

Re-routing Instability in IEEE 802.11 Multi-hop Ad-hoc Networks*

Ping Chung Ng and Soung Chang Liew
Department of Information Engineering
The Chinese University of Hong Kong

{pcng3, soung}@ie.cuhk.edu.hk

Abstract

TCP throughput instability is a well-known
phenomenon in IEEE 802.11 multi-hop ad-hoc networks.
However, we find that this problem is not restricted to
TCP traffic only, but also occurs in UDP traffic. The
associated throughput oscillations are not acceptable for
real-time applications such as video conferencing and
voice over IP. This paper re-defines this throughput
fluctuation as a “re-routing instability problem” since it
is caused by the triggering of the re-routing function. In
particular, we show that the throughput instability is
mainly induced by re-routing, not the binary exponential
back-off of the IEEE 802.11 MAC protocol. Turning off
the re-routing function, for example, eliminates the
problem. We believe that this is the first paper in the
literature to study this phenomenon in the context of re-
routing instability. We propose to modify the ad-hoc
routing protocols with a “don’t-break-before-you-can-
make” strategy. The scheme does not require
modifications of the IEEE 802.11 standard, making it
readily deployable using existing commercial Wireless
LAN (WLAN) products. Simulations show that the
proposed scheme can significantly reduce the throughput
variation in a traffic flow by 50-70% and improve the
average throughput by up to 11%.

1. Introduction

The performance of wireless ad-hoc networks based
on IEEE 802.11 has been extensively studied. Much of
the previous work attempts to solve the one-hop
performance problems [1][2]. In the multi-hop scenario,
most of investigations focused on TCP performance
[3][4]. Besides traditional TCP applications like file
transfer and e-mail, the demands for real-time
applications like multi-media streaming and voice
services are also increasing. These real-time services are
usually transported on UDP rather than TCP. In this
paper, we investigate a common phenomenon that leads
to throughput degradations and oscillations for both TCP

and UDP traffic in multi-hop networks: the re-routing
instability problem.

Previous studies [5][6][7] showed that the so-called
“TCP instability problem” exists in a multi-hop flow.
References [5][6] provided a solution to solve TCP
instability by limiting the traffic at the transport layer.
The solution assumes TCP Vegas and limits the TCP
window size to at most 4. This limit bounds the number
of packets in the path to prevent individual nodes from
capturing the channel for a sustained period of time. Two
observations are as follows. First, it is not clear that the
solution is effective when there are multiple TCP flows
along the same path, or when TCP flows on adjacent
paths may interfere with the flow. Second, perhaps more
importantly, the instability problem is caused by false
declaration of link failures which is rooted at the link
layer. In other words, this problem is not a phenomenon
for TCP traffic only, but also for other types of traffic.
The declaration of link failures in turn triggers the re-
routing function, which exacerbates the situation. We
believe that the problem should be properly defined as a
“re-routing instability problem”, and a more general
approach should be used to solve the problem by
eliminating its root cause directly.

Reference [7] reconfirmed the TCP throughput
instability and proposed a modification of the IEEE
802.11 back-off algorithm such that only two back-off
window sizes could be used. The main idea is to adopt
the larger window for the next packet after a successful
transmission. This allows other nodes using the smaller
window to transmit with less chance of collisions.
However, the decision for the choice of the value of these
two back-off window sizes is based on the assumption
that the packet payload is fixed at 1460bytes. We believe
this assumption is not valid in real wireless LAN
networks. When packets could be of different size, this
scheme may fail to work properly.

The rest of this paper is organized as follows. Section
2 gives details of the simulation set-up in this paper. In
Section 3, we review the throughput instability problem.
Section 4 introduces the existing ad-hoc routing protocols
and describes how they handle link-layer failures. In
Section 5, we suggest a solution to deal with re-routing
instability and show how our solution can be applied to
the AODV routing protocol to eliminate instability.

* This work was sponsored by the Areas of Excellence scheme
established under the University Grant Committee of the Hong Kong
Special Administrative Region, China (Project Number AoE/E-01/99).

Section 6 provides simulation results quantifying the
improvements that can be obtained by our proposed
scheme. Section 7 analyzes factors that cause the
triggering of re-routing. Finally, in Section 8, we
investigate the link-layer penalty in a scenario with
multiple flows interfering with each other.

2. Simulation Set-up

The simulations in this paper were conducted using
NS2 [8]. All nodes communicate using identical, half-
duplex wireless radio based on the IEEE 802.11
Distributed Coordination Function (DCF), with data and
basic rates set at 11Mbps. The RTS/CTS mechanism is
turned off. Nodes are stationary. The transmission range
is 250m, the carrier-sensing range is 550m, and the
capture threshold, CPThreshold, is set to 10dB. Each
node has a drop-tail FIFO queue which holds up to 500
packets. This large link-layer buffer size eliminates the
chance of throughput oscillations caused by packet losses
due to buffer overflow. The Ad-hoc On-Demand
Distance Vector (AODV) routing protocol and the two-
ray propagation model are used. Unless otherwise
indicated, all traffic streams use fixed packet size of
1460bytes. The TCP Reno algorithm is used since it is the
most widely deployed TCP version. The advertised
window (window_) of TCP is set to a large value to
prevent the TCP traffic from being limited by the
receiver. The throughputs plotted in this paper are
obtained by averaging over one-second intervals.

3. Re-routing Instability

In this section, we use a 7-node string multi-hop
network as an example to illustrate the “re-routing
instability” problem. In Fig. 1, node 1 sends a UDP or
TCP traffic stream to node 7. For UDP, the traffic is
generated at node 1 in a saturated manner, in which as
soon as a packet is transmitted to node 2, another is
waiting in line. The traffic at later nodes all originates
from node 1 and the later nodes are not saturated. For
TCP, the traffic injected into the network by node 1 is
restricted by the congestion control algorithm of the TCP
Reno.

Figure 1. UDP/TCP traffic flow with node 1 as the

source and node 7 as the destination in a 7-node multi-
hop network

Figure 2 shows that the UDP throughput tends to

oscillate widely over time. The throughput oscillations
are caused by triggering of the re-routing function. In the
multi-hop path, nodes 1 and 2 sense fewer interfering
stations than later nodes. As a result, they pump more
traffic into the network than can be supported. This
results in high contention rates at later nodes.

When one of the later nodes fails to transmit a packet
after a number of retries, it declares the link as being
broken. The routing agent is then invoked to look for a
new route. Before a new route is discovered, no packet
can be transmitted, and this causes the throughput to drop
drastically.

Figure 2. UDP end-to-end throughput in a 7-node flow

using the routing agent in the original AODV

In this string network topology, there is only one
route from node 1 to node 7, so the routing agent will
eventually “re-discover” the same route again. The
breaking and rediscovery of the path results in the drastic
throughput oscillations observed. For a general network
with multiple possible paths from source to destination,
the same throughput oscillations will still be expected.
This is because the declaration of the link failure is
caused by self-interference of traffic of the same flow.

3.1 Hidden-Terminal Problem

The hidden-terminal problem can increase the chance
of link-failure declarations significantly. Consider the
illustration in Fig. 3. When node 6 sends a packet to node
7, node 4 senses the channel to be busy while node 3
senses the channel to be idle, since node 6 is inside the
carrier-sensing range of node 4 but outside that of node 3.
Once node 3 senses the channel as idle, it may count
down its back-off contention window until zero and
transmit a packet to node 4.

Figure 3. Node 6 as a hidden terminal to node 3

If the transmission from node 6 is still in progress,

node 4 will continue to sense the channel as busy, and it
will not receive the packet from node 3. As a result, node
4 will not return an ACK to node 3. Node 3 may then
time out and double the contention window size for
retransmission later.

Meanwhile, node 6 transmits the packet successfully
and is not aware of the interference at node 4. When
transmitting the next packet, node 6 will use the
minimum contention window size. The hidden-terminal
scenario favors node 6, and the chance of collision at
node 4 can not be reduced even though node 3 backs off
for a duration of time before the next retry. The hidden-
terminal problem increases the chance of multiple retries
by node 3.

Note that the negative effect of a hidden terminal is
much more than that of a contending terminal within the
carrier-sensing range. This is because the carrier-sensing
capability in the CSMA protocol is lost whenever there is
a hidden terminal. The lack of carrier sensing with
respect to the hidden-terminal causes the MAC protocol
to behave much like an Aloha protocol.

3.2 Ineffectiveness of Solving Hidden-Terminal
Problem with RTS/CTS

The RTS/CTS mechanism in IEEE 802.11 is designed
to solve the hidden terminal problem. However, using
RTS/CTS in multi-hop networks does not eliminate the
hidden terminal problem. The effectiveness of the
RTS/CTS mechanism is based on the assumption that
transmissions by mutually hidden terminals are to a
common receiver, and this common receiver may
forewarn the other terminals while the transmission of a
hidden terminal is in progress. This assumption may not
hold in a multi-hop network.

Consider the scenario in Fig. 3 again. The RTS
transmitted by node 6 will cause a CTS to be returned by
node 7. However, this CTS cannot be received by node 3.
Therefore, node 3 may still transmit a packet to node 4
while the transmission of node 6 is in progress. The
hidden-terminal effect as described in the previous
subsection cannot be eliminated. For more details, the
interested reader is referred to [9], in which it was argued
that when the carrier-sensing range is larger than two
times of the transmission range, RTS/CTS is no longer
needed. In this paper, we assume the use of the basic
access mode without RTS/CTS.

4. Ad-hoc routing protocols

Strictly speaking, in the scenario in Section 3, the link
has not failed, although it is congested and the attempt to
look for a new path is definitely warranted. However,
before a new route can be discovered, one should
continue to use the old route. That is, a “don’t-break-
before-you-can- make” strategy should be adopted.

Numerous ad-hoc routing protocols have been
proposed in the literature. They can be categorized into
two approaches: 1) proactive / table-driven; or 2) reactive
/ on-demand-driven [10]. The proactive approach
protocols (e.g., Destination Sequenced Distance Vector
(DSDV)), attempt to preserve consistent and up-to-date
routing information from each node to every other node
in the entire network. Each node maintains its own

routing table and propagates route updates throughout the
network to notify other nodes of changes in the network
topology. In reactive approach protocols (e.g. Ad-hoc
On-demand Distance Vector (AODV) and Dynamic
Source Routing (DSR)), route discoveries are initiated
only when desired by the source nodes. A node keeps
using the created route until that route becomes
inaccessible or the route is no longer needed.

a) b)
Figure 4. UDP end-to-end throughput in a 7-node flow

using a) DSR and b) DSDV

The “re-routing instability problem” is a common
performance problem suffered by various ad-hoc routing
protocols. Figures 2 and 4 show that AODV, DSR
(reactive) and DSDV (proactive) all experience
throughput oscillations. Although the severity of the
oscillations may vary, they are caused by the same
reason, the triggering of the re-routing function. These
routing protocols treat the link-failure notification as an
indication of the loss of the link to next hop. In IEEE
802.11, this link-failure notification can be induced by
the hidden-terminal problem as well as the real-break
case. Obviously, simply discarding the route after
receiving a link-failure notification is not appropriate for
IEEE 802.11 multi-hop networks.

5. Proposed scheme

A possible solution is to modify the routing algorithm
so that the routing agent continues to use the previous
route for transmissions before a new route can be found.
In practice, this means computers equipped with wireless
LAN devices only need to install slightly modified
routing agent software. In this paper, we choose the
AODV routing protocol for implementation of this
strategy, mainly because details of AODV have been
published in an IETF RFC [11]. There is no reason why
this approach can not be applied in other ad-hoc routing
protocols.

5.1 Original AODV

We quote the following excerpt from the IETF RCF
3561 on AODV [11]: “Any suitable link layer
notification, such as those provided by IEEE 802.11, can
be used to determine connectivity, each time a packet is
transmitted to an active next hop. For example, absence
of a link layer ACK or failure to get a CTS after sending
RTS, even after the maximum number of retransmission
attempts, indicates loss of the link to this active next
hop.”

Figure 5. Procedures in handling link-failure in a)

original AODV and b) our proposed scheme
(AODV_DM)

Figure 6. TCP end-to-end throughput in a 7-node flow

using original AODV

Figure 5a shows the procedures for handling link-
failure in the original AODV. When a node fails to
receive the link-layer ACK from the next hop after the
retransmission limit, its link layer reports the link failure
to the routing agent. The AODV protocol then generates
a list of unreachable destinations that use the unreachable
neighbor as the next hop. It drops all packets destined to
that hop and invalidates the corresponding routes in its
routing table. Then the node with the broken link
propagates the route error (RERR) message to its
upstream neighbors until the source node is reached.
When the source and intermediate nodes receive the
RERR message, they also drop all packets that utilize the
broken route for forwarding and are destined to the nodes
in the unreachable destination list attached with the
RERR message. The nodes then remove the

corresponding routes form their routing tables. After that,
a newly arrival packet targeted for these unreachable
destinations will trigger the route discovery process, and
the transmissions of packets to that destination will be
resumed after the new route is generated.

5.2 AODV with Proposed Scheme

In our proposed solution as shown in Fig. 5b, the link
layer notifies the routing agent of the “link failure” after
the maximum retransmission attempts. The AODV
routing agent then broadcasts a route request (RREQ)
message immediately. Unlike the original AODV, our
routing agent does not drop packets and invalidate the
corresponding routes. However, it continues to propagate
the RERR message to its upstream neighbors. When an
intermediate node receives the RERR message, it
broadcasts another RREQ message and forwards the
RERR message to upstream nodes until the source node
is reached. During this process, no packets will be
dropped and all nodes continue to use the previous routes.
After sending RREQ messages, the nodes wait for the
route reply (RREP) message returned by the destination
node or an intermediate node with an up-to-date route
(i.e., the destination sequence number stored in the node’s
routing table is greater than that in the RREQ message
[11]). After a new route is created, all nodes discard the
previous route and switch to the new one for
transmissions.

In the following sections, we will show simulation
results of AODV modified with “don’t-break-before-you-
can- make” strategy (AODV_DM) in two scenarios: 1) a
single flow in a single chain of nodes; and 2) a real-break
case.

5.2.1 A Single Flow in a Single Chain of Nodes

Figures 2 and 6 show the existence of “re-routing
instability” of UDP and TCP traffic in a 7-node chain
using the original AODV. As shown in Fig. 7, the
AODV_DM scheme eliminates these oscillations. With
the AODV_DM scheme, no packets are dropped and
nodes continue to use the old route, while the new route
discovery process is ongoing. For our scenario of a
single-chain network, when the node with the broken link
receives the responded RREP message or the Hello
message broadcasted periodically by the next hop, it
notices that the next hop is still active and the routing
agent will re-discover the same route for transmissions.

5.2.2 Real-break Case

Figure 8 shows a scenario with two alternative routes
from node 1 to node 7. Both of them are accessible in the
first 70 seconds. At the 70th second, node 4 is switched
off and this breaks the upper route. Figures 9 and 10
show the simulation results. In the first 70 seconds, both
the original AODV and AODV_DM choose the upper
route since this path requires fewer number of hops. After
the 70th second, they switch to the lower route for

transmissions. Since the number of hops in the lower
route is more than that of the upper route, the average
throughputs are slightly reduced. Our proposed scheme
keeps the route discovery property of original AODV and
switch to a new route if the existing one is broken. At the
same time, AODV_DM eliminates the “re-routing
instability problem” experienced by the original AODV.

Figure 8. Two alternative routes for UDP/TCP traffic

flow with node 1 as the source and node 7 as the
destination in a multi-hop network

a)

b)
Figure 7. a) UDP and b) TCP end-
to-end throughput in a 7-node flow

using AODV_DM

a)

b)
Figure 9. a) UDP and b) TCP end-
to-end throughput in a real-break

case using original AODV

a)

b)
Figure 10. a) UDP and b) TCP end-
to-end throughput in a real-break

case using AODV_DM

a)

b)
Figure 11. Normalized standard deviation of a) UDP

and b) TCP end-to-end throughput versus the number
of nodes in a string multi-hop network

6. Improvements

Simulations show that whenever re-routing occurs,
the throughput drops severely for the duration of 1 to 3
seconds. For real-time applications like video

conferencing or voice over IP (VoIP), this may not be
acceptable. Compared with the original AODV, our
proposed solution reduces the throughput variations by
70% for UDP and 50% for TCP as shown in Fig. 11.
Also, from Table II, the minimum throughputs of the
original AODV are near zero when there are more than
five nodes in the UDP flow; and when there are more
than three nodes in the TCP flow. Using AODV_DM, the
minimum throughputs are only slightly less than the
average values. As shown in Fig. 12, another
improvement of our proposed scheme is to boost the
average throughput up to 11% for both TCP and UDP in
a long chain of nodes (i.e., more than 12 nodes).

Figure 12. UDP and TCP end-to-end throughput

versus number of nodes in a string topology

Table II. a) UDP and b) TCP throughput result
(Mbps) with various number of nodes in a string
multi-hop network using AODV and AODV_DM

in a 500-second simulation run
a)

AODV AODV_DM Num.
of

Nodes Mean Max Min Mean Max Min

2 6.304 6.389 6.237 6.303 6.366 6.225
3 3.120 3.165 3.084 3.118 3.154 3.084
4 2.213 2.301 2.114 2.213 2.336 2.102
5 1.646 1.775 1.565 1.646 1.764 1.553
6 1.354 1.542 0.350 1.391 1.530 1.226
8 1.211 1.448 0.245 1.276 1.448 1.110
10 1.131 1.320 0.199 1.197 1.320 1.040
15 1.074 1.261 0.070 1.170 1.332 1.016
20 1.080 1.261 0.070 1.166 1.285 0.958
30 1.049 1.238 0.093 1.171 1.296 0.993

b)

AODV AODV_DM Num.
of

Nodes Mean Max Min Mean Max Min

2 4.231 4.659 3.746 4.341 4.560 4.117
3 1.969 2.405 1.521 2.155 2.571 1.758
4 1.359 1.946 0.194 1.403 1.994 0.999
5 1.002 1.457 0.000 1.087 1.525 0.712
6 0.867 1.101 0.000 0.933 1.151 0.652
8 0.766 1.098 0.000 0.819 1.030 0.486
10 0.742 1.029 0.000 0.799 1.012 0.578
15 0.710 0.976 0.025 0.762 0.968 0.544
20 0.671 0.952 0.000 0.742 0.931 0.539
30 0.649 0.811 0.000 0.720 0.989 0.534

7. Impacts of Data Transmission Rate and
Payload Size

This section shows the effects of the data transmission
rate and payload size on the re-routing instability
problem. We first show the condition for the occurrence
of hidden-terminal collisions. Then we introduce a
quantitative approach to analyze the impact of various
data transmission rates and payload sizes.

7.1 Signal Capture

Consider Fig. 3 again, both nodes 3 and 6 have a
packet to transmit. This may cause the aforementioned
hidden-terminal collision. However, the signal capturing
property may still allow a packet from node 3 to be
received successfully, provided it transmits before node
6.

More specifically, suppose that node 3 transmits first
and the signal power of the transmission received at node
4 is 3P . Node 6 then transmits a packet with power

6P

received at node 4. If dCPThresholPP +> 63 , where
CPThreshold is the capture threshold, then no collision
occurs, and node 4 can still receive the packet from node
3 successfully.

On the other hand, if node 6 transmits first, node 4
senses the signal from node 6 and declares the channel to
be busy. In that case, a newly arriving packet from node 3
can not be received even if dCPThresholPP +> 63 .
Effectively, the packet from node 3 to node 4 experiences
a collision.

In our simulation, CPThreshold is set to be 10dB. Let
d be the fixed distance between nodes. In this scenario,
node 3 and node 6 are separated by a distance larger than
the carrier sensing range. Thus, node 3 and node 6 can
send packets at the same time. From [12], in a two ray
propagation model, the signal-to-noise ratio at node 4 is

dCPThresholddPPSNR >==== 162)/2(/ 44
63 (1)

This means that the power level of the packet

transmitted by node 3 and received at node 4 is always
more than CPThreshold higher than the power level of
the received signal from node 6.

7.2 Vulnerable region

In the analysis of the effect of the hidden-terminal
problem, the key is to identify the vulnerable region
during which if the node transmits, it may collide with the
transmission of a hidden node. This is illustrated in Fig.
13. Note that a hidden-node collision only occurs if the
transmissions of nodes 3 and 6 overlap and that the
transmission of node 6 precedes that of node 3. Let

iPACKET be the time to transmit packet i.

TxRatePayloadMACPHYPACKET i /)(++= (2)

where PHY is the time to transmit the physical header,
MAC is the size of the MAC header, Payload is the size
of the packet payload, and TxRate is the data transmission
rate. Let

iT be the time of the transmission cycle of
packet i at node 6. As illustrated in Fig. 16,

iT includes
the back-off period, the packet transmission time, the idle
period,

iI ,when node 6 does not have a packet to
transmit, and the busy periods used by other nodes within
its carrier sensing range for their transmissions,

iB . We
have

iiavgii BACKSIFSPACKETWDIFSIT ++++++= (3)

Let ρ be the fraction of the time corresponding to the
vulnerable region induced by node 6. We have

∑

∑

=

=

∞→
= K

i
i

K

i
i

K
T

PACKET

1

1limρ (4)

where ACK is the transmission time for an
acknowledgement, SIFS is the time duration of short

interframe space, DIFS is the time duration of distributed
interframe space, and

avgW is the average contention
window size. Thus, ρ varies with different data
transmission rates and payload sizes. With lower data
transmission rate or larger payload size, the fraction of
the time that belongs to vulnerable region in each
transmission cycle becomes larger. As a result, a higher

chance of hidden-terminal collisions is expected. In other
words, the link-failure re-routing occurs more frequently
which further deteriorates the instability problem. As
shown in Fig. 14 and 15, using lower data transmission
rate or larger payload size increases the number of severe
drops of throughputs.

Figure 13. Collision occurs when the transmission of node 3 begins inside the vulnerable period

Figure 14. UDP end-to-end throughput in a 7-node flow using original AODV with various data transmission rates

Figure 15. UDP end-to-end throughput in a 7-node flow using original AODV with various payload sizes

8. Performance Enhancements in Multiple
Flows

In previous sections, we have focused on the
performance degradations induced by self interference of
the traffic of a single-flow in a single chain of nodes. In
this section, we consider the interferences between
multiple flows. We show that our proposed scheme can
sufficiently increase the average throughput of a flow
suffering from the hidden terminal problem.

Figure 16. Two 1-hop saturated UDP flows

Figure 16 shows a scenario with five nodes and two

1-hop saturated UDP traffic flows. As mentioned in
Section 3.1, the transmissions of flow 1 may collide with
the transmissions of flow 2 at node 2 due to the hidden-
terminal problem. This severely deteriorates the

throughput of flow 1, while flow 2 continues to achieve a
much higher throughput as demonstrated in Fig. 17a. In
addition, the throughput of flow 1 drops to zero from 70th
to 110th second due to the successive collisions of RREQ
sent out by node 1 with the transmissions of flow 2. Node
4 does not notice that node 2 is suffering from hidden-
terminal collisions and attempts to transmit at the
maximum sustainable rate. Once the link at node 1 is
declared as failure, node 1 sends out RREQ and waits for
RREP. However, this RREQ message easily collides with
the aggressive transmissions of flow 2. In this way, no
RREP is responded by node 2, and node 1 times out and
retransmit another RREQ. No packet can be transmitted
for a long period of time after a number of failed RREQ
transmissions.

Previous work in the literature [13] also reported that
the throughput can degrade severely in similar scenarios.
They attribute this degradation to the binary exponential
back-off for retransmissions caused by hidden nodes.
However, we believe it is only part of the cause. Once a
node fails to receive the link-layer ACK after the retry

limit, it triggers the re-routing function of the routing
agent. Before a new route or the previous route is
discovered, no packets can be transmitted. This “re-
routing instability problem” and the “binary exponential
back-off” should be treated and solved separately.

Our proposed scheme addresses the first issue. The
average throughput of flow 1 is doubled as show in Fig.
17b. The “binary exponential back-off” does degrade the
throughput, resulting in average throughput of flow 1
slightly less than that of flow 2. However, its influence is
much smaller than that of “re-routing instability
problem”. To limit the scope of this paper, we refer
interested readers to [13], in which MAC layer solutions
were proposed to address the degradations caused binary
exponential back-off.

a)

b)
Figure 17. UDP throughputs of two 1-hop flows using

a) original AODV and b) AODV_DM

9. Conclusion

This paper is an attempt to solve a throughput
instability problem in IEEE 802.11 multi-hop ad-hoc
networks. Existing ad-hoc routing protocols simply
inherit the method for link-failure handling from the
routing protocols used in wired networks, and treat the
link-failure notification as an indication of the loss of the
link to the next hop. This is not appropriate for wireless
networks with hidden-terminal problems such as IEEE
802.11. The triggering of the re-routing function may be
induced by consecutive hidden-terminal collisions rather
than real link failures.

This paper has four major contributions. First, we

have argued that the throughput instability problem
should properly be re-defined as a “re-routing instability
problem”, since it is caused by the triggering of the re-
routing function and is not specific to TCP traffic alone.

Second, we have proposed to adopt a “don’t-break-

before-you-can-make” modification to the existing ad-
hoc routing protocols. In this strategy, the old route will
continue to be used until a new one can be established.
We have implemented this scheme with AODV as an

example, and have shown that the instability problem can
be eliminated. The modified routing agent can still switch
to a new route successfully in a real-break case.

Third, we have analyzed the hidden-terminal problem

by considering the “vulnerable regions: the time windows
during which transmissions may collide with transmission
of hidden node”. We have established the impact of data
transmission rate and payload size on the severity of
hidden-node collisions. In particular, we have shown that
lower data transmission rates and/or larger payload sizes
will incur more frequent throughput oscillations.

Finally, this paper has also investigated a multiple-

flow scenario. The throughput degradation induced by
“re-routing instability” is much larger than that induced
by “binary exponential back-off”, as has been
demonstrated by the restoration of UDP throughput when
our “don’t-break- before-you-can-make’ ad-hoc routing
protocol is used. We believe that this is the first paper in
the literature to report this phenomenon.

References
[1] B. Bensaou, Y. Wang, C. C. Ko, “Fair media access in
802.11 based wireless ad-hoc networks”, ACM MobiHoc’00, pp.
99 – 106, 2000.
[2] K. Brown, S. Singh, “M-TCP: TCP for mobile cellular
networks”, ACM Computer Communication Review, 27(5), Oct.
1997.
[3] G. Holland, N. Vaidya, “Analysisi of TCP Performance over
Mobile Ad Hoc Networks”, ACM MobiCom’02, pp.219-230,
Seatle, USA, 2002
[4] R. Jiang, V. Gupta, C. V. Ravishankar, “Interactions
between TCP and the IEEE 802.11 MAC protocol”, IEEE
DISCEX’03, Vol. 1, pp.273 – 282, April 2003.
[5] S. Xu, T. Saadawi, “On TCP over Wireless Multi-hop
Networks”, IEEE MILCOM’01, Vol.1, pp.282-288, Oct. 2001.
[6] S. Xu, T. Saadawi, “Revealing and solving the TCP
instability problem in 802.11 based multi-hop mobile ad hoc
networks”, IEEE VTC’01 Fall, Vol. 1, pp.257-261, 2001
[7] Kanth K., Ansari S., Melikri M.H., “Performance
enhancement of TCP on multihop ad hoc wireless networks”,
IEEE ICPWC’02, pp.90-94, Dec. 2002.
[8]“The Network Simulator–ns2”, http://www.isi.edu/nsnam/ns.
[9] K. Xu, M. Gerla, S. Bae, “How Effective is the IEEE 802.11
RTS/CTS Handshake in Ad Hoc Networks?”, IEEE
GLOBECOM '02, Vol. 1 , pp.17-21, Nov. 2002.
[10] C. K. Toh, “Ad hoc mobile wireless networks: protocols
and systems”, Prentice Hall, New Jersey, 2002.
[11] “IETF RFC 3561 AODV Routing”,
http://www.ietf.org/rfc/rfc3561.txt
[12] T. Rappaport, “Wireless Communications: Principles and
Practice”, Prentice Hall, New Jersey, 2002.
[13] X. Huang, B. Bensaou, “On Max-min Fairness and
Scheduling in Wireless Ad-Hoc Networks: Analytical
Framework and Implementation”, ACM MobiHoc’02, Long
Beach, USA, Oct. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

