
1

A Multi-key Secure Multimedia Proxy Using
Asymmetric Reversible Parametric Sequences:

Theory, Design, and Implementation
Siu F. Yeung, John C. S. Lui, Senior Member, IEEE, David K. Y. Yau, Member, IEEE

Abstract— Because of limited server and network capacities
for streaming applications, multimedia proxies are commonly
used to cache multimedia objects such that, by accessing nearby
proxies, clients can enjoy a smaller start-up latency and receive a
better quality-of-service (QoS) guarantee – for example, reduced
packet loss and delay jitters for their requests. However, the use
of multimedia proxies increases the risk that multimedia data
are exposed to unauthorized access by intruders. In this paper,
we present a framework for implementing a secure multimedia
proxy system for audio and video streaming applications. The
framework employs a notion of asymmetric reversible parametric
sequence (ARPS) to provide the following security properties:
(i) data confidentiality during transmission, (ii) end-to-end data
confidentiality, (iii) data confidentiality against proxy intruders,
and (iv) data confidentiality against member collusion. Our
framework is grounded on a multi-key RSA technique such
that system resilience against attacks is provably strong given
standard computability assumptions. One important feature of
our proposed scheme is that clients only need to perform a
single decryption operation to recover the original data even
though the data packets may have been encrypted by multiple
proxies along the delivery path. We also propose the use of a
set of encryption configuration parameters (ECP) to trade off
proxy encryption throughput against the presentation quality of
audio/video obtained by unauthorized parties. Implementation
results show that we can simultaneously achieve high encryption
throughput and extremely low video quality (in terms of peak
signal-to-noise ratio and visual quality of decoded video frames)
for unauthorized access.

Index Terms— Security, Asymmetric Parametric Sequence
Functions, Multi-Key RSA, Video Proxy

I. INTRODUCTION

Advancements in digital audio/video and compression tech-
nologies have led to the recent wide deployment of continu-
ous media streaming over the Internet. To make the video
streaming service scalable, one can use a multimedia proxy to
perform some form of data caching of popular audio/video
objects, so that clients can access the cached data from
their nearby proxies to reduce startup delay and conserve
bandwidth. One major problem with the multimedia proxy
approach is the risk of revealing the original multimedia
data to unauthorized parties. For example, when the original
multimedia data are sent from a server to a proxy, anyone that
eavesdrops on the communication link between the source and
the proxy can gain access to the audio/video information.

In this paper, we present a proxy encryption framework
having the following security properties:

• The multimedia proxy will only cache encrypted multi-
media data and data decryption will only happen at the

endpoints (i.e, clients). Therefore, the original multimedia
data will not be revealed at any intermediate node.

• The multimedia proxy will perform encryption operations
only. This reduces the computational overhead at the
proxy, and hence allows one to build a more scalable
proxy system.

• Data encryption and decryption operations are based on
well accepted encryption theory that it is computationally
infeasible to extract the original multimedia data.

• Member collusion can be avoided, such that given (1) the
decryption key of client i, (2) the encrypted data of client
j, and (3) possibly all the encryption keys, the intruder
still cannot derive the original multimedia data.

• The proposed approach can be extended to a multi-level
proxy structure. This is an important property since it is
common to have multiple proxies along the communica-
tion path between the sender and a receiver.

The rest of the paper is organized as follows. In Section
II, we present multi-key encryption based on the asymmetric
reversible parametric sequence. We then present a practical
algorithm to implement an asymmetric reversible parametric
sequence to achieve the claimed security properties for a
multimedia proxy server. In Section III, we present our proxy
system architecture and the proxy-server and client-proxy
communication protocols. In Section IV, we report imple-
mentation results that illustrate the achievable encryption data
rate using our technique on a commodity Pentium machine,
and give quantitative and qualitative analysis of the encrypted
audio/video quality. Related work on multimedia proxies is
presented in Section V. Section VI concludes.

II. MULTI-KEY ENCRYPTION THEORY

In this section, we state the theory behind the design of
a multi-key secure video proxy. The main theory is based
on the reversible parametric sequence (RPS) [7]. In [7],
Molva et al. use RPS to perform group key management for
multicast security. In this paper, we will explore the efficient
use of RPS on bulk multimedia data. We will discuss how
to use the idea of RPS to construct a framework for secure
video/audio proxy streaming. In the following, we first present
the formal definition of RPS and its utilities. We then present
an implementation of RPS using the multi-key RSA technique.

A. Reversible Parametric Sequence (RPS)

Let f : IN2 → IN be a function which has the following
property: if Y = f(X, e), it is computationally infeasible to

2

find e given that we know X and Y .
Assume that we have a finite sequence {e0, e1, · · · , eN}

of N + 1 elements, where the elements are not necessarily
unique. Define a finite data transformation sequence D =
{D−1, D0, ..., DN} based on the function f and the finite
sequence {ei}0≤i≤N such that

D−1 = original data

Di = f(Di−1, ei) for 0 ≤ i ≤ N .

We have the following definitions.
Definition 1: D is a reversible parametric sequence of the
function f , denoted as RPSf , if for all (X, Y) ∈ IN2 and
−1 ≤ i < j ≤ N , there exists a computable function Ωi,j

such that Di = Ωi,j(Dj), for −1 ≤ i < j ≤ N .
Definition 2: An RPSf is called a symmetric reversible para-
metric sequence of f , denoted as SRPSf , if the function Ωi,j

can be computed from the knowledge of the sub-sequence
{ei+1, · · · , ej}.
Definition 3: An RPSf is called an asymmetric reversible
parametric sequence of f , denoted as ARPSf , if it is com-
putationally infeasible to determine the function Ωi,j based on
the knowledge of the sub-sequence {ei+1, · · · , ej}.

D0
e0

D1 DN
e1 e2 eN...

D2

D*0 D*1 D*N
e*1 e*2 e*N...

D*2

D-1

Fig. 1. A graphical representation of two RPSf sequences with Di 6= D∗

i .

To illustrate, we use a graph to represent a reversible paramet-
ric sequence RPSf . Figure 1 illustrates two RPSf sequences.
In the figure, the original data D−1 are transformed to D0

using D0 = f(D−1, e0). If ei 6= e∗i , then the intermediate data
Di will not be equal to D∗

i , for 1 ≤ i ≤ N . For a symmetric
reversible parametric sequence SRPSf , one can compute the
original data D−1 if given the data Dj (or D∗

j) and the
sequence {e0, · · · , ej} (or {e∗0, · · · , e∗j}), for 0 ≤ j ≤ N . In
other words, given the information {e0, . . . , ej} and Dj , one
can construct a decryption function Ω−1,j so as to obtain the
original data D−1. For an asymmetric reversible parametric
sequence ARPSf , one cannot derive the original data D−1

even if given the data Dj (or D∗
j) and the knowledge of the

sequence {e0, · · · , ej} (or {e∗1, · · · , e∗j}), for 0 ≤ j ≤ N .
One can use the properties of an asymmetric reversible para-

metric sequence ARPSf to implement a secure multimedia
proxy. To illustrate, consider a graphical representation of an
ARPSf sequence in Figure 2. The multimedia proxy can
request D0, the encrypted version of the original data D−1,
from the source. Based on an encrypted key e0, the source will
transmit the encrypted data D0 to the proxy, and the encrypted
data D0 will be cached at the proxy’s local storage. When
a client i requests the data, the proxy will further encrypt
the encrypted data D0 using the encryption key ei and send
the resulting encrypted data Di to client i. Client i, upon
receiving Di, can decrypt the data to obtain the original data

D0

e0

e1

e2

eN

D1

D2

DN

.
.
.
.
.

Source

Video Proxy

client

client

client

.
.
.
.
.

D-1

Fig. 2. A graphical representation of an ARPSf sequence for the secure
multimedia proxy.

D−1, if client i is given a decryption function Ω−1,i (this is a
property of reversible parametric sequences). In addition, when
the encryption is carried out using an asymmetric reversible
parametric sequence, then even when an entity holds on to all
the encryption keys ei for 0 ≤ i ≤ N , it still cannot decrypt
any of the encrypted data Di being cached, for 0 ≤ i ≤ N ,
in order to obtain the original data D−1.

In general, one can use an asymmetric reversible parametric
sequence ARPSf to implement a secure multimedia proxy
which has the following properties: (1) data confidentiality
during transmission, (2) end-to-end data confidentiality, (3)
data confidentiality against proxy intruders, and (4) data
confidentiality against member collusion. Let us elaborate on
the last point. If the encryption process is SRPSf , member
collusion is possible when a client j gains access to

1) ei and ej (where i, j > 0),
2) the encrypted data Di, and
3) the decrypting function Ω−1,j .

In this case, client j (i.e., the intruder) can access the original
data D−1. For example,

1) Given ei, the intruder can obtain Ω0,i and thus obtain
D0 = Ω0,i(Di).

2) Given the knowledge of ej and D0, the intruder can
obtain Dj by Dj = f(D0, ej).

3) Since the intruder knows the decryption function Ω0,j ,
the original data D−1 are revealed by
D−1 = Ω−1,j(Dj).

However, if the encryption process is an ARPSf , the intruder
cannot reveal the original data D−1 because the function Ω0,i

is computationally infeasible to determine.

B. Implementation of ARPSf

To realize an ARPS function, one needs a practical and
efficient algorithm. To this end, we present an extension of
single-key RSA [10] to a multi-key RSA technique.

Consider the source as an example. The source needs to
generate two large prime numbers, say p and q. In addition, it
needs to generate a sequence of encryption keys {ei}0≤i≤N

such that

1 < ei < φ and (1)

gcd(ei, φ) = 1 for 0 ≤ i ≤ N . (2)

3

Moreover, one needs to generate a corresponding sequence of
decryption keys {di}. Each decryption key di has to satisfy
the following two criteria:

1 < di < φ and (3)

(e0 · ei) · di = 1 (mod φ). (4)

Efficient computation of these decryption keys di can be easily
achieved using the Extended Euclidean Algorithm [9]. The
source will send n and the encryption keys ei over a secure
channel to the multimedia proxy, while it will encrypt the
original data D−1 using e0 and generate a cipher D0 using

D0 = (D−1)
e0mod n. (5)

The encrypted data D0 can be sent over an insecure channel.
Upon receiving the cipher D0, the proxy can store the en-
crypted data in its local storage. Whenever a client i wishes
to access the data from the proxy, the proxy can retrieve the
encrypted data D0 from its local storage, and encrypt D0 using
the encryption key ei by

Di = (D0)
ei mod n. (6)

The source (or the proxy) can send the decryption key di and
n to client i over a secure channel. The encrypted data Di, on
the other hand, can be sent over an insecure channel. Client
i, upon receiving the encrypted data Di, can decrypt the data
using di by:

D−1 = Ω−1,i(Di) = (Di)
dimod n. (7)

Theorem 1: The above proxy encryption framework is a
reversible parametric sequence.
Proof: To show that the above framework is a reversible
parametric sequence, we need to show that given Di, for i ≥ 1,
we can extract D0 and D−1. Without loss of generality, let us
consider D1 as the given input. The generation of D1 is via

D1 = (D0)
e1mod n. = [(D−1)

e0mod n]
e1 mod n.

= (D−1)
e0·e1mod n.

Let the extracted result be R and equal to

R = (D1)
d1mod n = [(D−1)

e0·e1mod n]
d1 mod n

= (D−1)
e0·e1·d1mod n.

Since the encryption key e0 and the decryption key d1 are
generated such that e0 ·e1 ·d1 = k · (p−1) · (q−1)+1, where
k is an integer, we can rewrite the extracted result R as

R =
[

(D−1)(D−1)
k(p−1)(q−1)

]

mod n.

Based on Euler’s theorem [9] that Xp−1 = 1 mod n, we have
the following expressions:

R = (D−1)(D−1)
k(p−1)(q−1) = (D−1)1

k(q−1) = D−1mod p,

R = (D−1)(D−1)
k(p−1)(q−1) = (D−1)1

k(p−1) = D−1mod q.

Because p and q are primes, based on the Chinese Remainder
Theorem [9], we have

R = (D−1)(D−1)
k(p−1)(q−1) = D−1(mod n) = D−1.

Therefore, given D1, one can extract D−1 given the
knowledge of d1. We can apply a similar procedure such that
given D0, one can extract D1 with another corresponding
decryption key. In summary, given Di, one can extract D0

and the original data D−1 if the corresponding decryption
key is known.

Theorem 2: The above proxy encryption procedure is an
asymmetric reversible parametric sequence.
Proof: To show that the above framework is an asymmetric
reversible parametric sequence, all we need to show is that
given the encrypted data Di, for i ≥ 0, it is impossible to
obtain the original data D−1, even if one has the knowledge
of {e0, e1, eN} and n. Since we use RSA encryption, finding
the decryption keys in Equations (3)–(4) amounts to finding
the two prime factors p and q, which is well accepted to be
computationally infeasible if p and q are large and properly
chosen. Therefore, it is computationally infeasible to find
Ωi,j .

III. PROXY ARCHITECTURE AND PROTOCOLS

In this section, we describe in detail our server-proxy-
client architecture. The multimedia server S, the multimedia
proxy P , and various clients have been implemented in the
C language on a Linux platform. Security features such as
key generation, encryption, and decryption are implemented
using the GNU Multiply Precision (GMP 4.0) library, which
provides arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. Note that GMP 4.0
provides one of the fastest possible arithmetic libraries for
applications that need higher precision than what is directly
supported by the basic C types.

A. Operations to Request and Cache Data from the Server

Let us first consider the case wherein the multimedia data
are not yet cached at the proxy. Figure 3a illustrates the
operations between the multimedia server S and the proxy P ,
and the operations between the proxy P and the client i for
requesting and caching the multimedia data. These operations
are:
(1) Initiate connection: The client i sends a multimedia
request and a certificate of its identity to the proxy P . The
proxy P forwards the request to the multimedia server S.
[Client i’s certificate is eCerti = (ui, {ui}vi

), where ui

and vi are i’s public and private keys, respectively, for RSA
cryptography, and {D}k denotes information D encrypted
with key k.] The multimedia server keeps a record of the
public key for each of its authenticated clients. To verify
the identity of the requesting client, the multimedia server S
decrypts {ui}vi

using vi as the decryption key. The request
will only be granted if the decrypted message equals ui and
matches the public key of i in the server’s authorization list.
This relies on the fact that only the genuine client i has the
secret key vi. Hence, only client i can generate the {ui}vi

which, when decrypted using vi, will produce the same ui as
the copy stored by the server. A random server challenge will

4

Server Proxy Client i

authentication
and key

generation

Data
encryption

Data
decryption

Data
re-encryption

Retrieve di

Request

Retrieve eiAck(n,{ei}P,{di}C)

reques
t(eCer

ti)
reques

t(eCer
ti)

Ack(n,{di}C)

Di={D0}ei

D0={D-1}e0

(a)
Server Proxy Client j

authentication
and key

generation

Data
encryption

Data
decryption

Data
re-encryption

Retrieve dj

Request
reques

t(eCer
ti)

reques
t(eCer

ti)

Ack(n,{ej}P,{dj}C)
Ack(n,{dj}C)

Retrieve ej

Dj={D0}ej

(b)

Fig. 3. Operations between the source video server S and the proxy P , and
operations between the proxy P and the client i, for (a) non-cached video
object and (b) cached video object. Note that P is the public key of the
proxy and C is the public key of the client, and {D}k denotes information
D encrypted with key k.

then be performed. The challenge eliminates the possibility
of a fake client using another client’s certificate obtained by
eavesdropping. The server generates a random message, sends
it to proxy P , which in turn sends it to client i. Client i
encrypts the message using its own private key and replies
to proxy P . Proxy P also encrypts the message using its
own private key, and includes the encrypted message in its
reply. Finally, server S decrypts the challenge-replies using the
public keys of client i and proxy P , respectively. A request will
only be granted if the decrypted messages match the challenge
message. If the authentication is successful, then the server S
will proceed to the key generation operation.
(2) Key generation: The server randomly generates two large
prime numbers p and q, and computes the modulus n = p · q,
φ = (p−1) · (q−1), the encryption key e0, re-encryption key
ei, and the corresponding decryption key di via Equations (1)
and (2)1. The server S saves the parameters φ, e0 and n with
a unique identifier ID. It then replies back to the proxy P
with (1) the re-encryption key ei, which is encrypted using
the proxy’s public key, and (2) the corresponding decryption
key di, which is encrypted using the client i’s public key. Note

1In practice, the server S can pre-generate a set of encryption keys {ei}
and decryption keys {di} per multimedia object for each of its authorized
clients.

that the proxy P cannot extract the decryption key di, but only
the client i can perform the decryption to extract di. And since
the re-encryption key ei is encrypted using the proxy’s public
key, no one can reveal it by eavesdropping on the channel
between the server and the proxy. Collusion attacks can thus
be avoided. Consider two colluding members knowing the re-
encryption keys ei and ej (by eavesdropping) and decryption
keys di and dj , it can be shown that they can compute the
secret parameter φ efficiently [13]. Once the secret parameter
φ is revealed, the colluding members can derive the proxy’s
decryption key or any other client’s decryption key. Hence,
the re-encryption key ei must be encrypted such that only the
proxy can retrieve it.
(3) Decryption key retrieval: The proxy P replies with an
acknowledgment back to the client i including the encrypted
di. The client i decrypts using its own private key to retrieve
the decryption key di.
(4) Data encryption and streaming: The multimedia server
S uses the encryption key e0 and n to encrypt the multimedia
data packets. The degree of encryption is based on the encryp-
tion configuration parameters (ECP) which will be described
in Section III-C. The multimedia server S then streams the
encrypted data packets to the proxy P via an ordinary and
possibly insecure channel. Upon receiving the encrypted data
packets, the proxy P caches the data without decryption
or modification. (Note that the data packets may require
proper formatting, such as padding, before the encryption. For
simplicity, these issues are omitted in this paper. Readers may
refer to [5] or [1] for more information.
(5) Data re-encryption and streaming: The proxy P uses the
re-encryption key ei and n to re-encrypt the already encrypted
multimedia data packets in the cache. The encryption is based
on the same ECP setting used by server S. The proxy P then
streams the re-encrypted data packets to the client i via an
ordinary and possibly insecure channel. Upon receiving the
re-encrypted data packets, the client i can use the decryption
key di to decrypt the received multimedia data packets.

B. Operations to Request Cached Data from the Proxy

We consider the case wherein the multimedia data are
already cached at the proxy. Figure 3b illustrates the operations
between the multimedia server S and the proxy P , and the
operations between the proxy P and the client j for requesting
multimedia data that are already cached by the proxy P . These
operations are:
(1) Initiate connection: The client j sends a request to the
proxy P with its certificate. The proxy P forwards the request
to the server S with a specified unique identifier ID. The
multimedia server S needs to authenticate that the request is
indeed from the client j. If the authentication succeeds, the
server S will go on to the key generation operation.
(2) Key generation: The server S randomly generates a re-
encryption key ej and a corresponding decryption key dj based
on the φ, n and e0 identified by ID. It then sends back to the
proxy P (i) the re-encryption key ej , which is encrypted using
the proxy’s public key, and (ii) the decryption key dj , which
is encrypted using the client j’s public key. Again, the proxy
P cannot extract the decryption key dj .

5

(3) Decryption key retrieval: The proxy P replies back to
the client j with the encrypted decryption key. The client j
decrypts using its own private key to retrieve the decryption
key dj .
(4) Data re-encryption and streaming: The proxy P uses
the re-encryption key ej and n to re-encrypt the cached
multimedia data packets based on the previous ECP setting. It
then streams the re-encrypted data packets to the client j via
an ordinary and possibly insecure channel. Upon receiving the
re-encrypted data packets, the client j can use the decryption
key dj to decrypt the received multimedia data packets.

C. Encryption Configuration Parameters (ECP)

Different from text documents, multimedia objects do not
require full encryption for proper protection. For example, an
MPEG-1 stream consists of three types of frames, namely I
frames (interpolative), P frames (predictive), and B frames
(bidirectionally predictive). An I frame is typically inserted
for every 12 to 15 frames, and operations such as playback,
forward, and rewind can only start at I frames. Thus, encryp-
tion on all the I frames would provide enough protection but
only require about 0.8% of the encryption operations compared
to full encryption. Although some I-blocks in the P frames
and B frames may still be visible, our goal is to protect the
video, when viewed continuously, with maximum encryption
efficiency. Protection of some individual video frames may not
be guaranteed. Privacy problems may also arise with partial
encryption. For example, it may be possible to determine
which client is viewing which movie or if two clients are
viewing the same movie. We only address the security of the
video contents in this paper.

Qualitatively, the degree of partial encryption affects the
“choppiness” of the encrypted video playback without a proper
decryption key. In applications such as video-on-demand and
online-lectures, system throughput or performance is highly
important, and encryption security can be viewed as a trade-
off against performance. In this paper, we propose to use
a general encryption method that can reduce the encryption
overhead at the server/proxy and the decryption overhead at
the end clients, for a variety of commonly used video encoding
formats (such as MPEG-1, MPEG-2, MP3 and Quicktime). We
exploit the observation that, for video encoding that accounts
for inter-frame data dependencies, a video stream only needs
to be encrypted up to a certain percentage for decoding to be
practically useless by an unauthorized viewer – i.e., either the
video cannot be decoded, or the quality of the decoded video
will be so poor that it is unacceptable for video playback. In
general, ECP specifies a packet based encryption pattern given
by four adjustable parameters, namely

• Spkt, the expected number of bytes in a data packet.
• Ei – the multimedia stream is to be partitioned into

successive groups each having Ei consecutive packets,
and a single packet encryption operation is to be applied
to the first packet of each group.

• Ep – for the packet in which the packet encryption
operation is to be applied, Ep specifies the fraction of
data within the packet that should be encrypted.

• Eb – for the packet in which the encryption operation is to
be applied, Eb specifies the number of encryption blocks
that should be evenly distributed within that encryption
packet.

packet 0
(1400KB)

....

encrypted
blocks

packet 1
(1400KB)

packet 2
(1400KB)

packet 3
(1400KB)

packet 4
(1400KB)

encrypted
sub-blocks

Fig. 4. ECP with Spkt = 1400, Ei = 2, Ep = 0.5, and Eb = 4.

In our current implementation, we use UDP as the transport
protocol for video data transmission. The entire multimedia
stream will be divided into UDP packets with each packet
having a payload size of Spkt = 1400 bytes. For every Ei ≥ 1
consecutive UDP packets, we will select the last UDP packet
for encryption. For the encrypted packet, it will be further
divided into sub-blocks and only some of the sub-blocks will
be encrypted. In our current implementation, the sub-block
size is chosen to be 4 bytes less than the RSA key length
(e.g., 60 bytes for 512-bit RSA) and the encryption will be
based on this sub-block unit size. The total length of data to
be encrypted within a packet is equal to Ep×Spkt rounded up
to the nearest multiple of the sub-block size. The encrypted
sub-blocks will then be regrouped as Eb consecutive blocks
of data, and the blocks will be distributed evenly across the
whole packet. Once an ECP configuration is selected for a
particular video object, the same configuration will be used
by the server, the proxy, and the end client in their encryption
or decryption operations.

Figure 4 illustrates a possible set of encryption configuration
parameters for a multimedia streaming application, where the
packet size Spkt is equal to 1400 bytes, Ei = 2 (i.e., out
of every two consecutive packets, we select the last one for
encryption), the fraction Ep is equal to 0.5, and Eb = 4
blocks are to be evenly distributed across an encrypted packet.
The four configuration parameters allow us to achieve varying
degrees of encryption and levels of audio/video quality for
the decoded stream. Different video objects can have different
characteristics, and thus require different sets of encryption
configuration parameters. In our current research, the choice
of ECP is by means of experiments. Using our software
library, one may try to encrypt with different ECP values and
determine a suitable one by observing the visual quality of the
encrypted video. Moreover, to prevent any possible attack on
multiple streams of the same video object using different ECP
values, the ECP configuration should be fixed for any one
video object. In Section IV, we illustrate the computational
and quality tradeoffs implied by these parameters.

IV. IMPLEMENTATION RESULTS

We report experimental results for video streaming using
our architecture. We quantify the encryption throughput, the
peak signal-to-noise ratio (PSNR), and the related visual

6

quality of video. In our implementation, we use the ECP in
Section III-C to control the amount of encryption applied to
blocks of audio/video data. The experimental results are taken
on an 800 MHz Pentium-III Linux machine with 256 MBytes
of main memory. For the experiments, the input data are a set
of video sequences, each being an 18 MByte MPEG-1 or a
4.47 MByte Quicktime stream. Because of the lack of space,
we refer the reader to [15] for other experiments using MPEG-
1/Quicktime video and MP3 audio. Also, please refer to
http://www.cse.cuhk.edu.hk/∼cslui/ANSRlab/software/SML/index.html

for the Secure Multmedia Library, which is a building
block for implementing ARPS-enabled secure multimedia
streaming.
Experiment 1 (Encryption Throughput Analysis): In this
experiment, we consider the effect of the parameters Ep

and Ei on the encryption throughput, which is denoted as
ρ (in MBytes/s). Assume that we are encrypting an MPEG-
1 video stream with an average bit rate of 1.5 Mb/s. Given
the assumption, the average number of concurrent MPEG-1
streams that a proxy can support is M , where M = ρ/(1.5/8).
Table I illustrates the encryption throughput ρ and the average
number of concurrent MPEG-1 streams (M) under different
values of Ep and Ei, when Eb = 1. As we can observe
from Table I, if we encrypt 25.7% of each video packet (i.e.,
Ei = 1), the encryption throughput achieved is only around
2.13 MBytes/s, which implies that we can only concurrently
handle about 11 MPEG-1 streams. On the other hand, if we
encrypt one video packet for every 10 packets (i.e., Ei = 10)
and for each video packet encrypted, we encrypt only 4.3%
of its data (i.e., Ep = 0.043), then the encryption throughput
improves to 11.82 MBytes/s, which implies that we can
concurrently support about 63 MPEG-1 streams. In general,
the smaller the value of Ep and the higher the value of Ei,
the higher the achieved encryption throughput, and the higher
the number of concurrent video streams that can be supported.
Table II illustrates the effect of Ei and Eb under two different
encryption percentage parameters Ep. As we can observe, the
parameter Eb has little effect on the encryption throughput.
Experiment 2 (Peak Signal-to-Noise Analysis): In this sec-
tion, we consider the effect on the video quality as we vary
the parameters Ei, Ep, and Eb. One way to quantitatively
evaluate the video quality is by the peak signal-to-noise ratio.
In general, for a frame size of m×n with a total of l frames and
3 color channels (i.e., red, green, and blue, each represented by
an 8-bit number), Note that a lower value of PSNR indicates
that the encrypted stream is more distorted from the original
video stream. Table III and Table IV illustrate the PSNR for
different values of Ep and Ei with Eb = 1 for MPEG-1 and
Quicktime video, respectively. Note that even when we encrypt
one out of 10 video packets, and for a selected packet, we only
encrypt 4.3% of the data, we can still obtain a very low value
of PSNR. This experiment indicates that (1) we can apply this
encryption technique for different video formats (e.g., MPEG1
or Quicktime) and, (2) we only need to encrypt a small fraction
of the video data to achieve both high encryption throughput
and high video distortion.

Experiment 3 (Comparison of visual quality of encrypted

(a) Original frames

(b) Encrypted frames: Ei = 10, Ep = 0.043,Eb = 1.

(c) Encrypted frames: Ei = 5, Ep = 0.043,Eb = 1.

(d) Encrypted frames: Ei = 2, Ep = 0.043,Eb = 1.

(e) Encrypted frames: Ei = 1, Ep = 0.043,Eb = 1.

(f) Encrypted frames:Ei = 1, Ep = 0.043,Eb = 1

(encrypted data are filled with zeros.)

(g) Encrypted frames: Ei = 1, Ep = 0.043, Eb = 1

(encrypted data are being dropped.)

Fig. 5. Quality of five consecutive MPEG-1 video frames under different
ECP parameters.

video): In this experiment, we consider the effect of the ECP
parameters Ei, Ep and Eb on the visual quality of the video.
Figure 5 illustrates the quality of five consecutive MPEG-1
video frames. Figure 5(a) is the original video frames that a
client can decode given access to the decryption key. Figures
5(b)–(e) are the corresponding five video frames when decoded
without the decryption key. Note that the video quality is the
worst when the ECP parameters are Ei = 1 and Ep = 0.043,
which corresponds to encrypting 4.3% of the data for every
video packet. Note that when we select Ei = 10, Ep = 0.043,
and Eb = 1 (this corresponds to Figure 5(e)), the visual quality
of the video is still unacceptable for viewing. This shows that
we can achieve high encryption throughput (i.e., around 11.82

7

Ep = 0.257 Ep = 0.214 Ep = 0.171 Ep = 0.120 Ep = 0.086 Ep = 0.043

ρ M ρ M ρ M ρ M ρ M ρ M

Ei = 1 2.13 11.36 2.53 13.50 3.11 16.60 4.05 21.60 5.8 30.90 10.10 53.90
Ei = 2 4.10 21.87 4.84 25.81 5.91 32.52 7.54 40.20 10.16 54.19 11.77 62.77
Ei = 5 9.06 48.32 10.17 54.24 11.56 61.65 11.64 62.08 11.76 62.72 11.78 62.82
Ei = 10 11.64 62.08 10.70 57.10 11.70 62.40 11.73 62.56 11.73 62.56 11.82 63.04

TABLE I

EFFECT OF Ep AND Ei ON THE ENCRYPTION THROUGHPUT ρ (IN UNIT OF MBYTES/S) AND THE AVERAGE NUMBER OF MPEG-1
STREAMS M WHEN Eb = 1.

encryption throughput ρ (MB/sec)
Ei = 1 Ei = 2 Ei = 5 Ei = 10

Eb = 1 2.13 4.10 9.06 11.64
Eb = 2 2.12 4.09 9.01 11.66
Eb = 3 2.12 4.09 9.07 11.65

encryption throughput ρ (MB/sec)
Ei = 1 Ei = 2 Ei = 5 Ei = 10

Eb = 1 3.11 5.91 11.56 11.70
Eb = 2 3.11 5.89 11.67 11.72
Eb = 4 3.11 5.89 11.60 11.72

(a) Ep = 0.257 (b) Ep = 0.171

TABLE II

EFFECT OF Ei AND Eb ON THE ENCRYPTION THROUGHPUT ρ (IN MBYTES/S) FOR (A) Ep = 0.257 AND (B) Ep = 0.171.

peak signal-to-noise ratio (PSNR)
Ep = 0.257 Ep = 0.214 Ep = 0.171 Ep = 0.120 Ep = 0.086 Ep = 0.043

Ei = 1 7.83 8.01 8.52 9.32 9.39 8.85
Ei = 2 9.13 8.30 8.70 9.48 9.87 9.51
Ei = 5 11.17 9.81 10.73 10.81 11.39 11.33
Ei = 10 13.06 11.26 12.87 12.60 13.26 12.82

TABLE III

EFFECT OF Ep AND Ei ON THE PEAK SIGNAL-TO-NOISE RATIO (PSNR) ON MPEG-1 VIDEO WHEN Eb = 1.

peak signal-to-noise ratio (PSNR)
Ep = 0.257 Ep = 0.214 Ep = 0.171 Ep = 0.120 Ep = 0.086 Ep = 0.043

Ei = 1 11.38 11.56 11.72 12.13 12.28 12.48
Ei = 2 12.15 12.13 12.27 12.55 12.48 12.77
Ei = 5 12.63 12.48 12.57 12.97 12.84 12.98
Ei = 10 12.97 12.76 12.84 13.24 12.98 13.09

TABLE IV

EFFECT OF Ep AND Ei ON THE PEAK SIGNAL-TO-NOISE RATIO (PSNR) ON QUICKTIME VIDEO WHEN Eb = 1.

MBytes/s or about 63 concurrent MPEG-1 streams from Table
I) and, at the same time, ensure that those clients which do not
possess the decryption keys will get unacceptable video quality
on viewing. Figure 5 (f)-(g) illustrate the visual effect when
attackers intentionally fill encrypted data with zeros or drop the
encrypted packets. Again, the result shows that unauthorized
access will have poor visual quality.

V. RELATED WORK

Recent research on video proxies has mainly focused
on caching strategies and replacement algorithms. Sen and
Towsley [11] present how prefix caching at a proxy can help
to shield clients from large start-up delay, low throughput,
and high packet loss. Guo et al. [4] propose the use of a
prefix-caching proxy in conjunction with a periodic broad-
casting technique to improve system scalability. Focusing on
implementation and protocol issues, Cruber et al. [3] show
how to realize proxy prefix caching by using the Real-Time

Streaming Protocol (RTSP). Rejaie et al. [8] present a fine-
grained replacement algorithm for a multimedia proxy, which
targets layered-encoded streams. Kangasharju et al. [6] present
a caching model of layered-encoded multimedia streams, and
propose utility heuristics whose performance are evaluated
through their caching model. There are only a small set of
papers emphasizing security issues in a video proxy. Griwodz
et al. [2] propose an approach in which the proxy stores
the major part of the video streams which are intentionally
corrupted. The proxy can distribute the corrupted part via
multicast transmission, while the origin server will supply the
part for data reconstruction in a unicast manner. Since the
original server must perform data encryption for each client,
this is not a scalable solution. Tosun and Feng [14] propose a
much more scalable approach based on a lightweight encryp-
tion algorithm for multimedia streams. When a client makes
a request, the proxy will decrypt the locally stored encrypted
data and encrypt it again using the client’s encryption key. The

8

major drawback with their approach is that the use of light-
weight encryption offers no proven resilience against attacks
on data confidentiality. Furthermore, the need for decryp-
tion operations at the proxy results in higher computational
overhead. Shi and Bhargava [12] present an MPEG video
encryption algorithm called VEA such that one can encrypt a
video stream multiple times (each with, say, a client-specific
key) and still decrypt the video in a single operation using
a composite decryption key. However, VEA is not resilient
against plaintext attack. Therefore, adversaries can obtain the
VEA secret key with feasible efforts.

VI. CONCLUSION

We present the design and implementation of a multi-key
secure multimedia proxy architecture. Our design is based on
the notion of an asymmetric reversible parametric sequence
(ARPS). We discussed how ARPS can be applied to a gen-
eral client-proxy-server architecture. To practically achieve
the confidentiality properties of ARPS, we have presented
a multi-key RSA technique, and proved that the technique
realizes an ARPS. In summary, our theoretical results show
that the proposed architecture can achieve comprehensive
data confidentiality that is provably resilient against attacks,
given standard computability assumptions. Our implementa-
tion results empirically demonstrate how a set of four ECP
parameters can trade off encryption throughput against the
amount of data to protect, for a number of standard MPEG-1
and Quicktime video sequences. (Results for a number of MP3
audio sequences are available in [15].) Our results indicate
that it is possible to simultaneously achieve high encryption
throughput and extremely low audio/video quality (in terms
of decoded audio SNR and both PSNR and the visual quality
of decoded video frames) during unauthorized access. For
example, by using Ei = 10 and Ep = 0.043, a single Pentium
III/800 MHz machine can concurrently sustain more than 64
distinct MPEG-1 video streams, while giving good protection
for the original video data. We believe that the proposed
system offers an effective approach for delivering multimedia
contents in a secure manner.

ACKNOWLEDGEMENT:

J. C. S. Lui was supported in part by an RGC Earmarked
Grant. D. K. Y. Yau was supported in part by the NSF
under grant number CCR-9875742 (CAREER), and in part
by CERIAS.

REFERENCES

[1] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A.
D. Santis (Ed.), Advances in Cryptology: Proceedings of Eurocrypt’94,
Vol. 950 of Lecture Notes in Computer Science, Springer-Verlag, 1995.,
pages 92–111, 1995.

[2] C. Griwodz, O. Merkel, J. Dittmann, and R. Steinmetz. Protecting vod
the easier way. In Proceeding of the 6th ACM International Multimedia
Conference, pages 21–28, September 1998.

[3] S. Gruber, J. Rexford, and A. Basso. Protocol considerations for a
prefix-caching proxy for multimedia streams. In Proceedings of the
9th International World Wide Web Conference, Amsterdam, Netherlands,
May 2000.

[4] Y. Guo, S. Sen, and D. Towsley. Prefix caching assisted periodic
broadcast: Framework and techniques to support streaming for popular
videos. In IEEE ICC, 2002.

[5] R. S. Inc. Pkcs-1 v2.1. In RSA Cryptography Standard. Technical Report,
1999.

[6] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross. Distributing
layered encoded video through caches. In Proceedings of IEEE Infocom
2001, pages 1791–1800, Anchorage, Alaska, April 2001.

[7] R. Molva and A. Pannetrat. Scalable multicast security in dynamic
groups. In Proceeding of the 6th ACM Conference on Computer and
Communications Security, pages 101–111, November 1999.

[8] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching mechanism
for multimedia playback streams in the internet. In Proceedings of the
4th International Web Caching Workshop, San Diego, CA., March 1999.

[9] B. Schneier. Applied Cryptography. John Wiley and Sons, New York,
1996.

[10] R. Security. PKCS #1: RSA Cryptography Standard.
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1, 2002.

[11] S. Sen and D. Towsley. Proxy prefix caching for multimedia streams.
In IEEE INFOCOM, March 1999.

[12] C. Shi and B. Bhargava. A fast MPEG video encryption algorithm. In
Proceeding of the 6th ACM International Multimedia Conference, pages
81–88, September 1998.

[13] D. R. Stinson. Cryptography: Theory and Practice (Discrete Mathemat-
ics and Its Applications). Chapman & Hall; 1st edition, 1995.

[14] A. S. Tosun and W. chi Feng. Secure video transmission using proxies.
In Technical Report, Computer and Information Science, Ohio State
Univeristy, 2002.

[15] S. F. Yeung, J. C. S. Lui, and D. K. Y. Yau. A multi-key secure
multimedia proxy using asymmetric reversible parametric sequences:
Theory, design, and implementation. Technical report, Chinese Univer-
sity of Hong Kong, 2003. Also available as CS-TR-LANS-03-2, Purdue
University, West Lafayette, IN.

S. F. Yeung was born in Hong Kong. He received his B.Eng and M.Phil.
in Computer Science from the Chinese University of Hong Kong (CUHK).
He is presently the CTO of G&B Studio. His research interests are in
multimedia technologies, particularly network security and transport protocols.
His personal interests include sports and Christian music.

John C. S. Lui received his Ph.D. in Computer Science from UCLA. After
his graduation, he joined the IBM Almaden Research Laboratory/San Jose
Laboratory and participated in various research and development projects on
file systems and parallel I/O architectures. He later joined the Department
of Computer Science and Engineering at the Chinese University of Hong
Kong. His research interests encompass both systems and theory. His current
research interests include theoretic/applied topics in data networks, dis-
tributed multimedia systems, network security, OS design issues, mathematical
optimization and performance evaluation. John received the CUHK Vice-
Chancellor’s Exemplary Teaching Award in 2001. He is an Associate Editor of
the Performance Evaluation Journal, a member of the ACM, a senior member
of the IEEE and an elected member of the IFIP WG 7.3. His personal interests
include films and general reading.

David K. Y. Yau received the B.Sc. (first class honors) degree from the
Chinese University of Hong Kong, and the M.S. and Ph.D. degrees from the
University of Texas at Austin, all in computer sciences. From 1989 to 1990,
he was with the Systems and Technology group of Citibank, NA. He was
the recipient of an IBM graduate fellowship, and is currently an Associate
Professor of Computer Sciences at Purdue University, West Lafayette, IN.
He received an NSF CAREER award in 1999, for research on network
and operating system architectures and algorithms for quality of service
provisioning. His other research interests are in network security, value-added
services routers, and mobile wireless networking.

