‘Improvements Achieved by SACK Employing TCP Veno Equilibrium- Onented

Mechanism over Lossy Networks
Chung Ling Chi, Fu Chengpeng, and Liew Soung Chang.
Department of Information Engineering
Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
lechung9@ie.cuhk.edu.hk, cpfu7@ie.cuhk.edu.hk and soung@jie.cuhk.edu.hk

Abstract

TCP Veno[1] is a new TCP version that employs the refined
AIMD (additive increase and multiplicative decrease)
congestion control algorithm with its implementation only
on the sending side. In addition to achieving significant
throughput improvement over TCP Reno (particularly in
wireless networks), Veno shows good compatibility and
flexibility in heterogeneous networks. In this paper, we
demonstrate the benefits of combining the retransmission
strategy of SACK option with TCP Veno's congestion
control mechanism. Our implementation is referred as
SACK TCP,,,,, similar to the definition of SACK TCP in[4],
which refines recovery strategy of Reno by using SACK
option[3]. By means of simulation and real network
experiments’, we demonstrate that SACK TCP,,, can obtain
the satisfactory throughput improvement over SACK TCP>,
Also, we show SACK TCP,,,,'s compatibility with SACK
TCP.

1. Introduction

Over past decades, many studies on TCP have been
explored of how a TCP connection can recover from a
single or multiple packet loss quickly. One common
solution is to deploy a Selective Acknowledgement (SACK)
option in today’ s TCP implementations since SACK TCP
can recover from the multiple packet losses in a single
window within one round trip time. Specifically, SACK
TCP deals with bursty losses in an efficient way and avoids
the unnecessary retransmit timeouts. However, like other
recovery techniques (i.e. NewReno[5], NetReno[6]), SACK
TCP or its variants (D-SACK[7], FACK[8], RH[9]) is
regarded as one. recovery-based algorithm. In fact,
regardless of whichever of recovery-based techniques are
employed, the sending rate of a TCP connection is halved as
long as packet loss is detected.

Recently, a new implementation of TCP congestion control
algorithm called TCP Veno [l] that examines the
equilibrium point of the network capacity is proposed. It
uses the detected equilibrium point as a coarse meter to
smartly set the slow start threshold (ssthresh), and refines
AIMD (additive increase and multiplicative decrease)

' We have implemented SACK TCP v, in NetBSD1.1, source code is
available on http://www.broadband.ie.cuhk.edu.hk

2 1t is inappropriate for us to compare SACK TCPyey,,with SACK TCP,
since the former is based on the refined congestion control algorithm and
the later on recovery phase of TCP. In fact, these different modifications,
both of which are beneficial to TCP from different angles, has not any
confliction between them.

0-7803-6490-2/01/$10.00 ©2001 [EEE 202

algorithm of TCP Reno at the sending side. In addition to
achieving significant throughput improvement over TCP
Reno, particularly in wireless networks, Veno TCPs show
good compatibility and flexibility with current TCPs over
heterogeneous networks.

In this paper we demonstrate the benefits of combining the
retransmission strategy of SACK option with TCP Veno's
congestion control policy. We refer the implementation of
SACK+TCP Veno as SACK TCP,,, By means of
simulations and real network experiments, we compare
SACK TCPy,, with SACK TCP in lossy networks. It is
observed that a SACK TCPy,,, connection has large
improvement up to 72% in utilization over SACK TCP.
Generally, SACK TCP,,, not only recovers packet losses
quickly by using the inherent advantage of SACK option,
but also maintains an appropriate window size to transfer
data depending on its employed refined AIMD algorithm

The rest of this paper is organized as follows. In Section 2
we briefly review the congestion control algorithm of
SACK TCP and TCP Veno. In Section 2.3, SACK TCP,,,,
are addressed in details. Then we investigate SACK
TCPy,,, s performance and compare it with the SACK TCP
by simulations and experiments in real networks in Section

3. The conclusions are drawn in Section 4.
2. TCP algorithms

21. SACK TCP

TCP uses a cumulative acknowledgment scheme in which
received segments® that are not at the left edge of the
receiver window are not acknowledged. When multiple
segments in a window are dropped, TCP seriously loses its
ack-based clock The ack with SACK option, which is about
up to four noncontiguous blocks of data that have been
received successfully by the receiver are proposed to
remedy these problem. SACK TCP [4], making use of
SACK option in Reno TCP sender, by refining the fast
retransmit and fast recovery strategy of TCP Reno,
generally can recover from multiple packet losses in a single
window within one RTT (Round Trip Time). Since SACK is
being implemented in most operating systems, a cascade of
window reduction or the unnecessary retransmit timeouts
due to multiple packet losses will be greatly reduced.

The original SACK option appears in RFC1072 [13] and
standardized in RFC2018[3] and RFC2581[14] with some

3 In this paper, segment and packet are interchanged without any explicit
indication.

modifications. When three duplicate acks are received by a
SACK TCP connection, the sender cuts the congestion
window into half and an estimating outstanding data
variable pipe) is in function to control the number of
segment sent during the fast recovery phase. Considering
three duplicate acks to implicitly indicate that three
outstanding packets are received in the receiver side, the
pipe size of TCP connection pipe) is estimated to be
(cwnd-3) and then cwnd is halved. The variable pipe is
increased by one segment when sending a packet or
decreased by one segment when receiving a duplicate ack or
decreased by two when receiving a partial ack®[10]. Packets
can be sent if pipe is smaller than cwnd in order to keep the
outstanding data in a constant amount. SACK TCP
retransmits lost segments according to the scoreboard
information.

A retransmission queue §coreboard) is set up to record
which packet is received at the receiver buffer or is
retransmitted by the sender. scoreboard contains a set of
data entities, each of which consists of its sequence number
of transmission packet as well as a flag bit, which indicates
whether a segment has been “SACKed”. A segment with the
SACKed bit turned on is not retransmitted, but segments
with the SACKed bit turned off and sequence number less
than the highest SACKed segment are available for
retransmission. Whether the SACKed segment is on or off,
segments are only removed from the retransmission buffer
when they have been cumulatively acknowledged.
Additionally, if packet losses are so heavy and leads to
timeout occurrence, the scoreboard is cleared. TCP then
sets ssthresh to half the current congestion window cwnd
and performs slow start action.

When SACK TCP ends its recovery phase, it enters additive
increase phase, in which cwnd is increased by one segment
per RTT. Otherwise, in slow start phase, cwnd is
exponentially increased by one segment per received ack, as
defined in [4], in this paper TCP composed of SACK option
and above algorithms is called SACK TCP.

22. TCP Veno

TCP Veno operates with the objective of distinguishing loss
type, thus performing an appropriate window reduction
instead of a fixed drop of window in Reno, and forcing a
TCP connection to stay longer at the equilibrium by
employing a proactive congestion detection method and a
reactive congestion detection method together. Veno differs
from the conventional TCP in two ways [1]: 1) It
dynamically adjusts the slow start threshold (ssthresh)
based on the equilibrium estimation of a connection as
opposed to using a fixed drop-factor window (e.g. % in
Reno and Tahoe, % in Vegas [15]) when packet loss is
encountered; 2) It uses a refined linear increase algorithm,
which employs both the proactive and reactive congestion
detection schemes to adjust the congestion window size

*Acks which cover new data, but not all the data outstanding when loss was
detected.

during the additive increase phase. Veno' s better throughput
is attributable to its more efficient use of the available
bandwidth rather than “bandwidth-stealing’ from other
connections. It is compatible and can co-exist harmoniously
with the current TCP in different networks. In addition,
Veno only needs modification on the sending side of a TCP
connection, thus it is easily deployed in real networks.

In details, Veno refines AIMD (additive increase and
multiplicative decrease) algorithm of Reno. Its
implementation on the sending side is simple, seeing
following: -)

* during Al (linear increase) period, -
if (DIFF*BaseRTT < a)
cwnd=cwnd+1/cwnd; // for every received new ack
equilibrium_arrival=false; // network equilibrium is not
reached
else if (DIFF*BaseRTT < b) // network equilibrium is
reached
cwnd=cwnd+1/cwnd; // every new ack received
equilibrium_arrival=true;
else if (DIFF*BaseRTT > b) //network is in congestion
cwnd=cwnd+1/cwnd; //for every other new ack
received
equilibrium_arrival=true; .
where DIFF=cwnd/BaseRTT — cwnd/RTT, BaseRIT is
minimum of the calculated RTT and always reset after fast
retransmit or timeout occurs, equilibrium_arrival is bullion
variable, which is recalculated when an ack for the tagged
data packet is received. o is set to one and P set to three in
terms of buffers. By considering the coarse granularity of
TCP clock (500ms) in real networks, in the implementation
of TCP Veno, a millisecond resolution timestamp is
recorded for each segment it transmits. Upon receiving an
ack, Veno retrieves the corresponding segment’ s timestamp
and calculates the segments’ RTT in millisecond resolution.
During the Al phase, Veno' s window is increased by I/cwnd
for every other new ack received other than for every new
ack received when the equilibrium is reached
(equilibrium_arrival=true). This subtle distinguishing
point of the refined linear increase phase relatively extends
the Al duration and thus has much positive impact on TCP
performance.

* when packet loss is detected by fast retransmit:
if (equilibrium_arrival=false)
ssthresh = cwnd,, * 4/5; // random loss is most likely
: to occur
else
ssthresh = cwnd,

loss

12; // congestive loss is most
likely to occur

¢ when packet loss is detected by timeout:

ssthresh is set to half the current window;

slow start is taken over; //same action as Reno

performs

where cwnd,,,, corresponds to the window size at which

point packet loss is detected by fast retransmit or timeout.

By the deduction of the false value for equilibrium_arrival,

ssthresh is aggressively updated by cwnd,, * 4/5 based on
the estimation- that TCP connection- probably has not
achieved the available bandwidth. Otherwise, if packet loss
occurs, ssthresh is set to cwnd,, /2, same as multiplicative
decrease of Reno with ' drop factorsince the true value of
equilibrium_arrival implicitly indicates that most likely the
network has been in' congestive state. Noted all above
calculation are not executed when TCP are evolving in
initial slow start stage. Veno keeps the same initial startup
behavior as Reno in order no to add any extra load to hosts
during the short file processing period.

Generally, TCP Veno is an intelligent congestion avoidance
mechanism that adjusts cwnd in more aggressive way when
network is under-utilized and in more conservative way
when in fully utilized stage by its estimation on the
connection state. However, TCP Veno has not been studied
when combining with acknowledgement packet with SACK
option. In fact, there are same problems as Reno in
performing data retransmission when multiple packets are
lost in a single of window. In the following, we propose to
use SACK option to resolve this. We refer to SACK TCP
plus TCP Veno as SACK TCP,.,,.

23. SACK TCP,,,

SACK TCPy,,, combines the retransmission strategy of
SACK TCP with the congestion control policy of TCP Veno.
The initial slow start is same as Reno's. During fast
retransmit and fast recovery phase or when timeout occurs,
SACK TCP,y,,, takes corresponding actions, similar to
SACK TCP’s, as described in Section 2.1. When three
duplicate acks are received, SACK TCP,,,, reduces cwndto
the value of ssthresh (=cwnd,,*4/5) if equilibrium_arrival
= false, the purpose here is to try to match the network
available bandwidth as much as possible. Otherwise, its
cwnd is halved, same as the Reno’ s multiplicative decrease
algorithm when probing the onset of the network congestion
(where equilibrium_arrival = true). During linear increase
phase, SACK TCP,,,, take Veno' s additive increase
algorithm: Veno’ s window is increased by //cwnd for every
other new ack received other than for every new ack
received when DIFF*BaseRTT > b . Noted that such
conservative refining on linear increase phase will extend
additive increase duration of a TCP connection without any
sacrificing any utilization of the available bandwidth.

Actually, he main distinction between SACK TCP and
SACK TCP,,, is that change from SACK TCP’s AIMD
(additive increase and multiplicative decrease) to TCP
Veno’ s RAIMD (refined AIMD). As seen in Fig.1 with the
real experiments in our university, we use host A (Red Hat
Linux) in Broadband Lab to dial up to modem pool in
computer service center in order to connect host B
(NetBSD1.1 with SACK TCP) and host C (NetBSD1.1 with
SACK TCP,,,,) situated in Broadband Lab. The round trip
time from host B to host A or from C to A in this network
configuration is about 150ms, detected by traceroute. The
two files with each size of 512kBytes are downloaded from

B to A and from C to A in sequence order. We repeat this
experiments ten times during different daytimes. The results
are same, seeing followings.

a3

3

£

whiog iR padorint £ swnd iachey

o

®)

Figure 1 (a) congestion window, sending rate of SACK
TCPy,,, and the number of estimated packets at
the bottleneck buffer
(b) The congestion window, sending rate of

SACKTCP.

Considering the modem speed of 33.6kbps, we set
maximum segment size to 512kbytes in order to see window
evolution clearly. Figure 1 separately shows congestion
window (cwnd) evolution of SACK TCPy,,, and SACK
over wired phone link between 20s and 80s interval By
taking refined additive increase algorithm, we see SACK
TCP,.,, has an extended congestion avoidance phase in
contrast to SACK TCP's. There are about three cycles
happened in SACK TCP,,,, and five in SACK TCP. At
same time, the average sending rate of SACK TCP,,,
shows more smoothly than that of SACK TCP. For refined
MD (muitiplicative decrease) algorithm, we only see the
window-halved evolution since equilibrium_arrival is set
true (the number of estimated packets in the bottleneck
buffer is more than b) when three duplicate acks received at
the sender. Generally, SACK TCP,,,, maintains its
congestion window at a higher average value with smoother

fluctuation and has a better utilization of bottleneck
bandwidth, particularly when SACK TCP,,,, is running

veno

over lossy networks, as seen in the following Section.
3. Experimental Evaluation

In this section, we describe the two experiment models in
Section 3.1. Then in later subsections we present and
compare the results for SACK TCP and SACK TCP,,,,
running over lossy networks by using dummynet [11]
embedded in FreeBSD 4.2 and ns simulator [12] developed
at Lawrence Berkeley Laboratory. The throughput
evaluation of SACK TCP and SACK TCP,,,, is studied in
Section 3.2. It is known mndom loss leads to significant
throughput deterioration, particularly when the product of
the loss probability and square of the bandwidth-delay
product is larger than one [2]. Additionally, many users
share public resources such as bottleneck’ s bandwidth in the
Internet, thus it is essential to obtain a better utilization and
impartial sharing among the resources. In Section 3.3, we
study fairness issue between SACK TCP and SACKTCP,,,,
over networks in hope of illuminating probable future of
TCP Veno.

3.1. The Network Scenario

. Figure 2(a) shows network for experiments by using
dummynet. The circles indicate the drop-tail router of the
network and the squares indicate data sources and
destination hosts. Srcl is NetBSDI1.1 with SACK TCP
sender, Src2 is NetBSD1.1 with SACK TCP,,,, sender and
Dst is the TCP receiver of Red Flag Linux. The links are
labeled with their bandwidth capacity and delay. Router is
set up by FreeBSD4.2, which has embedded IPFW [16][19]
command to configure the forward buffer size B, and
backward buffer size B,, bandwidth and propagation delay
and packet drop rate.

Figure 2(b) shows the network topology used for the
simulations to observe TCP's cwnd and the network
utilization. The circles indicate the drop-tail routers of the
network and the squares indicate data sources and
destination hosts. Src/ ..SrcN are the TCP senders and
Dstl ..DstN are the TCP receivers. The links are labeled
with their bandwidth capacity and delay. The parameters
are changed when examining different networks. The
forward link between the two routers has a capacity of
data packets per second and a propagation delay of 7;
seconds, together with a FIFO buffer of size B; packets. The
reverse link can transmit W acks per second with
propagation delay T seconds and a FIFO buffer that can
hold B, acks. To investigate the performance in lossy
environment, we assume packets are lost with a probability
LossProb in the forward link. We use ns simulator to test
TCP performance in this network model.

Srel
Packet direction z[[] 10Mbps. Tms
Dst | OMbn m @
[Tz
Src2
Ack direction
(2)
Packet direction
—
Srel 5 LossProb Dstl

DstN

Ack x‘rcction

®)

Figure2 (a)Dummynet network configuration and (b)

network topology for ns simulator

In the following simulations or experiments, we assume the
sources have infinite data to send to destination and receiver
buffers at the destination are large enough.

3.2. Comparison between SACK TCP,,,, and SACK
TCP .

We have tested SACK TCP,,,, extensively across the public
Internet, in the Dummynet network and in the ns network
simulator. These results show SACK TCP,,,, behaves well
across a very wide range of network conditions, Seeing to
Section 3.2.1, under less random packet loss conditions, the
behavior of SACK TCP,,,, is generally similar to that of
SACK TCP while there is a small improvement; when a
SACK TCP,,, connection running over network
experiences heavy random loss, it shows significant
improvement without adversely affecting other TCP
connections. Thus, it is compatible and can co-exist
harmoniously with the current TCP in different networks,
seeing to Section 3.2.2. SACK TCP,,,. s better performance
is contributable to its more efficient use of the network
available bandwidth depending on Veno’s valuable rough
estimation of equilibrium point of a TCP connection, not
brought about by “stealing’” bandwidth aggressively from
connections that make use of the current TCP algorithms.

33. The Comparison between Single Connection
Evolution of SACK TCP and SACK TCP,

veno

Figure 3 shows the SACK TCP,,’ s and SACK TCP’s
congestion window evolution versus time with loss prob. of

1% withthe network configuration in Fig. 2(a). The receiver

buffer is set to 64kbytes. Packet size is 1460kbytes. Src
sends bulk data to Dst through gateway. We use IPFW
command to configure dummynet deployed in FreeBSD,
seeing to followings:

Ipfw flush

Ipfw add pipe 1 ip from Dst to any

Ipfw add pipe 2 ip from any to Dst

Ipfw pipe 1 config bw 800kbit/s queue 8 plr 0.01 delay

50ms
/* forward bottleneck bandwidth= 800kbit/s, B~8
packets, loss rate=1% propagation delay on the pipe 1 is
50ms*/

Ipfw pipe 2 config bw 800kbit/s queue 8 plr 0.01 delay

50ms
/* reverse bottleneck bandwidth= 800kbit/s, B,=8
packets, loss rate=1%, propagation delay on the pipe 2 is
50ms */

The throughput of SACK TCPy,,, (38 pkt/s) is 72% higher
than that of SACK @2 pkt/s) at random loss rate of 1%,
which indicates that SACK TCP,,,, can significantly
eliminate performance degradation suffered from the
serious random loss,

g R

“RhFtd ety

o)

Figure 3 Congestion window evolution of (a)SACK
TCP and (b)SACK TCPy,,, over dummynet with loss
rate 1%

Fig. 4 illustrates the sending rate evolution of a TCP
connection running over network model in Figure 2(a)
under the different loss probability ranged from 0.01% to
1%, The buffer size was set to 12packets, the link speed to
1.6Mbit/s, and propagation delay to 100ms, maximum
segment size is 1460bytes. TCP sending rate fades with
increase of loss rate. By comparing Figure 4(a) and 4(b),
SACK TCP suffers more serious degradation from random
packet loss than SACK TCP,,,,, since TCP Veno can roughly
discriminate between congestion loss and random loss to
some extent, and leads SACK TCP,,,, to more carefully
adjust congestion window rather than a fixed abrupt
reduction by a factor of two when packet loss is detected.
However, it is worthwhile to emphasize that under high loss
rates, whichever of TCP, SACK TCP or SACK,,,, is not
able to maintain its self-clocking and experience timeout
frequently. Seeing to Figure 5(a) and 5(b), the performance
of both kinds of TCPs is degraded seriously at loss rate 10
because both of TCP window are halved induced by
frequent timeout actions.

ks bk R .

e

AR B

(b)
Figure 4 the sending rate of () SACK TCP and (b) SACK
TCP,,, in the networks with loss prob. ranged

veno

from 10* to 107",

Furthermore, we investigate the utilization under varied loss
probability, given the fixed multiple connections of SACK
TCP and SACK TCP,,,,, seeing to Fig. 5. In this three-
dimension graph, z-axis is the utilization of TCP
connections; x-axis is loss probability; y-axis is the number
of SACK TCP connections or SACK TCP,,,, connections
running over network model in Fig.2 (b). All the duration of
simulation is 200s after TCP connections simultaneously
start up.

Figure 5 The utilization of SACK TCP and SACK
TCP,,, under varied loss probability given the
fixed multiple connections

1t is observed that the throughput of SACK Veno is always
higher than that of SACK under different random loss
probability. This graph clearly shows that SACK TCP,,,,
has significant improvement over SACK TCP in heavy loss
situation while at low loss rate the throughput of SACK
TCP,,, is roughly similar to that of SACK TCP.
Specifically, SACK TCPy,,, is 72% higher than SACK
when the random loss is near 1% and SACK TCPy,,, is 5%
higher than SACK in random loss rate of 0.01% when there
is only one TCP connection running in Fig. 2(b). On
average, SACK TCP,,,, is 44% higher than SACK. When
the number of the running connections of SACK TCP or
SACK TCP,,,, increases, the throughput difference is
gradually decreased even at the heavy loss range.

The reason is that when there are a lot of concurrent
connections competing the same resources (seeing to Figure
5, when there are more than sixteen connections running
over networks), network will be heavily congested.
Therefore, TCP flows all achieve close to small window
(less three packets) per RTT, and finally lead timeout action
other than fast retransmit to dominate the evolution of TCP
connections when encountering packet loss. However,
SACK TCP,,,, or SACK TCP, which is separately derived
from TCP Veno and TCP SACK, performs the same severe
penalty by halving their window when timeout occurs

s

34. The Compatibility between SACK TCP and
SACK TCP,

veno

For simulation in this subsection, we used the topology in
Figure 2(b) with maximum segment size of lkbytes, n
SACK TCP,,, and n SACK TCP flows share a common
bottleneck, where n = 1, 2,4,8,16. We vary the number of
flows under the given bottleneck bandwidth 1.6Mbps (Fig.
6) with B,=B, =15 and 16Mpbs (Fig.7) together with scaled
the queue size (B, =B,=150). Each column represents the
results of a single simulation, and each data point is the

normalized® mean throughput of a single flow. In this case,
we take mean throughput of each individual flow over 200
seconds.

Observe that at a low loss rate (16Mbps link, or 1.6Mbps -
link with less than 6 flows), as seen in Fig. 6(a) and Fig. 7(a),
SACK TCP,,,, receives the fair share. We have seen
consistently from all of our experiments that at a high loss
rate SACK TCP,,,, flows receive higher bandwidth than
SACK TCP flows. Our explanation is that by employing
mechanism of distinguishing between congestion loss and
random loss, SACK TCP,,,, increase more aggressively
under higher loss than SACK TCP.

CLinkE s, S i R

[

an s O gl dn s AR

fk

:,“34’:&:.1?}3;%{ %hza;;g%{;ut

fi 10 < o 40

ppdberid e

@

i rked A0, el piir s s B

| Himberof Boss i

®)
Figure 6 SACK TCP,,,, competing with SACK TCP with
bottleneck link 1.6Mbps under (a) random loss
rate =0 and (b) random loss rate =0.01.

5 such that a fair share of the link bandwidth is one.

- L g i padkin e e

Nairiher of Fag

®)
Figure 7 SACK TCP,,,, competing with SACK TCP with
bottleneck link 1.6Mbps under (a) random loss
rate =0 and (b) random loss rate =0.01. :

These figures illustrate that SACK TCP,,,, and SACK TCP
co-exist well. SACK TCP s throughput is similar to what
would be if the competing traffic were SACK TCP instead
of SACK TCP,,,,. In other words, SACK TCP,,,, does not
steal bandwidth from SACK TCP when they are competing
in same networks. SACK TCPy,,, is a promising way to

improve the performance of TCP.

In order to further demonstrate that SACK TCP,,,, flows
co-exist well when sharing congested bottlenecks with
SACK TCP traffic, and perform well over a wide range of
network conditions, more experiments are needed. Since
there is only space here for summary of our findings, we
refer the interested reader to {1} for more detailed results
and to the code implemented on NetBSD1.1 and ns.

4, Conclusions

In this paper, we have presented SACK Veno algorithm for
combining TCP Veno congestion control and SACK TCP
retransmission strategy. SACK TCP,,, provides
performance improvements over SACK TCP in random
loss networks, at same time does not cause any adverse
impact when they are competing with SACK TCP in low

loss networks. All of which are contributable to Veno s
distinguishing on the system equilibrium conditions and its
refined AIMD,

Because of the advantage of SACK option, most operating
systems[17] start to employ SACK TCP in the
implementation of TCP for the Internet transportation.
Being different from FACK or RH, which focus on fast
retransmit and fast recovery phase of TCP evolution, SACK
TCP,,,, focuses on refining additive increase and
mulitiplicative decrease algorithm embedded in Reno. We
believe that an effective congestion control algorithm
cooperating with efficient recovery strategy such as SACK

option is able to achieve optimal performance.
5. Acknowledgements

This paper was written in support of [1], the proposal for
improving the congestion control policy of TCP. We would
like to thank Mr. Lui Hung Ngai, Dr. Chan Man Chi and Mr.
Yip Chung Sun for their kind support.

References

[1T Fu ChengPeng, Chung Ling-Chi, Liew Soung-chang
“TCP Veno:. Equilibrium-oriented End-to-end
Congestion Control over Heterogeneous Networks”,
‘http://www.broadband.ie.cuhk.edu.hk

[2] Dong Lin and Robert Morris, "Dynamics of Random
Early Detection", SIGCOMM 97, September 1997.
http://www.acm.org/sigcomm/sigcomm97/program.ht
mi

[3] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow.
“TCP Selective Acknowledgement Options”, Request
for Comments (Standard Track) RFC 2018, Internet
Engineering Task Force, October 1996.

[4] Kevin Fall and Sally Floyd, “Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP”,
Computer Communication Review, July 1996.

[5]1 S. Floyd, T. Henderson, “The NewReno Modification
to TCP's Fast Recovery Algorithni’, Request for
Comments (Experimental) RFC 2582, April 1999.

[6] Lin, D., Kung, HT, “TCP fast recovery strategies:
analysis and improvements”, Proceedings: of
INFOCOM '98, 29 March-2 April 1998.

[7] Miten N. Mehta and Nitin H. Vaidya Delayed
Duplicate-Acknowledgments: A Proposal to Improve
Performance of TCP on Wireless Links. Technical
Report 98-006, Department of Computer Science,
Texas A&M University, February 1998.

[8] Matthew Mathis and Jamshid Mahdavi, “Forward
Acknowledgment: Refining TCP Congestion Control”,
Proceedings of SIGCOMM’ 96, August 1996.

[9] M. Mathis, J. Mahdavi, "TCP Rate-Halving with

Bounding . Parameters" Auvailable from
http://www.psc.edu/networking/papers/FACKnotes/cur
rent.

[10]J. Hoe, “Startup Dynamics of TCP's Congestion
Control and Avoidance Schemes”, Master's Thesis,
MIT, 1995. // 1. Hoe, “Improving the Startup Behavior
of a Congestion Control Scheme for TCP” In ACM
SIGCOMM, August 1996.

[11] L.Rizzo, “Dummynet and Forward Error Correstion”,
In Proc. Freenix 98, 1998.

[12] S. McCanne, S. Floyd, “ns-LBNL Network Simulator”,
Obtain via: http://www-nrg.ee.lbl.gov/ns/

[13] V. Jacobson, R. Braden, “TCP Extensions for Long-
Delay Paths”, RFC 1072, October 1988.

[14] Alilman, M., Paxson, V. and W. Richard Stevens, "TCP
Congestion Control", Request for Comments (Standard
Track) RFC 2581, April 1999.

[15]Lawence S. Brakmo, Sean W.O Malley, and Larry L.
Peterson, “TCP Vegas: New techniques for congestion
detection and avoidance,” Proceedings of ACM
SIGCOMM'’ 94, no.4 pp.24-35, October 1994

[16] FreeBSD handbook
http://www.freebsd.org/handbook/firewalis.html

[17] Thomas Lee, Joseph Davies, “Microsoft Windows
2000 TCP/IP Protocols and Services Technical
Reference”’, Microsoft Press, 1999.

[18] Jacobson, V., “Congestion Avoidance and Control”,
Computer Communication Review, vol. 18, no. 4, pp.
314-329, Aug. 1988.

[19] http://www.iet.unipi.it/~luigi/ip_dummynet/

