LEARNING TO RANK Social Update Streams

Liangjie Hong^{*}, Lehigh University Ron Bekkerman, LinkedIn Corp. Joseph Adler, LinkedIn Corp. Brian D. Davison, Lehigh University

* Part of this work was done when the author was on an internship at LinkedIn Corp.

OVERVIEW

- Social Update Streams
- Overview of LinkedIn
- Social Stream Ranking & Dataset
- Methods
- Experiments
- Conclusion

ONE SLIDE TAKEAWAY

o Task

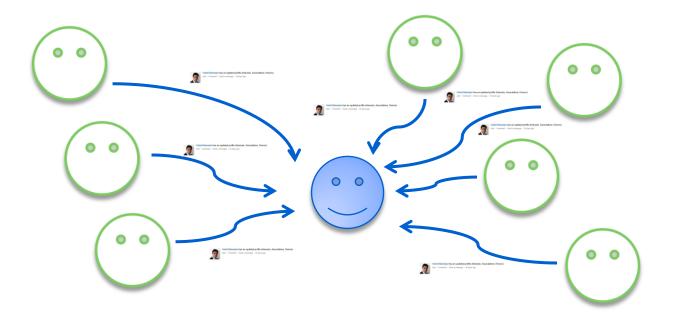
- IMPORTANT
- Improve user engagement by re-ranking social updates
- Main results
 - We demonstrate that recommender systems + preferencebased learning can be used to re-rank social updates.
 - A linear model can achieve 60% of the performance of latent factor models, on average.
 - A tensor factorization model with regression on explicit features works the best.
 - The cold-start problem makes it impossible to model some kinds of interactions.

Problems?

5

Information overload

Information shortage

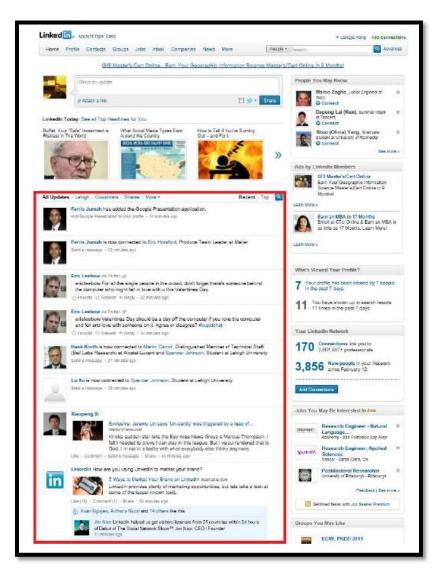


• Founded in Dec. 2002, launched in May 2003

160M¹ users in 200 countries and territories

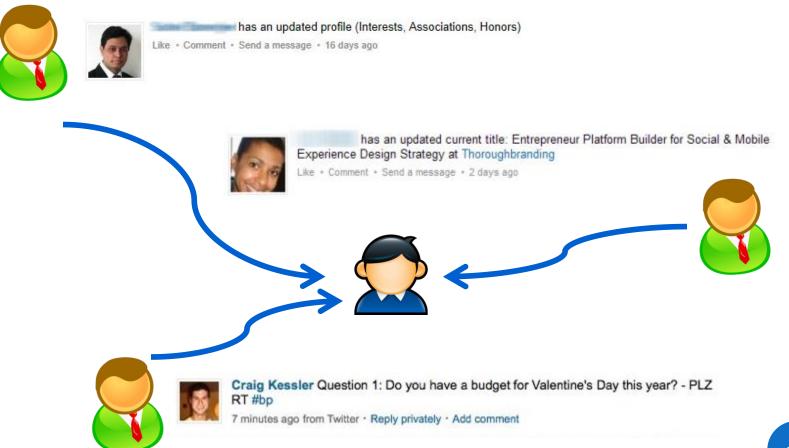
• Biggest social network for professionals

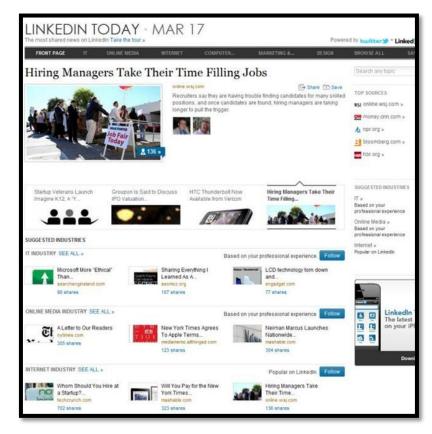
LINKEDIN HOMEPAGE



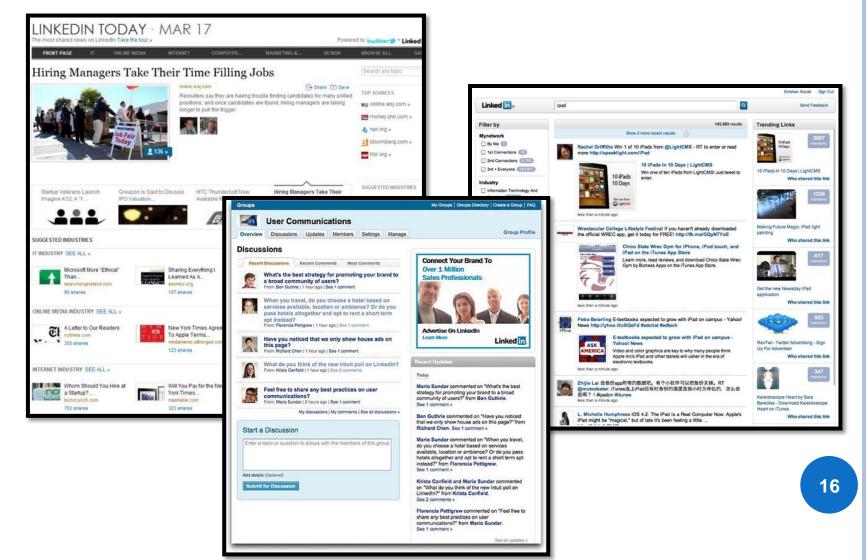
12

LINKEDIN HOMEPAGE





15



PROBLEM DEFINITION

For a given recipient and updates from his/her social connections (senders), we want to re-rank these updates to optimize user engagement.

DATASET

Data Summary	April, 2011	September, 2011
Impressions	3M-4M	10M-20M
Updates	30M-40M	100M-200M
Clicked Updates	3M-4M	10M-20M
Non-clicked Updates	27M-36M	90-180M
Distinct Updates	10M-20M	20M-30M
Recipients	1M-2M	4M-5M
Producers	4M-5M	6M-7M

The numbers are obfuscated for commercial reason.

EVALUATION METRIC

• Precision@k

 $\frac{\text{\# of clicks in top } k \text{ positions}}{k}$

• Average Precision (AP) for ranked list i

 $\sum_{k=1}^{m}$ Precision@ $k \times l_k$

of clicks for ranked list of ranked list i

• l_k : position k is clicked.

• *m*: total number of positions evaluated.

• Mean Average Precision (MAP)

average AP across all ranked lists

- Linear Models
 - Feature Model
 - Bias Model
 - Hybrid Model
- Latent Factor Models
 - Matrix Factorization
 - Tensor Factorization
 - Regression-based Tensor Factorization

- Linear Models
 - Feature Model
 - Bias Model
 - Hybrid Model
- Latent Factor Models
 - Matrix Factorization
 - Tensor Factorization
 - Regression-based Tensor Factorization

From the simplest to the most complex

Linear Models: Feature Model

$$f_i^{(1)} = \boldsymbol{\beta}_{r(i)}^T \boldsymbol{\phi}_{r(i)} + \boldsymbol{\alpha}_{r(i)}^T \boldsymbol{\phi}_i$$

- o utilize explicit features.
- f_i represents the estimation of user's click on update *i*.
- r(i) is the recipient of update *i*.
- ϕ is a feature vector.
- β and α are coefficients.

Linear Models: Latent Bias Model

$$f_i^{(2)} = \mu + b_i + b_{t(i)} + b_{r(i)} + b_{c(i)} + b_{s(i)}$$

- utilize categorical features.
- t(i) is the type of update *i*.
- c(i) is the type of sender of update *i*.
- s(i) is the sender of update *i*.

Linear Models: Latent Bias Model

$$f_i^{(2)} = \mu + b_i + b_{t(i)} + b_{r(i)} + b_{c(i)} + b_{s(i)}$$

- o utilize categorical features.
- t(i) is the type of update *i*.
- c(i) is the type of sender of update *i*.
- s(i) is the sender of update *i*.

Combining Feature and Bias

$$f_i^{(3)} = f_i^{(1)} + f_i^{(2)}$$

Incorporating Temporal Effects

$$f_i^4 = f_i^{(*)} + \zeta \times t_{\text{recency}}$$

Learning through L_2 -regularized logistic regression

$$l_1(y_i, f_i^{(*)}) = \log\left[1 + \exp(-y_i f_i^*)\right]$$

Linear Model Summary

- Simple
- Fast
- Intuitive

Linear Model Summary

- Simple
- Fast
- Intuitive

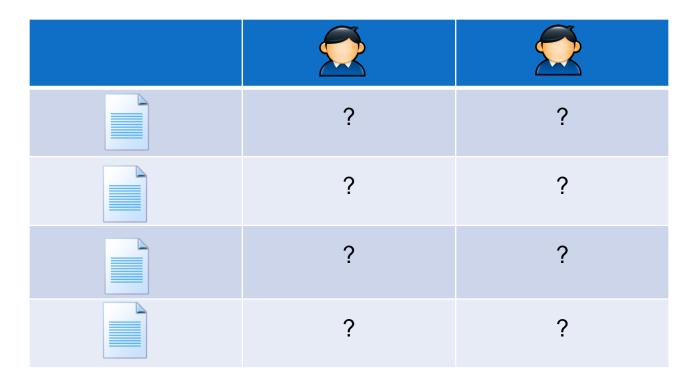
Does not exploit user-user, user-item interactions at all

Latent Factor Model: Matrix Factorization

How to utilize pair-wise interactions?

Latent Factor Model: Matrix Factorization

• user-item interaction?



30

Latent Factor Model: Matrix Factorization

• user-user interaction?

?	?
?	2
1	?
?	4

31

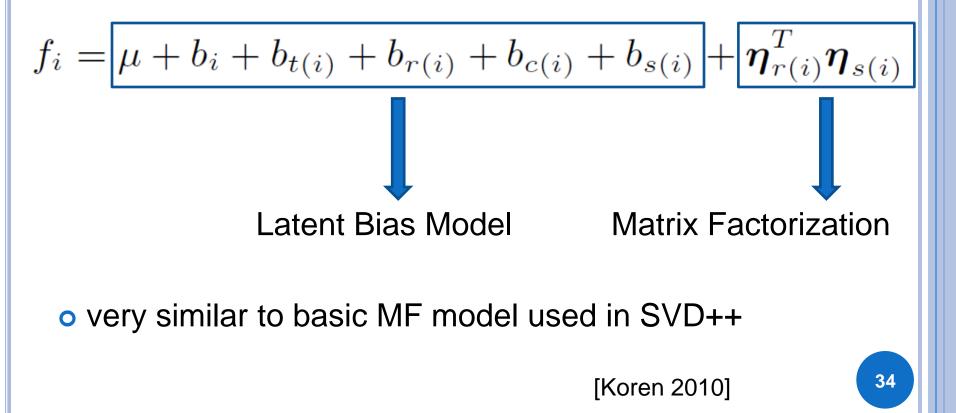
Latent Factor Model: Matrix Factorization

- <u>user-user interaction?</u>
- o user-item interaction?

Latent Factor Model: Matrix Factorization

$f_{i} = \mu + b_{i} + b_{t(i)} + b_{r(i)} + b_{c(i)} + b_{s(i)} + \boldsymbol{\eta}_{r(i)}^{T} \boldsymbol{\eta}_{s(i)}$

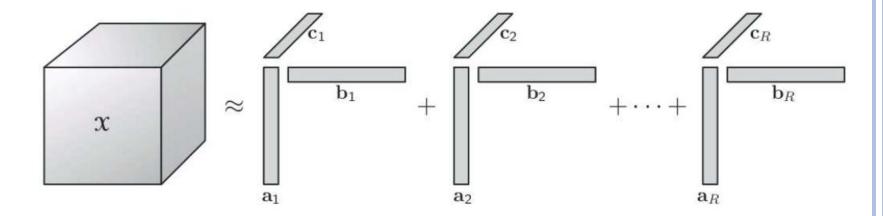
Latent Factor Model: Matrix Factorization



Higher-order interactions?



Latent Factor Model: Tensor Factorization



Recipient-Type-Sender relationshipsCP decomposition

36

Latent Factor Model: Tensor Factorization

$$f_{i} = \underbrace{\mu + b_{i} + b_{t(i)} + b_{r(i)} + b_{c(i)} + b_{s(i)}}_{k} + \underbrace{\sum_{k} \eta_{r(i),k} \eta_{s(i),k} \eta_{t(i),k}}_{k}$$
Latent Bias Model Tensor Factorization

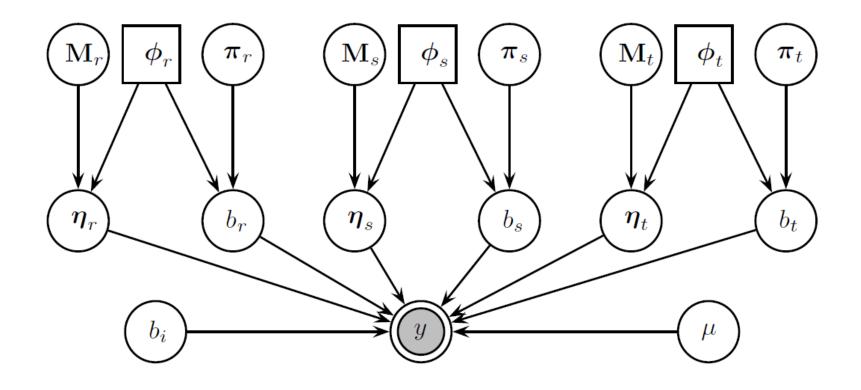
How about other explicit features?

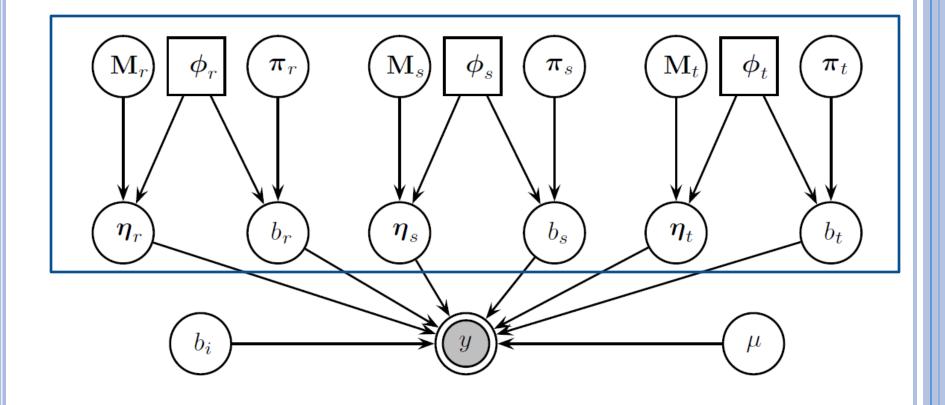
How about other explicit features?

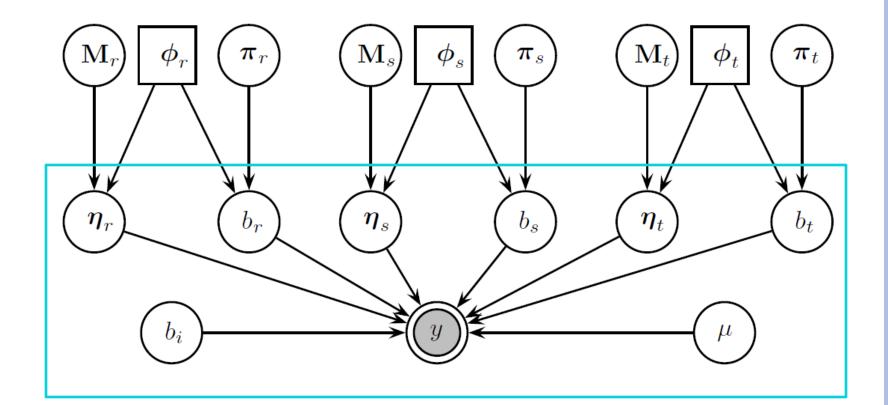
• Regression-based latent factor models

- another layer of regression
- replacing zero-mean with regression-based mean

$$\boldsymbol{\eta}_{x(*)} = \mathbf{M}_x \boldsymbol{\phi}_{x(*)} + \boldsymbol{\epsilon}_x \qquad x \in \{\mathcal{R}, \mathcal{S}, \mathcal{T}\}$$
$$\boldsymbol{b}_{x(*)} = \boldsymbol{\pi}_x^T \boldsymbol{\phi}_{x(*)} + \boldsymbol{\epsilon}_{b_x}$$







Learning procedure
Maximum A Posterior (MAP)
Stochastic Gradient Descent

Going beyond pointwise learningOptimizing Bayesian Personalized Ranking (BPR)

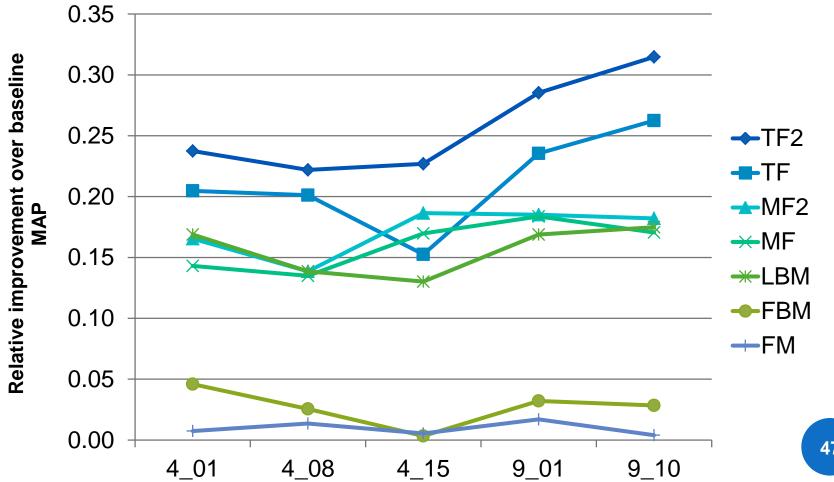
$$\sum_{m \in \mathcal{O}_{i,+}} \sum_{n \in \mathcal{O}_{i,-}} \sigma \Big(f_m - f_n \Big)$$

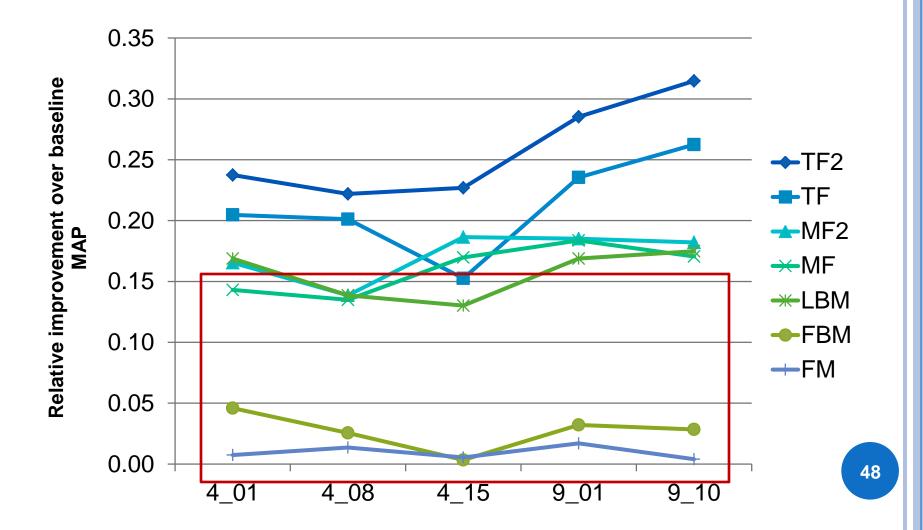
Models

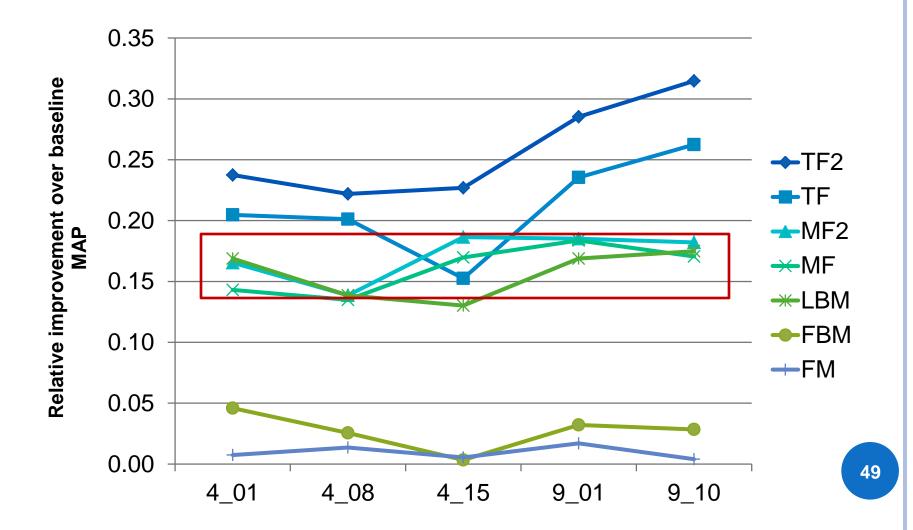
Methods
Baseline (BL)
Feature Model (FM)
Latent Bias Model (LFM)
Feature Bias Model (FBM)
Matrix Factorization (MF)
Tensor Factorization (TF)
Matrix Factorization with Features (MF2)
Tensor Factorization with Features (TF2)

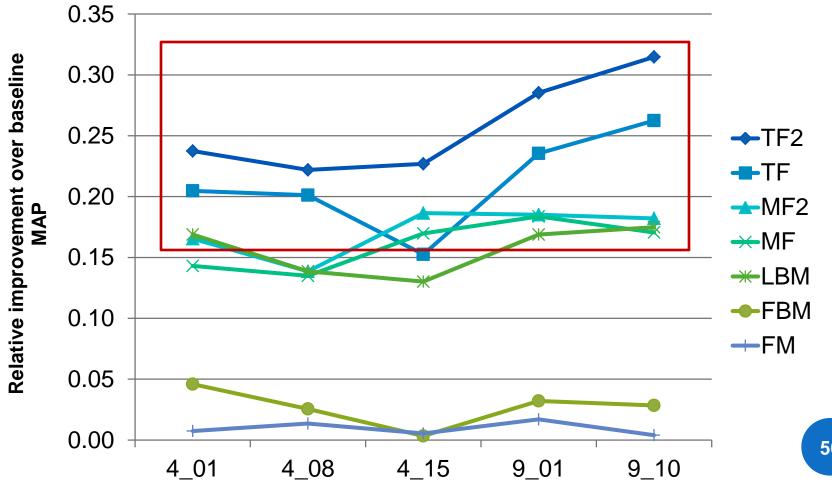
Models

Features	Comments
Seniority	the seniority level of a user
Visiting	how frequently a user visits LinkedIn
PageRank	discretized PageRank scores
Connectedness	how well a user is connected to others
Social strength	social strength between recipient and sender
Professionalism	how professional an update's language is
Recency	the freshness of an update

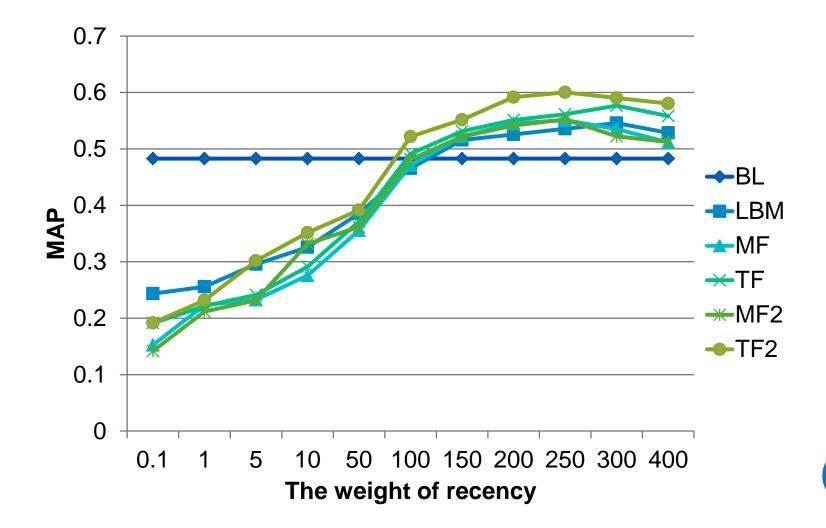








EXPERIMENTS: PARAMETER SENSITIVITY



Example of highly ranked types of updates

Type Description	Bias <i>b</i> _t
Job Seeker Product Update	0.5765
Joining Sub-Group	0.5407
Company News	0.4592
Joining Group	0.2625
Profile Picture Update	0.2516
Initiating Direct Ads Campaign	0.2253
Profile Update	0.1394

CONCLUSIONS

- We demonstrate that recommender systems + preference-based learning can be used to re-rank social updates.
- A linear model can achieve 60% of the performance of latent factor models, on average.
- A tensor factorization model with regression on explicit features works the best.
- The cold-start problem makes it impossible to model some kinds of interactions.

THANK YOU.

Liangjie Hong

PhD candidate WUME Lab Lehigh University lih307@cse.lehigh.edu

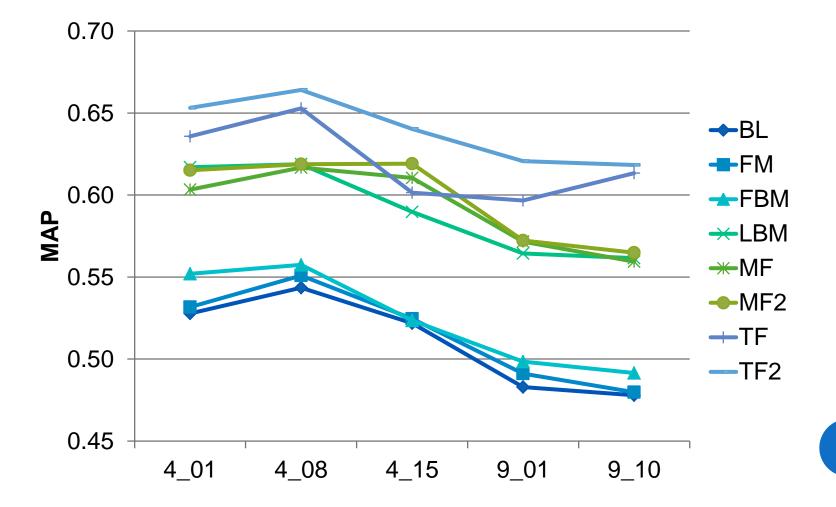
EXPERIMENTS: COMPARISON

Training/Testing	BL	FM	LBM	FBM
$4_01(Tr.)/4_08(Te.)$	0.5278	0.5317	0.5943	0.5520
$4_08(Tr.)/4_15(Te.)$	0.5435	0.5509	0.6040	0.5574
$4_{15}(Tr.)/4_{22}(Te.)$	0.5218	0.5246	0.5823	0.5235
9_01(Tr.)/9_10(Te.)	0.4829	0.4911	0.5457	0.4984
9_10(Tr.)/9_18(Te.)	0.4779	0.4798	0.5432	0.4915
9_18(Tr.)/9_25(Te.)	0.4768	0.4803	0.5329	0.4886

Training/Testing	MF	TF	MF2	TF2
$4_01(Tr.)/4_08(Te.)$	0.5955	0.6258	0.5951	0.6336
$4_{08}(Tr.)/4_{15}(Te.)$	0.6079	0.6228	0.6088	0.6535
4_15(Tr.)/4_22(Te.)	0.5962	0.6014	0.5991	0.6312
9_01(Tr.)/9_10(Te.)	0.5511	0.5766	0.5523	0.6003
9_10(Tr.)/9_18(Te.)	0.5412	0.5833	0.5449	0.6109
9_18(Tr.)/9_25(Te.)	0.5359	0.5799	0.5362	0.5992

The effects of pairwise learning

Training/Testing	LBM	MF	MF2	ΤF	TF2
4_01(Tr.)/4_08(Te.)	0.6169	0.6033	0.6151	0.6358	0.6532
4_08(Tr.)/4_15(Te.)	0.6188	0.6168	0.6188	0.6528	0.6641
4_15(Tr.)/4_22(Te.)	0.5897	0.6104	0.6191	0.6014	0.6402
9_01(Tr.)/9_10(Te.)	0.5644	0.5716	0.5723	0.5966	0.6207
9_10(Tr.)/9_18(Te.)	0.5593	0.5621	0.5607	0.5999	0.6183



Parameter Sensitivity

