel. We
have proposed a modification of the concept of work
conservation (a well-known concept in traditional sta-

tistical multiplexing) for use in soft multiplexing and
have introduced the concept of greedy soft multiplexers.
These concepts allow us to classify and study different
multiplexing schemes systematically. We focused on soft
multiplexers with input traffic streams regulated by indi-
vidual Leaky Bucket and the multiplexed output traffic
policed by a Leaky Bucket. The underlying assumption
is that as long as the output traffic conforms to the pre-
negotiated contract specified by the Leaky-Bucket pa-
rameters, the network is obligated to meet certain per-
formance guarantees on the output traffic. The issue
then is reduced to the study of the performance within
the multiplexer. Two performance-enhancing soft mul-
tiplexing schemes, excess token passing and token bor-
rowing, have been investigated. It has been shown that
by allowing tokens to be transferred among the input
Leaky Buckets according to need in a systematic fashion,
significance performance improvement can be achieved
without sacrificing guarantee to each session.

REFERENCES

[1] M. Kawarasaki, B. Jabbari, “B-ISDN Architecture and Pro-
tocol” IEEE J. select. Areas Commaun., Vol.9, No.9, Dec.
1991, pp.1405-1415.

[2] K. Sato, S. Ohta, I. Tokizawa, “Broad-Band ATM Network
Architecture Based on Virtual Paths” IEEE Trans on Com-
mun., Vol.38, No.8, Aug. 1990, pp.1212-1222.

[3] A. K. Parekh and R.G. Gallager, “A Generalized Proces-
sor Sharing Approach to Flow Control in Integrated Services
Networks : The Single-Node Case,” IEEE/ACM Trans. on
Networking, Vol.1, No.3, June 1993, pp.344-357.

[4] A. K. Parekh and R.G. Gallager, “A Generalized Proces-
sor Sharing Approach to Flow Control in integrated Services
Networks : The Multiple Node Case,” Proc. IEEE INFO-
COM’98, Mar. 1993, pp.521-530.

[5] J.B. Nagle, “On Packet Switches with Infinite Storage” IEEE
Trans on Commun., Vol.35, No.4, Apr. 1987, pp.435-438.

[6] S.J. Golestani, “Congestion-Free Transmission of Real-Time
Traffic in Packet Networks” Proc. IEEE INFOCOM’90, San
Francisco, Jun. 1990, pp.527-536.

[7] S. J. Golestani, “A Stop-and-Go Queueing Framework
for Congestion Management” Proc. ACM SIGCOMM’90,
Vol.20, No.4, Sept. 1990, pp.8-18.

[8] S. J. Golestani, “Duration-Limited Statistical Multiplexing
of Delay-Sensitive Traffic in Packet Networks” Proc. IEEE
INFOCOM’91, Bal Harbor, F1., Apr. 1991, pp.323-332.

[9] 1. S. Turrer, “New Direction in Communications or Which
Way to the Information Age?” Proc. Int. Zurich Sem. Digit.
Commun. ’86, pp.25-32.

[10] M. Butto, E. Cavallero and A. Tonietti, “Effectiveness of the
Leaky Bucket Policing Mechanism,” IEEE J. select. Areas
Commun., Vol.9, No.3, Apr. 1991, pp.335-342.

[11] N. Yin, M. G. Hluchyj, “Analysis of the Leaky Bucket Al-
gorithm for On-Off Data Source” Proc. GLOBECOM’91,
PP.254-260.

[12] L. Kleirock, Queueing System, Vol.2, Computer Application,
John Wiley, pp.1141-1147.

[13] R.L. Cruz, “A Calculus for Network Delay, Part 1 : Network
Elements in Isolation” IEEE Tran. on Information Theory,
Vol.37, No.1, Jan 1991, pp.114-131.

[14] R.L. Cruz, “A Calculus for Network Delay, Part II : Network
Analysis” IEEE Tran. on Information Theory, Vol.37, No.1,
Jan. 1991, pp.132-141.

4b.2.6

vCl
vC

Physical

(a)

Figure 1 (a) Traditional multiplexing
(b) Two-layer multiplexing

Figure 3
Fluid flow diagram for soft MUX
with with independent Leaky Buckets

K1) + L1(t) +51
ALY
K@ + L1

'
‘
'
'
'

8

K2(t) + L2(t) +862

Fluid flow diagram after adopting
token borrowing

. Soft MUX .

Virtual Poth

ii‘i-glire 2

Soft multiplexer with Leaky Buckets
Ki@) + 81
Coordinator
1234 ... N
S BOITTTITT]
: : : : K2+ 82
- . J X
: : O Token
=Y -
w2 B3 1 !
Figure 4 Figure 5
Fluid flow diagram after adopting Structure of soft MUX

token borrowing

excess token passing

A1)

K2t + LAY

Figure 8

2-state markov-chain for
on-off sources

8

111213
Figure 7
Fluid flow diagram illustrating
the unfairness to lenders

4b.2.7
453

454

——— token passing enable

107} P 1oken passing disable

0.55 06 0.65 07 0.75 08 0.85 09 085

load
Figure 9(a) Cell Loss of Excess Tokens Passing

10 a

0.55 086 0.65 0.7 0.75 0.8 0.85 0.8 0.95

Figure 10(a) Cell Loss of Token Borrowing

10 u T

0.55 06 065 o7 0.75 08 0.85 09 035
toad

Figure 11(a) Cell Loss of Both Excess Token
Passing & Token Borrowing

10
10}
W0k
£}
h
2.
310k
ARy -~ == h=1&token passing
e
10} o ~i= = he=05 & token passing
e h=0.0 & token passing
10°} !
/
107!
05 055 06 065 07 075 08 08 09 095

oad
Figure 12 Effect of a Misbehaving Session to
Normal Sessions

aoumy (3)

107 F ,’ token passing enable

- ==~ token passing disable

05 0.58 06 0.65 0.7 0.78 08 0.85 09 0.95
load

Figure 9(b) Delay of Excess Token Passing

10

‘0.0.5 D.;.’: 0.6 0.65 0.7 0.75 08 085 08 0.95
load
Figure 10(b) Delay of Token Borrowing
10" v v v r T v - r

L " L . 2
05 035 06 066 07 075 08 085 09 085
load

Figure 11(b) Delay of Both Excess Token
Passing & Token Borrowing

4b.2.8

