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Abstract
Synthesizing textures on arbitrary surfaces is a time consuming process. We have to analyze the surface geometry
and map texture values onto the input surface adaptively. Texture tiling provides an alternative approach by de-
coupling the texture synthesis process into two steps: surface mapping and tile placement. This paper reformulates
the texture tiling mechanism of Wang tiles for arbitrary topological surfaces. Once we created a low distortion
conformal map from the input surface to a quad-based geometry, we can generate a tiling graph over the geo-
metric dual graph of the quad-based geometry, and produce a proper tile orientation on all quad faces so that we
can layout textured tiles on quads and map texture back to the input surface accordingly. Since tile placement is
independent of the input surface geometry, we can perform the tiling process in no time and change texture pattern
on the input surface simply by switching a tile set. No additional computation is needed. As a demonstration, we
experimented texture tiling of Wang tiles on spheres, polycubes, as well as polycube-mapped models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture

1. Introduction

High quality realistic rendering is one of the major goals in
computer graphics. To achieve this goal, however, the data
set size is usually very large due to the requirement of high
level of detail. Regarding this, we not only have to acquire a
large amount of data for the modeling; we also have to pro-
cess the same amount of data during the rendering. Texture
synthesis provides a practical solution for data acquisition.
By acquiring just a small texture sample, texture synthesis
can reproduce the statistical pattern of the texture and wrap
the entire input surface with the given texture pattern.

Though conventional texture synthesis techniques help to
reduce the workload in data acquisition, we still have to deal
with a large amount of data generated from the texture syn-
thesis process. Texture tiling offers an alternative approach
for texturing surfaces. Instead of synthesizing textures di-
rectly on the input surface, texture tiling introduces an in-
termediate surface to decouple the texture synthesis process
into two steps: surface mapping and tile placement. The sur-
face mapping step analyzes the input surface geometry and
constructs a surface map from the input surface to a user-
specified intermediate surface. The tile placement step then
arranges textured tiles on the intermediate surface so that we
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can map tiled texture back to the input surface based on the
surface map constructed. The major advantage of this ap-
proach is that the texturing process becomes independent of
the surface geometry; we only need to synthesize textures on
tiles. Once a tile set is synthesized, we can employ it to tex-
ture different input surfaces; changing of texture pattern on
input surfaces can be done simply by changing the reference
tile set. No additional computation is needed.

According to [CSHD03], to avoid tile rotation and thus
the doubling of edge colors, the use of Wang tiles for non-
periodic texture tilings is restricted to surfaces that map to a
plane. Thus, texture tiling of Wang tiles (or Wang cubes) is
restricted to 2D Euclidean planes (or 3D Euclidean space).
This paper reformulates the mechanism of Wang tiles for
texture tiling on arbitrary topological surfaces. We can avoid
the doubling of edge colors, and tiles are still non-rotatable.
Once we created a surface map from the input surface to an
intermediate surface in the form of a quad-based geometry,
e.g., polycubes [THCM04], we can build a tiling graph over
the geometric dual graph of the geometry so as to set up a
proper tile orientation on quads. As a result, texture can be
arranged on the quads and mapped back to the input surface.

1.1. Related work

Texture Synthesis: Efros et al. [EL99] extended Popat’s
work [PP93] and proposed an exhaustive algorithm to

c© The Eurographics Association 2005.



Chi-Wing Fu & Man-Kang Leung / Texture Tiling on Arbitrary Topological Surfaces using Wang Tiles

Figure 1: The above flowchart outlines our texture tiling approach with a running example BUNNY.

generate novel texel values by window matching. Wei et
al. [WL00] accelerated the synthesis process by using tree-
structured vector quantization. Praun et al. [PFH00] pro-
posed a patch-based method that assembles textures on ar-
bitrary surfaces [Tur01, WL01, SCA02, TZL∗02, MK03].

History of Wang tiles: The theory of Wang tiles can be
traced back to the early 60’ when Wang [Wan61, Wan65]
proposed non-periodic tiling of a plane. The tiling set con-
sists of a set of square tiles, known as the Wang tiles, in such
a way that edges of tiles are color-coded. In order to create a
valid tiling of a plane by Wang tiles, all shared edges should
have matched color. Grunbaum and Shepherd [GS86] exam-
ined this subject in depth and showed how to tile a plane ape-
riodically with a finite set of Wang tiles. Later, Culik [Cul96]
proved that thirteen tiles are enough for such a non-periodic
tiling [Ber66,Kar96], and Moore et al. [MRR02] applied the
tiling group theory to the problem and studied the tilability
of regions with boundary condition.

Tiling in Computer Graphics: Glassner [Gla98] pre-
sented various interesting tiling patterns: regular, semi-
regular, and aperiodic. Neyret [NC99] proposed the symmet-
ric edge constraint to tile regular triangular models by man-
ually created patterns. Stam [Sta97] was the first to apply
non-periodic tiling to texture creation. Wang tiles were used
as texture containers for patterns such as water surface and
caustic. Cohen et al. [CSHD03,SCM02] further investigated
this approach, and invented an automatic method to synthe-
size textures on Wang tiles. Wei [Wei04] devised a Wang
tile arrangement scheme in texture memory so as to correct
texture filtering problem. Decaudin [DN04] applied tiling to
generate and render forest scenes in real-time. Tiles were
used as geometry containers [HDK01]. Stephen [Che04] fur-
ther extended this concept, and employed Wang tiles to con-
tain and generate animated flow patterns.

2. Overview of the approach
Figure 1 outlines the overall approach. The input is a sur-
face model mappable to a quad-based geometry (intermedi-
ate surface). Different methods can be used to create such

a surface map as long as the surface map is conformal and
has low area distortion. Polycube-map [THCM04] is chosen
for the task because of its flexibility and efficiency, however,
since the proposed tiling approach is general for any quad-
based geometry, models such as a quad-based icosahedron
can be employed as an intermediate surface as well. After
making a quad-based geometry, the next steps are sign as-
signment (Section 3), tile assignment (Section 4), and tile
set synthesis. Note that we follow the tile synthesis method
in [CSHD03] (outlined in Figure 2) to generate tile images:
We first apply image quilting [EF01] to enlarge the input
texture sample. Then, for each edge color in the tile set, we
randomly carve a diamond shape out of the enlarged texture,
and merge (dynamic programming [EF01] or graphcut tech-
nique [KSE∗03]) them correspondingly to create each Wang
tile in the tile set (Figure 3(a)). Providing tiles are not rotated
or reflected, matching of edge colors can perfectly restore
the texture pattern originally in the diamond samples.

Figure 2: Making tile images by merging diamond samples.

3. The Sign Assignment Algorithm

3.1. Embedded Signs in Wang Tiles
Looking at the above tile synthesis method, we can see
that there are actually two kinds of edges as related to the
side of the diamond sample an edge contains: left/right and
top/bottom. To differentiate the related side, we label N and
W edges taking the bottom or right half of a diamond sam-
ple as positive, and S and E edges taking the top or left half

c© The Eurographics Association 2005.



Chi-Wing Fu & Man-Kang Leung / Texture Tiling on Arbitrary Topological Surfaces using Wang Tiles

of a diamond sample as negative. Hence, we can explicitly
match (same) colors and (opposite) signs in the tiling. Fig-
ure 3 depicts signs on Wang tiles and signs on a patch of
5× 3 tiles. Note that patches of tiles always have the same
sign arrangement (around the boundaries) as a single tile.

(a) (b)
Figure 3: Signs on (a) Wang tiles and (b) a patch of tiles.

3.2. The Sign Assignment Algorithm

Based on the signed edge concept, given a quad-based ge-
ometry as an intermediate surface, our first task is to assign
signs to edges of the geometry so that we can orientate tiles
on quad faces. To achieve this goal, we first represent the
given quad-based geometry by a geometric dual graph, say
G = (V,E); Faces on the geometry are represented as ver-
tices in the vertex set V while connectivities between faces
are represented as edges in the edge set E. Thus, if we can
transform G into a directed graph, called the tiling graph,
say G′ = (V,E′), such that each edge in G′ carries a certain
direction from one quad to another, we can then determine
signs on shared edges between every pair of quads.

Figure 4: Directed edges in G′ produce signs on quads.

Figure 4 illustrates the formulation. The right edge of
quad P1 (corresponding to v1 ∈ V ) is connected to the left
edge of quad P2 (corresponding to v2 ∈V ).

If a directed edge in G′ goes from v1 to v2, we
assign positive sign to the edge of P1 next to P2
and negative sign to the edge of P2 next to P1.

In this way, if we can assign directions to all edges in G so
that every vertex in G′ has exactly two indegrees and two
outdegrees, we can put signs on edges of quad faces so that
all neighboring quads can match with opposite signs auto-
matically. Furthermore, if we can assign signs to quads in
such a way that the two positive signs (negative signs) asso-
ciated with the outgoing directions (ingoing directions) are
adjacent to each other on the quads, the resultant sign ar-
rangement on quads can always agree with the sign arrange-
ment shown in Figure 3(b). The algorithm on top of the next
column presents the pseudo-code for the task. It takes G as
its input and generates directed edges sequentially.

Algorithm 1 SIGNASSIGNMENT ( V , E )
E′ ← ∅
while E �= ∅ do

/∗ Randomly pick an edge in E as the starting edge ∗/
e0 ← (v0,v1) ← random(E)
E ← E - {e0} and E′ ← E′∪{v0 → v1}

/∗ Pick consecutive edges at the v1 side of e0 ∗/
repeat

e1 ← (v1,v2) ← search(E) such that e1 contains v1
and is opposite to e0 on quad v1

if (e1 �= NULL) then
E ← E - {e1} and E′ ← E′∪{v1 → v2}

end if
e0 ← e1 and v1 ← v2

until e0 = NULL
end while
return E′

An important strategy in the algorithm is that when we
search for e1 in E, we must select the edge opposite to
the previously selected edge with respect to the quad face
denoted by v1. For example, in Figure 4, after selecting
v1 → v2, we must select v2 → v3 so that opposite (left and
right) edges of quad v2 can receive opposite signs. As a
result, when the algorithm finishes, every vertex in G′ can
receive exactly two indegrees and two outdegrees; thus, all
quad faces can have exactly two positive signs and two neg-
ative signs accordingly. Furthermore, within each quad, the
two positive (negative) signs can always locate next to each
other so that the resultant sign arrangement on quads match
precisely the sign arrangement shown in Figure 3(b).

Figure 5 demonstrates the algorithm on the geometric dual
graph of a cube. After picking v2→v5, we go into the repeat
loop of the algorithm and obtain successive edges: v5→v4,
v4→v6, and v6→v2. Since G represents a closed surface, we
can always loop back to the first edge and obtain a cycle in
G. By continuing the algorithm, we obtain two more cycles:
v1→v2→v3→v4→v1 and v1→v6→v3→v5→v1. Then,
based on these directed edges, we can set up signs on quads
and thus the sign layout on the cube (bottom left).

Figure 5: Sign assignment on a cube.
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Figure 6: Examples of Canonical Sets: (a) a plane, (b) a quad-based icosahedron, (c) a tetracube, and (d) a heptacube.

Note that a cube always have three cycles running over
its surface. Indeed, if G represents a closed surface, starting
from any edge in it, we can always loop back to the first
edge based on the traversal rule in the algorithm. This can be
proved by Fleury’s algorithm because G is always Eulerian.

4. Texture Tiling

4.1. Canonical Sets in the Tiling Graph

The sign assignment algorithm not only enables us to ori-
entate Wang tiles on quad faces, it also helps to generalize
the edge coloring scheme [CSHD03] in plane tiling†. In case
of arbitrary surfaces, though we no longer have vertical and
horizontal edges for color assignment, we have cycles and
paths. To deal with the fact that complicated quad-based ge-
ometries could have too many cycles in G′, we first devise
the following definition to facilitate color assignment:

Two paths in G′ are said to be independent if they
do not intersect, i.e., no common vertex.

By this means, we can group independent paths together as
a set, namely the canonical set, and assign them with the
same group of edge colors. Note that using the word path in
the definition above can account for cycles, and thus make
the definition applicable for open surfaces as well.

4.2. Examples of Canonical Sets

Careful readers may notice that given the paths and cycles
generated by the sign assignment algorithm, we can have
many ways of grouping them into canonical sets. In fact,
the problem of finding the minimum number of canonical
sets in an arbitrary tiling graph is an NP-complete problem.

† For non-periodic plane tiling without boundary condition, we as-
sign Kh and Kv colors for horizontal and vertical edges, and create
2KhKv Wang tiles, refer to [CSHD03] for the details.

This can be proved by transforming the problem into the
maximum clique problem in graph theory. However, if we
use polycubes as the quad-based geometry, the advantage is
that because of the orthogonal structure, we only have three
canonical sets regardless of the polycube shape.

Figure 6 exemplifies canonical sets in four different quad-
based geometries: (a) a plane, (b) a quad-based icosahedron
mapped on a sphere, (c) a tetracube, and (d) a heptacube.
Note that a quad-based icosahedron is built by joining pairs
of neighboring triangles in a regular icosahedron. From the
figure, we can observe various interesting facts about paths
and cycles. First, a planar surface has two degenerated paths
and so two canonical sets, however, as a more complicated
structure, the quad-based icosahedron only has one cycle in
its tiling graph. Such a cycle self-intersects with itself ten
times at all vertices in the graph. On the other hand, poly-
cubes demonstrate the orthogonality property. Since cycles
rotating about the same axis in the polycube space never in-
tersect in the tiling graph, we can group them together into
the same canonical set. As a result, we can always end up
producing three canonical sets for any polycube model.

4.3. Creating Wang Tile Sets

Using the canonical sets extracted, we can generalize the
Kh/Kv edge coloring scheme in plane tiling and define Wang
tile sets for arbitrary surfaces. Since paths and cycles belong-
ing to the same canonical set do not intersect in the tiling
graph, we can assign them with same set of colors as if they
are horizontal or vertical edges in the case of plane tiling.

Given C as the total number of canonical sets in
a tiling graph, we define Ki to be the set of colors
assigned to the ith canonical set where i = 1 to C.

Thus, given M as the total number of colors, we can assign
integers ranged [1,M] to each Ki and set up a color assign-
ment. In practice, 2 or 3 colors are sufficient for each Ki.
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Figure 7: Sign assignment and tile arrangement on models (left-to-right): BUNNY, HOLES, ARMADILLO, LAURANA, and a
quad-based icosahedron (mapped on a sphere). The arrows on tiles indicate the associated signs and cycle directions.

After setting up a color assignment using Ki’s, we can start
making Wang tile sets for the tiling process. For each pair of
intersecting canonical sets (including self-intersection), we
can produce one Wang tile set for the pair using the tile syn-
thesis method proposed in [CSHD03]. In this way, to tile a
quad on the quad-based geometry, we can look up the associ-
ated pair of intersecting canonical sets on the quad, and pick
up the corresponding Wang tile set to tile the surface. By re-
peating this tiling process for all the quads on the geometry,
we can layout tiles seamlessly over the entire surface.

Wang Tile sets for Polycube models Creating Wang tile
sets for polycube models is special. Due to the fact that we
always have three canonical sets for polycubes, we only have
three intersections among canonical sets. Therefore, if we fix
all the three Ki’s, we can fix a certain Wang tile set arrange-
ment universal for all polycube models regardless of their
shapes. We thus have the following advantages.

Firstly, the synthesis of tile images becomes independent
of the tiling graph, in addition to the surface geometry; thus,
we can pre-synthesize sets of tile images without referring to
any polycube structure. Secondly, the use of Wang tile sets
on polycube models becomes flexible and dynamic. We can
apply the same set of Wang tiles to different polycube mod-
els without re-synthesizing the tile images or re-tiling the
polycube surface; we can switch texture on polycube mod-
els simply by changing the reference tile set.

5. Implementation and Results

5.1. Implementation of Texture Tiling

Our texture tiling system was implemented and experi-
mented on a Pentium4 1.9GHz PC with 512MB memory.
The pre-processing time for creating tile sets is surprisingly
fast. Table 1 shows the computation time for generating a full
set of Wang tiles for tiling polycube models. The computa-
tion time includes image quilting, extraction and merging of
diamond samples, as well as tile set generation.

Texture Tiling on Polycube models When implementing
texture tiling on polycube models, we can have the follow-
ing optimizations based on the orthogonal structure of poly-
cubes. First, the sign assignment algorithm can be simplified.

Table 1: Average time for creating a full tile set.

Resolution of a Wang tile (pixel unit)
32× 32 64× 64 96× 96

|Ki| = 2 20 seconds 65 seconds 136 seconds
|Ki| = 3 87 seconds 275 seconds 564 seconds

Due to the fact that cycles belonging to the same canonical
set are all perpendicular to a particular axis in the polycube
space, if we fix all cycles to be anti-clockwise (or clockwise)
around their corresponding axis (x-axis, y-axis, or z-axis),
polycube faces facing the same direction will always receive
the same sign arrangement. Thus, we can pre-compute six
sign arrangements, and assign them to polycube faces sim-
ply by checking the direction a polycube face looks at.

Secondly, we do not need to check cycle intersection or
generate canonical sets. We can assign cycles to the three
pre-defined canonical sets simply by checking which axis a
cycle rotates about. Hence, we can fix a certain color as-
signment and so a fixed tile arrangement by fixing some
Ki’s. With these optimizations, the total pre-processing time
needed for sign assignment and texture tiling is only 0.021
seconds for the BUNNY model. However, because of bound-
ary condition in tiling, we need almost all permutations of
edge colors in a Wang tile set, i.e., ∼ |Ki|4 tiles in a Wang
tile set. Given 64× 64 as the resolution of a single colored
tile image (RGB) and |Ki| = 3, the total memory consump-
tion for a Wang tile set is 34×642×3 bytes, which is around
1 MB; hence, a full tile set is manageable and small enough
to be stored in texture memory. Furthermore, to avoid texture
filtering problem for texels near tile boundaries, we arrange
tile images using the tile arrangement scheme in [Wei04].

5.2. Rendering and Tiling results

Figure 8 (in color pages) shows texture tiling results
on different 3D models: BUNNY, HOLES, ARMADILLO,
and LAURANA. The intermediate surfaces in use are
all polycubes, and we employ polycube-maps provided
in [THCM04] as the surface map. Twelve different texture
samples are used in the experiment, and we generate Wang
tile sets using a fixed tile arrangement with |Ki| set to 3. The
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corresponding sign assignment and tile arrangement on the
models are shown in Figure 7. We can clearly see the area
occupied by each tile on the objects, and the corresponding
cycle directions, as indicated by the arrows on tiles.

6. Discussion and Future work

This paper presents a texture tiling approach by reformulat-
ing Wang tiling on arbitrary topological surfaces. By means
of an intermediate surface, texture tiling decouples the tex-
ture synthesis process into the surface mapping step and the
tile placement step. Texture synthesis becomes independent
of the surface geometry. Instead of synthesizing texture on
the object surface, we only need to synthesize texture on
some pre-defined tiles. Once the synthesis process is done,
we do not need to re-synthesize texture for the same texture
sample any more. We can tile the intermediate surface by us-
ing the generated tile set, and map the tiled texture back to
the input surface through the surface map created. Further-
more, since tile sets are independent of the input surface, we
can change textures on the input surface simply by chang-
ing the reference tile set. The same tile set can be applied to
different surfaces. We do not need to re-tile the surface or
re-synthesize tile images for these operations.

In terms of practical value, the texture tiling approach
works especially well with polycubes or surfaces mappable
to polycubes. Due to the orthogonal structure of polycubes,
we can optimize the texture tiling process and pre-synthesize
Wang tile sets with fixed Ki’s. Then, we can apply the same
tile set to different polycube-based models regardless of their
geometric structures. Both the offline texture tiling process
and the run-time rendering process are highly efficient. This
research work opens a new direction in surface modeling.
More than just color textures, we can tile surfaces with shell
textures [CTW∗04], height fields, and even bidirectional tex-
ture functions (BTF) [TZL∗02]. Tiling provides an efficient
way in adding surface details and improving visual quality.
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Figure 8: Texture tiling on different 3D models (from top to bottom): BUNNY, HOLES, ARMADILLO, and LAURANA (data
courtesy of M. Tarini). Polycubes are used as the intermediate surface, and |Ki| = 3 in the tile set generation.
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