A General Packet Replication Scheme for
Multicasting in Interconnection Networks

Soung C. Liew
Department of Information Engineering, Chinese University of Hong Kong

Abstract— Multicasting in broadband packet switches
and metropolitan networks can be achieved by first repli-
cating the packets and then routing them to their des-
tinations. This paper studies a very simple but gen-
eral replication scheme that can be applied to arbitrary
interconnection-network topologies. The replication pro-
cess of a packet adapts itself according to the network
topology and the traffic condition. Hot spots of replica-
tion activities are diffused by this scheme which automat-
ically moves part of the replication efforts to less active
network regions. The scheme can potentially be used in
networks (e.g., the Manhattan-street network) in which
multicasting were thought to be inherently difficult. Fun-
damental issues and critical problem areas are laid out,
and solutions addressing them are proposed. The per-
formance of the replication algorithm and its implemen-
tation (logic diagram level) in the shuflle-exchange copy
network are investigated in detail. It is found that the
performance of the algorithm improves with the increase
of network dimensions.

I. INTRODUCTION

Multicasting, the delivery of information from one source
to a several destinations in a network, is expected to
be an important feature in future broadband networks
[1]. Video teleconferencing, video-program vending, dis-
tributed computing and control, and many other ad-
vanced network services and applications involve multi-
cast communication.

The topologies of interconnection networks [2] are suit-
able for both packet switches as well as local or metropoli-
tan networks. One way to achieve multicasting in inter-
connection networks is to divide the multicasting pro-
cess into two separate processes: replication and routing
[1, 3, 4]. During replication, copies of made of a mas-
ter packet without regard to which outputs (or destina-
tions) the packet copies would end up. After replication,
packet copies are then routed to their specific targeted
outputs (destinations). This paper considers only the
replication process.

The replication algorithms studied previously [1, 3, 4]
are for specific copy-network architectures. This paper’s
approach, on the other hand, is applicable to arbitrary
network topologies. This generality is made possible by
a fundamental feature: in all previous approaches, the
paths taken by a packet, referred to as the replication
tree, is determined before the actual replication begins.

Our approach, in contrast, determines the tree structure
on the fly as the packet travels through the network. In
other words, our approach adapts the replication process
according to the network topology and the contention
from other packets.

The remainder of this paper is organized as follows. In
Section II, we review the important concepts put forth
in previous work and show how they can be generalized
for arbitrary network topologies. Section III considers
the application of our approach to the elongated shuffle-
exchange network. Section IV presents the performance
results and their implications. Finally, Section V con-
cludes this work and discusses areas for further work.

II. GENERAL PACKET REPLICATION ALGORITHM

Let us first focus on copy networks based on the shuffle-
exchange topology [2, 5] before relating the algorithm to
general network topologies. As shown in Fig. 1, a shuffle-
exchange network consists of stages of 2 x 2 nodes inter-
connected in a regular fashion. We shall assume fixed-
length packets and time-slotted operation of the copy
network. In each time slot, a set of packets arrive at the
inputs. The copy network produces the desired packet
copies at the outputs.

A. Static Replication Tree

This subsection describes the packet replication trees
associated with previous work. The approach depicted
in Fig. 1 was proposed in [4]. It defines the replication
tree in terms of a contiguous output-address interval as
follows. Let the address interval be represented by a tu-
ple (MIN, MAX) where MIN and MAX are the minimum
and the maximum of the interval. The example in the
figure assumes the assignment of interval (0, F — 1) to
the packet, where F', the fanout, is the desired number
of copies. In general, other intervals (i.e., (i, F +i—1)
for some) can also be used. Reference [4] shows how
output intervals can be assigned to the input packets in
such a way that there is no internal conflict inside the
shuffle-exchange network, and therefore internal buffer-
ing is not needed.

One nice feature about the algorithm of the approach
is that only two bits need to be examined in each stage.

3d.4.1

394

0743-166X/95 $04.00 © 1995 IEEE

0000 (my...mp, My...M;_101...1), and the lower branch

Fig. 1. Interval-splitting algorithm applied on a
shuffle-exchange network.

Specifically, let the binary representation of the address
interval be (mymsy ... m,, MiM, ... M,). Atstage k bits
my, and M are examined and routing decisions are made
as follows:

Interval-splitting Scheme

1. fmg = My = 0 or mi = M = 1, then send the
packet out on link 0 (upper link) or 1 (lower link),
respectively.

2. If m; = 0 and M} = 1, then duplicate the packet
and modify the header (according to the scheme
described below) and send both packets out on both
links.

(a) For the packet sent out on link 0, MIN remains
unchanged, and MAX is set to
My .. Mp_,01...1.
(b) For the packet sent out on link 1, MAX re-
mains unchanged, and MIN is set to
My ... M;-110...0.
Physically, the above interval splitting means that the

upper branch is responsible for replicating and routing
packets to output interval

0001 to output interval (Mj...M_110...0,M;...M,).
?)211(1) These two intervals are contiguous to each other, and
together they cover the original interval. Note from the
0101 above rules that m; = M;,7=1,...,k—1holds for every
0110 packet that arrives at stage k£ (this can be easily argued
ot by induction on k). Therefore, the event m; = 1 and
1000 My, = 0 is impossible due to the min-max representation
11;)?; of the address intervals.
1011 To guarantee nonblocking operation of the shuffle-
1100 exchange network, the input packets must be assigned
1101 disjoint output address intervals and be concentrated
B before being forwarded to the shuffle-exchange network
[4]. The preprocessing hardware is more complex than
the shuffle-exchange network itself.
0
000 0000
gg;;::;s ¢ o W01} 1y o1 B- Dynamic Replication Tree
Interval i ‘ 0 g?? < v 0 Doing away with the preprocessing will result in a
ool Jo000 _0__,‘3‘1)8? / 1 0010 =010 plocking copy network. However, this can be dealt with
o \ ‘ XU =00t by delaying the replication process whenever conflict oc-
o 0 curs. This strategy is elaborated as follows. Instead of
oron | {0100 [0100 log, N-stage network, we have an L-stage network in
0101 0101 | 1poro1 & 1082 g) g
which L > log, N. And instead of assigning a static
. replication tree to a packet, the replication tree is dy-
Headers of Packet Copies and e of Routi i

namically modified based on contention from other pack-
ets.

Figure 2 illustrates the idea with an example in which
the interval (0, F — 1) is assigned to all packets. In {4],
the address interval specifies the copy network output
addresses for the packet copies. Here, we only use the
interval for replication purposes and the packet copies
do not necessarily end up at outputs 0 to F — 1. In the
example, there are two packets, A and B, requesting
for two and six copies, respectively. Let us track the
replication of packet B.

Initially, its address interval is (0000,0101). Unlike
the original interval-splitting algorithm, bits k are not
necessarily used at stage k here. In our example, the
first bits of 0000 and 0101 are both 0, and so we progress
directly to the second bits — in general, we skip to the
first bit position where MIN and MAX differ so that
splitting can be performed immediately. After splitting,
both copies of packet B find a copy of packet A at the
other input of the same node at the second stage.

Let us first look at the upper copy of packet B. Since
we do not want to buffer packets, duplication at this
stage is not possible because each input packet must
exit on one of the outputs. The duplication is therefore
delayed until the third stage. This means that the third
stage should examine the same bit position as the sec-
ond stage to decide whether duplication is required. In
the example, replication is possible at the third stage
because the other input does not have a packet. The

3d.4.2

395

Output Address
Intervals

P
Qa0e

Packet A |0000
0001 0001

o0 | [O] =

Packet B | 101

= g‘t’:ﬁiﬂé i
(AT AT A
A=A

1010

N = ™] = - %]
N \;@ﬁ%@mrg o
(B = e = e (R e
o IR TR S S TR o
1000 \“ ‘.“ ” “ " | [T 1000
’or W-l \’0‘ \ WX

)\

=
tF

L

L

D: 1110
1111

S - L

0000
0000

1010
1011
10 h Jh h
1101 III III
1110
1111 LTt -

0000

e
0011 0011

L

0000 ////,'
T N
~
. 4
N

0010
0010

0010
0011

0000 0011
Packet B 0101 \ oot
¢ 0100 0100
—_
0100 — o100 0100
..».

0101

T~
0101 0101
0101 0101

Headers of Copies of Packet Band the use of Routing Bi

Fig. 2. Generalized interval-splitting algorithm applied on a shuffle-exchange network.

replication process is completed after five stages.

Now look at the lower copy of packet B at the sec-
ond stage. Both bits examined are 0 and replication is
not needed. Therefore, unlike the upper copy, we can
progress to the next bit position at the third stage here.
In general, only when replication is required and is de-
nied will we examine the same bit position at the next
stage.

The general algorithm can be described as follows:

Generalized Interval-splitting Algorithm

1. Initially, skip directly to the first bit position where
MIN and MAX differ.
2. At any stage, examine the two routing bits.

(a) If the bits are different and the other input of
the switch node does not have a packet, per-
form splitting according to the original interval-
splitting algorithm.

(b) If the bits are different and the other input of

ths switch node has a packet, do not perform
splitting. At the next stage, the same two bits
will still be examined.

(¢) If the bits are the same, progress to the next
bits at the next stage.

Since the bits to be examined at stage k are not nec-
essarily bits k, a way to indicate the effective routing
bits is needed. This can be solved rather easily by po-
sitioning the effective routing bits at the front of the
packet header at all times so that they are by default
the first two bits. For conciseness, however, the details
of implementation will not be discussed in this paper.
There is a tradeoff between the number of stage L and
the packet-loss probability. If the MIN and MAX of a
packet copy remains different after L stages, its replica-
tion is not completed yet, and some copies are said to
be lost. Since there are more chances for replication at-
tempts for larger L value, the loss probability will corre-

3d.4.3

396

spondingly be smaller. On the other hand, the network
is more complex.

C. Application to Arbitrary Topologies

Let us now illustrate the generality of the above strat-
egy. The first observation is that the correctness of the
algorithm does not depend on the shuffle-exchange pat-
tern. The adjacent stages can be interconnected in any
fashion, either regularly or irregularly. Butterfly, base-
line and other patterns are all possible [2].

The same scheme also applies to “closed” networks. In
these networks, the sources and destinations of packets
are nodes rather than input and output links. An ex-
ample is the shuffle-exchange network consisting of only
one stage in which the output links of the stage are con-
nected back to the inputs of the same stage via a shuffle
pattern. For closed networks, the same network can be
used for both replication and routing: the replication
algorithm is performed, and a copy is routed to its des-
tination when no further splitting is required of it. Since
the copies of the same master packet may be produced at
different times, some copies may embark on their jour-
neys to their actual destination nodes while the others
are still being replicated. Also, packets of different mul-
ticast connections may be replicated and routed simul-
taneously, and the network operation does not have to
be divided into separate replication and routing phases.

Let us consider the application of the generalized
interval-splitting algorithm in the Manhattan-street net-
work. Point-to-point routing in this network has been
well studied [6, 7]. However, support of multicasting
is perceived to be a major challenge [7]. Our frame-
work can be used to incorporate the multicasting ca-
pability into the network. Figure 3 shows the appli-
cation of the generalized interval-splitting algorithm in
a network with 16 nodes [6, 7]. In this network, the
nodes are arranged as a 4 x 4 square grid. Each node
has two inputs and two outputs. The data flows on the
rows (columns) alternate between left-to-right (upward)
and right-to-left (downward). The example adopts the
interval-splitting algorithm. We have a packet at node
(1,1) requesting for six copies, and its splitting interval
is set to (0000,0101). We end up with two copies each at
nodes (0,3) and (1,2) and one copy each at nodes (2, 1)
and (3,0).

In general, when several packets are being replicated
and routed, contention may occur and the replication
process on some branches may be delayed. In addition,
in closed networks, copies of the same master packet may
interfere with each other. For example, this happens in
Fig. 3 if the two copies at node (0, 3) 1s to be split fur-
ther (i.e., more than six copies are requested). Another
situation that must be taken care of in closed networks

Do
Q7O

N

g
[
1
[

Fig. 3. Generalized interval-splitting algorithm applied
on a Manhattan-street network: an example in which
the source node is (1,1) and the packet requests six
copies.

is when all the links have a packet and the splitting pro-
cess of none of them is completed yet. In this situation,
the copies circulate around the network indefinitely. A
mechanism must be installed to either prevent this from
happening or break the deadlock.

The packet replication algorithm can readily be gen-
eralized to networks in which the nodes are not 2 x 2
(e.g., the hypercube network). The basic idea remains
the same, except that now partial splitting is possible.
For instance, when two packets enter a 4 x 4 nodes both
wanting to split three ways, we may split both packets
two ways.

II1. SHUFFLE-EXCHANGE CoOPY NETWORKS

This section discusses the details of the shuffle-exchange
copy network. The problems identified and the solutions
proposed also apply to many other network topologies
with minor modifications.

A. Distinguishing Packet Copies

At the outputs of a copy network, packets of different
multicast connections are distinguished using a broad-
cast channel number (BCN) [4]. In addition, the copies
of the same master packet must also be distinguished
so that they can be routed to their respective outputs.
This is achieved using an index reference (IR) [4]. A dis-
tinct (BCN, IR) pair identifies a distinct output. This
mapping is usually stored in a memory [4].

All copies of the same master packet have the same
BCN, and so the BCN can be incorporated into the
header of the packet and replicated during the splitting
process. The IRs of different copies must be distinct.

3d.4.4

397

For generation of distinct IRs, first consider the interval-
splitting algorithm. Suppose that the interval (0, F — 1)
is assigned to all master packets. After successful repli-
cation, there will be F' copies, all with MIN equal to
MAX in their interval fields. Furthermore, the MIN
(MAX) of the different copies are distinct and range from
0 to F' — 1. Therefore the MIN (or MAX) value can be
used as the IR and no explicit IR field is needed in the
header. If the replication process is not completed yet
for a copy at an output of the copy network, then its
MIN < MAX, and (MAX — MIN) copies will be consid-
ered as lost. The copy chosen to be the successful one
can have IR anywhere between MIN and MAX, inclu-
sively.

If a general interval (i, FF + ¢ — 1) is assigned to the
master copy such that the offset ¢ of the associated mul-
ticast connection can be changed time slot to time slot
in a way that depends on the traffic condition, then 1
must be written into a dedicated field in the header so
that it taken into account when deriving the IR.

B. Deadlock Prevention

In general, the larger the number of stages L in the
shuffle-exchange network, the more likely the copy re-
quests of packets can be fulfilled, since larger L implies
there are more chances for packet replication attempts.
There are two phenomena, however, that may prevent
the completion of the replication process, no matter how
large L is.

This first is obvious, and it is request overflow, which
occurs when the sum of the fanouts of input packets
exceed N, the capacity of the network. Subsection C
discusses ways for dealing with overflow. The second
phenomenon is deadlock, which occurs even when the
total copies requested is less than N if certain determin-
istic routing policies are used,

Figure 4 shows an example of deadlock with the fol-
lowing policy: at a 2 x 2 node, if there are two input
packets, set the switch element to bar state (i.e., for-
ward the upper input packet to the upper output and
the lower input packet to the lower); also set the switch
element to bar state under the “don’t care” situation
when one input has a packet that does not need to be
replicated while the other input does not have an ac-
tive packet. In the example, the top input has a packet
with F' = 2, the bottom input does not have an active
packet, and each of the rest of the inputs has a packet
with F = 1. It is easily seen that with the above policy,
no matter how large L is, the top packet will stay at the
top link while the bottom link remains idle throughout
all the stages.

There are two ways to prevent deadlocks. One is to
use random-routing policy. Whenever we have a “don’t

Packet desiring duplication

Packets [_]

not

desiring

rep!

lication

ldle input

Fig. 4. A deadlock example with a deterministic routing
policy: set switch elements into bar state under “don’t
care” situations. A packet fails to be duplicated regard-
less of the number of stages while the bottom link is idle
at each stage.

care” situation, set the switch element randomly either
to bar or cross state (upper input connected to lower
output and lower input to upper output). One disad-
vantage with this approach is the need for implement-
ing a random-number generator at each switch node.
The alternative is to devise deterministic routing poli-
cies that are deadlock free. We explain below a very
simple deadlock-free policy.

For simple explanation, one can picture a token on
each idle link. In order for a packet to be duplicated
at a node, it must acquire a token on the other input.
Thus, the problem becomes that of devising a routing
policy that will ensure the meeting of a token and the
packet desiring replication. There are two “don’t care”
situations that must be made into “care” conditions: 1)
whenever there 1s a token at one input and the other
input does not have a packet that desires duplication, we
forward the token to the upper output; 2) whenever the
two inputs are occupied and at least one packet desires
duplication, we forward that packet to the upper output.

To see why this strategy works, suppose we label the
nodes in each stage from top to bottom in a binary
fashion. The construction of the shuffle-exchange net-
work is such that a packet or a token residing at node
didsy . ..dn-1 will be forwarded via the upper outgoing
link to node 0dyd> . . .d,—2 at the next stage [2, 5]. There-
fore, the above policy can be viewed as attempting to
route tokens and packets desiring replication to the top
node 00...0. Thus, if there is a token and a packet
that desires replication in the network, they will eventu-

3d.4.5

398

ally meet at node 00...0, if not earlier. Consequently,
deadlocks cannot occur.

In the worst case, a packet can be duplicated at node
00...0 every log, N stages. In actuality, packets desir-
ing replication and tokens meet much more often. This
becomes evident when we view the routing policy as
attempting to concentrate tokens and packets desiring
replications at nodes with many Os (but not necessar-
ily all 0s) in their labels. Packets whose replication has
been completed are “pushed” to nodes with many 1s in
their labels.

C. Quverflow Problem

Overflow occurs when the sum of the fanouts of input
packets exceed N. There are two classes of approaches
to this problem. The first is to incorporate a reservation
(contention-resolution) mechanism so that the packets
allowed to enter the copy network desire at most a to-
tal of N copies. The overflow requests are buffered at
the inputs so that replication can be attempted in the
next time slot. This approach has been well explored
(8, 9, 10]. It has been shown that the delay and loss
probability at the input buffers can be made rather small
when the arrivals of overflow requests are not bursty.
Situations in which the arrived requests are positively
correlated in successive time slots may lead to worse
performance and they remain to be investigated.

One of the goals of the copy network proposed in this
paper is to eliminate preprocessing. For this, we exam-
ine the second approach, which is to increase the band-
width (capacity) inside the network with respect to the
external bandwidth.

One possibility is to employ expansion [4, 11]. An
M x M (M > N) shuffle-exchange copy network could
be used [4, 11] in such a way that only the upper N of
its M input ports are connected to input links. Because
only N of the input links are used, some switch elements
at the initial stages are guaranteed not to be traversed
by packets. An N x M expansion network results when
these unused switch elements are removed. In this way,
the capacity of the network is expanded to M and the
internal load to the copy network is reduced, making the
occurrence of overflow less likely.

Another possibility is to speed up the internal link
with respect to the external link. With a speedup fac-
tor of two, for example, each external time slot corre-
sponds to two internal time slots, and by dividing the
copy requests into two batches, one for each internal
time slot, the overflow probability can be reduced. With
this approach, if the point-to-point switch that follows
the copy network does not employ speedup, buffers are
needed in between them, since multiple copies may be
delivered to the same link interconnecting them in the

same time slot. In this sense, this scheme is compatible
with point-to-point switches that employ input buffer-
ing [12, 13, 14]. This scheme is also compatible with
those point-to-point output-buffered switches that em-
ploys internal speedup with the same or higher speedup
factor. The overall multicast switch will then be output-
buffered.

IV. PERFORMANCE STUDY AND IMPLICATIONS

This section considers the loss probability of packet
copies in the shuffle-exchange copy network. Although
an approximate analysis is possible, to limit scope, we
present only simulation results here. Only the results of
interval-splitting algorithm that assigns interval (0, F —
1) to all packets are presented.

In our simulations, the fanout F is distributed in a
truncated-geometric fashion:

(1_q)qk—1
=k} = —— 1<k<N 1
P{F= k)= i, <N
The expected fanout is
— 1 NgV
E 2
F 1—¢ 1-4¢V)

For simulation, we fix ' and derive ¢ from it.

Figure 5 shows the simulation results for shuffle-exchange
copy networks with n = logy N = 128 and 256, and
F =2 and 3. The confidence interval for the data point
at P,es = 1078 for each curve is roughly plus or mi-
nus 1077, The load p refers to the offered load at each
output, and it is related to the input offered load p; by
p=Fpi

Graphs (a) and (b) plot P, versus L for offered loads
of 0.4 and 0.6. Fnor each curve, P, decreases with L
up to a certain point, at which increasing L is not ef-
fective in reducing Pj,ss anymore. This is due to the
overflow effect: the network can make at most a total
of N packet copies in each time slot, and beyond that,
having larger L does not help. We also note that Piyss
is smaller when N = 256 than when N = 128. Larger N
reduces the overflow probability by allowing more shar-
ing of replication resources in the network.

Graph (c) shows the case where overflow events are
eliminated in the simulations. That is, whenever the
simulation program finds that there is a total of more
than N copies being requested, the event is filtered out.
This is an approximation to the situation where a reser-
vation device (see preceding section) is used to deal with
the overflow situation. We see that Pj,s; decreases roughly
exponentially (the y-axis is on logarithmic scale) with L.
This agrees with an approximate-analytical result not
presented in this paper.

3d.4.6

399

Loss Probability
Loss Probability

Loss Probability

Loss Probability

2 4 8 8 10 12 14 16 18 20

© (d)

Fig. 5. Simulation results for shuffle-exchange copy networks: Pj,ss versus L with (a) p

0.4; (b) p=0.6; (c)
overflow events eliminated and p = 0.6; (d) speedup factor of two and p

0.8.

i

3d.4.7

400

We also explored using speedup to solve the overflow
problem. Graph (d) plots the results when the offered
load is 0.8 and the speedup factor is 2. At the beginning
of each time slot, each input with an active packet di-
vides its requested copies into two batches, one for each
internal time slot in the speedup network. One batch is
of size [F/2] while the other if of size | F//2]. Overflow
is in principle still possible but is unlikely, as indicated
by the curves. We note that for the 256 x 256 network,
L = 16 = 2n is sufficient. So, multiplying the number
of switch nodes by the speedup factor, we get a network
complexity of 2N log, N.

V. CONCLUSIONS

This paper has described a general packet replication
scheme that can be applied to arbitrary network topolo-
gies. Philosophically, it is very similar to deflection rout-
ing [5, 6]. In deflection routing, when it is not possi-
ble to route a packet to the desired output at a node,
it is routed (deflected) to a wrong output. Attempts
are made later to correct for the deflection. The path
traversed by a packet is therefore probabilistic. The
essence of the general packet replication scheme is sim-
ilar: when it is not possible to perform replication be-
cause of contention, the packet is forwarded to only one
output link, and replication is deferred. It is this simplic-
ity that makes the scheme implementable in arbitrary
interconnection network topologies, including networks
in which multicasting were thought to be inherently dif-
ficult. Replication hot spots are diffused by this scheme
which automatically moves part of the replication efforts
to less active network regions.

The use of the replication scheme in the shuffle-exchange
network has been discussed in detail. It is found that
the performance of the algorithm improves with the in-
crease of network dimensions and that a modest speedup
of two on the network operation is enough to make the
packet-loss probability sufficiently small.

There is an issue that must be investigated further.
This paper has mainly focused on the replication pro-
cess. At the end of the process, the final destination
of each packet copy must be derived. If the fanout is
small, the destinations of all packet copies can be em-
bedded in the header of the master packet [4]. Other-
wise, the destinations can be stored in memories at the
outputs of the copy network. Since packet copies of a
master packet can emerge at arbitrary outputs, the des-
tination information must be accessible at all outputs.
Reference [11] describes several strategies for reducing
the memory requirements with respect to the copy net-
work in [4]. Some of the methods are applicable to the
shuffle-exchange copy network in this paper.

Closed networks (e.g., the Manhattan-street network

[6]) in which the sources and destinations of packets are
nodes also presents a challenging problem with respect
to the retrieval of destination information. To save mem-
ory in a large network, one may store the destination in-
formation of packet copies of a multicast connection in
only some of the nodes. Upon the completion of its repli-
cation process, the packet is first routed to the nearest
node containing its destination information before being
routed to its actual destination. Two questions are how
to distribute the storage of the destination information
and what is the tradeoff between memory and routing
requirements.

REFERENCES

[1] J. Turner, “Design of a Broadband Packet Switching Net-
work,” IEEE Trans. Commun., Vol. 36, No. 6, June 1988.

[2] C. L. Wu and T. Y. Feng, Tutorial: Interconnection Net-
works for Parallel and Distributed Processing , IEEE Com-
puter Society Press, 1984.

[3] A. Huang and S. Knauer, “Starlite: A Wideband Digital
Switch,” Proc. IEEE Globecom ’84 , pp. 121-125.

[4] T. T. Lee, “Non-blocking Copy Networks for Multicast
Packet Switching,” IEEE J. Select. Areas Commun., Vol. 6,
No. 9, Dec. 1988, pp. 1455-1467.

5] S. C. Liew and T. T. Lee, “Nlog N Dual Shuffle-exchange
Network with Error-correcting routing,” IEEE Trans. Com-
mun., Vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, Part I of
three parts, pp. 754-766.

[6] N. F. Maxemchuk, “Routing in the Manhattan Street Net-
work,” IEEFE Trans. Commun., Vol. 35, No. 5, May 1987,
pp. 503-512.

[7] C. Partridge, Gigabit Networking, Addison Wesley, 1994, pp.
143-147.

[8] C. J. Chang and C. J. Ling, “Overflow Controller in Copy
Network of Broadband Packet Switch,” Elect. Lett., Vol. 27,
No. 11, May 1991, pp. 927-939.

[9] W. De Zhong, Y. Onozato, and J. Kaniyil, “A Copy Net-
work with Shared Buffereds for Large-Scale Multicast ATM
Switching,” IEEE/ACM Trans. Networking, Vol. 1, No. 2,
Apr. 1994, pp. 157-165.

[10] J. W. Byun and T. T. Lee, “The Design and Analysis of an
ATM Malticast Switch with Adaptive Traffic Controller,” to
appear in IEEE/ACM Trans. Networking,.

[11] J. S. Turner, “A Practical Version of Lee’s Multicast Switch
Architecture,” JEEE Trans. Commun., Vol. 41, No. 8, Aug
1993, pp. 1166-1169.

[12] M. J. Karol and M. G. Hluchyj, “Input versus Qutput Queue-
ing on Space-Division Packet Switch” IEEE Trans. Com-
man., Vol. 35, Dec. 1987, pp. 1587-1597.

[13] Y. N. J. Hui and E. Arthurs, “A Broadband Packet Switch
for Integrated Transport,” IEEE J. Select. Areas Commun.,
Vol. 5, No. 8, Oct. 1987, pp. 1264-1273.

[14] T.T. Lee and S. C. Liew, “Broadband Packet Switches based
on Dilated Interconnected Networks,” IEEE Trans. Com-
mun., Vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, Part 1 of
three parts, pp. 732-744.

3d.4.8

401

