
394 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Inferring Hidden IoT Devices and User Interactions
via Spatial-Temporal Traffic Fingerprinting
Xiaobo Ma , Member, IEEE, Jian Qu, Jianfeng Li, John C. S. Lui , Fellow, IEEE, ACM,

Zhenhua Li , Senior Member, ACM, Wenmao Liu, and Xiaohong Guan, Fellow, IEEE

Abstract— With the popularization of Internet of Things (IoT)
devices in smart home and industry fields, a huge number
of IoT devices are connected to the Internet. However, what
devices are connected to a network may not be known by
the Internet Service Provider (ISP), since many IoT devices
are placed within small networks (e.g., home networks) and
are hidden behind network address translation (NAT). Without
pinpointing IoT devices in a network, it is unlikely for the
ISP to appropriately configure security policies and effectively
manage the network. Additionally, inferring fine-grained user
interactions of IoT devices is also an interesting yet unresolved
problem. In this paper, we design an efficient and scalable
system via spatial-temporal traffic fingerprinting from an ISP’s
perspective in consideration of practical issues like learning-
testing asymmetry. Our system can accurately identify typical
IoT devices in a network, with the additional capability of
identifying what devices are hidden behind NAT and the number
of each type of device that share the same IP address. Our
system can also detect user interactions and meanwhile identify
their (concurrent) number through a multi-output regression
model. Through extensive evaluation, we demonstrate that the
system can generally identify IoT devices with an F1-Score above
0.999, and estimate the number of the same type of IoT device
behind NAT with an average error below 5%. By studying 29 user
interactions of 7 devices, we show that our system is promising
in detecting user interactions.

Index Terms— IoT traffic analysis, IoT device detection, net-
work monitoring.

Manuscript received March 3, 2021; revised August 15, 2021; accepted
September 10, 2021; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor T. He. Date of publication September 27, 2021; date of
current version February 17, 2022. This work was supported in part by
the National Natural Science Foundation under Grant 61972313 and Grant
61822205, in part by the Postdoctoral Science Foundation under Grant
2019M663725 and Grant 2021T140543, in part by the Fundamental Research
Funds for the Central Universities, and in part by China Computer Federation
(CCF)-NSFOCUS KunPeng Research Fund of China. The work of Xiaobo
Ma was supported by Cyrus Tang Foundation. The work of John C. S. Lui
was supported in part by the Research Grants Council (RGC) under Grant
R4032-18. (Corresponding author: Xiaobo Ma.)

Xiaobo Ma, Jian Qu, and Xiaohong Guan are with the MOE Key Laboratory
for Intelligent Networks and Network Security, Xi’an Jiaotong University,
Xi’an 710049, China, and also with the Faculty of Electronic and Informa-
tion Engineering, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
xma.cs@xjtu.edu.cn; qj904154277@stu.xjtu.edu.cn; xhguan@xjtu.edu.cn).

Jianfeng Li is with the Department of Computing, The Hong Kong Poly-
technic University, Hong Kong (e-mail: jfli.xjtu@gmail.com).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

Zhenhua Li is with the School of Software, Tsinghua University, Beijing
100084, China (e-mail: lizhenhua1983@tsinghua.edu.cn).

Wenmao Liu is with NSFOCUS Inc., Beijing 100089, China (e-mail:
liuwenmao@nsfocus.com).

Digital Object Identifier 10.1109/TNET.2021.3112480

I. INTRODUCTION

THERE is an increasing number of Internet of Things (IoT)
devices in the world. The total installed base was

15.4 billion in 2015, and is expected to be 30.7 billion
in 2020 and 75.4 billion in 2025 [1]. Because of their sheer
volume and weak security, IoT devices have become the
target of hackers. In recent years, the rapid development of
botnets for IoT devices like Mirai and Turii has caused great
security risks [2], [3]. As reported, a botnet of IoT devices
can even launch coordinated attacks to bring down a power
grid [4]. After the vulnerability of an IoT device is discovered,
it usually takes a longer time to fix it than that of personal
computers. The updates of IoT devices require the user’s
consent, but many users do not pay much attention to these
update alerts. This leads to the continual operation of many
vulnerabilities in IoT devices, and attackers may penetrate the
network via these vulnerabilities [5]–[8].

The huge number of IoT devices has also brought a sig-
nificant problem. That is, the Internet Service Provider (ISP)
finds it difficult to determine what IoT devices are connected
within its administrative domain. Without pinpointing IoT
devices in a network, it is unlikely for ISPs to perform security
maintenance and effectively manage the network, e.g., appro-
priately configuring personalized security policies according to
IoT devices’ vulnerabilities, and allocating security resources
based on IoT devices’ population distribution. If ISPs can
recognize hidden IoT devices, the primary security policy that
they can use is to examine the presence of public vulnera-
bilities, and in turn take defensive measures in advance. For
example, if a hidden device like Bosch IP camera, which has
a high-risk vulnerability of CVE-2021-23853 [9], is detected,
ISPs can filter out packets with abnormal HTTP headers to pre-
vent malicious code injection. In addition, ISPs can notify IoT
users of the vulnerabilities and urge them to fix the vulnerabil-
ities (e.g., updating the firmware) by official announcements.

Detecting IoT devices can be achieved in two approaches.
One is actively probing and identifying the services that IoT
devices open to the Internet. The other is passively fingerprint-
ing the traffic of IoT devices. The active probing is currently
adopted by many security companies and researchers. How-
ever, this approach has limited visibility of IoT devices in at
least two aspects. First, most IoT devices are placed within
small networks (e.g., home networks) and are hidden behind
network address translation (NAT). Thus, their services may
only be visible within a subnet and are completely invisible
outside the network. Second, although some IoT devices may
use globally-routable IP addresses and are visible outside
their residing networks, their open services may not contain
sufficient information that can facilitate unique identification.
Although the active probing enables ISPs to probe IoT devices
outside their managed networks, this is not their first priority.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0934-5035
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-7286-122X

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 395

Fig. 1. An ISP’s perspective of passively inferring hidden detecting IoT
devices and user interactions.

In contrast, the passive approach overcomes the limitations
of the active probing because it can observe the traffic from/to
all IoT devices. Fig. 1 depicts the scenario of passively
detecting IoT devices from an ISP’s perspective. An ISP
accommodates network services for numerous local networks.
Each local network (e.g., home network) connects to the ISP
via routers/gateways. Within a local network, different devices
(e.g., computers, laptops, and IoT devices) connect to the local
routers/gateways for accessing the Internet.

Our system detects IoT devices from an ISP’s perspective.
In other words, it can be used to detect all IoT devices that
have access to the Internet. Moreover, our system is deployed
on the border of a monitored network (e.g., a stub network,
a city-scale network) to inspect the inbound-outbound TCP/IP
packets. The IoT devices in the monitored network will be
identified by our system as their traffic traverses the border.
Although the IoT devices may use various wireless technolo-
gies, either short ranges (e.g., Zigbee, Bluetooth) or long
ranges (e.g., 4G/5G, LoRa), to get connected to the monitored
network, these wireless technologies are transparent to our
system. That is, whatever wireless technologies an IoT device
uses, our system could detect IoT devices at the upstream
network border, since it is deployed from an ISP’s perspective
on the border of the monitored network, where the traffic of
all devices are converted into TCP/IP packets.

Our aim is to perform traffic fingerprinting between the
ISP and local networks so to answer the following research
questions (RQ).

RQ1. Is it possible to extract IoT traffic features and train
a detection model to identify a given type of IoT device from
an ISP’s perspective?

RQ2. When multiple IoT devices of the same type are
deployed behind the same IP address (i.e., NAT), how to
determine the number of such IoT devices?

Tackling the above two research questions enables ISPs to
be aware of “which and how many IoT devices reside in
a network” for security maintenance. Further inferring fine-
grained user interactions of IoT devices (i.e., “which user
interactions are posed to IoT devices”) is also an interesting
yet unresolved problem. A technique addressing this problem
is important for two reasons. First, a security critical company
that requires systematic evaluation of its deployed IoT devices
would rely on such a technique to measure how well its
devices conform to a set of established user interaction criteria.
Second, both IoT users and manufacturers would be concerned
about whether the usage of certain IoT devices introduces new
privacy concerns, since ISPs could potentially analyze network
traffic to infer user interactions of IoT devices.

We, therefore, endeavor to further answer the following RQ.
RQ3. If the answers to RQ1 and RQ2 are positive, can we

further detect the user interactions of IoT devices?
Answering the above research questions is not easy. The

major challenges are two-fold. The first challenge is learning-
testing asymmetry. Specifically, one can collect (pure) traffic
traces as training samples and learn the traffic patterns of an
IoT device in a (clean) controlled testbed. However, when ISPs
subsequently test the learned traffic patterns in their managed
networks for detecting IoT devices, they may not be able to
extract (pure) traffic traces as testing samples. The reason
is that many devices are deployed behind NAT, making all
devices (e.g., PCs and smartphones) behind NAT share the
same IP address. The extracted traffic traces associated with
such an IP address then become a mixture of traffic traces
produced by different devices. Therefore, ISPs have no idea
which traces constitute a pure testing sample. The second
challenge is that simple features like external IP addresses that
IoT devices contact are not reliable because they may change
across networks due to content delivery networks (CDN).
Moreover, these simple features may not work in detection
as many different IoT devices use the same cloud services.

To address these challenges, we design a system for
detecting typical IoT devices via spatial-temporal traffic fin-
gerprinting. The basic idea is to automatically extract short-
term common subsequences of packet arrivals (i.e., sequence
profiles) that appear relatively frequent, and meanwhile learn
the long-term appearance relationships of all the extracted
sequence profiles through the convolutional neural network
(CNN). The sequence profiles hierarchically abstract specific
packet-level features, and can describe the spatial context of
packets (i.e., which packets with abstracted features frequently
coexist with each other in a certain sequence). Incorporat-
ing the contextual information with hierarchically abstracted
features enables our system to be accurate in pinpointing
IoT devices even in a complicated network environment such
as NAT.

To our best knowledge, we are the first to passively infer
hidden IoT devices and user interactions from an ISP’s per-
spective. Our contributions:

• We design an efficient and scalable system for IoT
detection via spatial-temporal traffic fingerprinting. Our
system can accurately identify typical IoT devices in
a network, with the additional capability of identifying
what devices are hidden behind NAT and how many they
are.

• Our system can hierarchically extract spatial-temporal
features of the traffic between IoT devices and their
servers automatically. It has a low detection time com-
plexity (i.e., almost linear to the number of packets) and
works in an online fashion, thereby scalable to large
networks and identifying IoT devices usually in just a
few minutes.

• To detect user interactions of IoT devices, we propose a
multi-output regression model (instead of a classification
model) that can not only detect multiple concurrent inter-
actions but also identify the number of each interaction
in the active-state traffic.

• Through extensive evaluation in a network with nearly
3,000 users, we demonstrate that our system can gener-
ally detect IoT devices with an F1-Score above 0.999,
and estimate the number of the same type of IoT
device behind NAT with an average error below 5%.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

396 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

TABLE I

IOT DEVICES UNDER INVESTIGATION (YOM: YEAR OF MANUFACTURE)

We collect traffic of user interactions on 7 devices and
conducted experiments to detect 29 user interactions. The
results show that our method is promising in classifying
user interactions and detecting concurrent interactions.
We reveal that the performance may vary from device
to device, depending on the interaction’s stability and
distinguishability in terms of traffic characteristics.

Roadmap. In Sec. II, we understand IoT traffic character-
istics. Sec. III elaborates system design and Sec. IV evaluates
it. We discuss open questions in Sec. V, review the literature
in Sec. VI, and conclude in Sec. VII.

II. UNDERSTANDING IOT DEVICES AND THEIR

TRAFFIC CHARACTERISTICS

To understand the behavior of IoT devices, we collect
and analyze the traffic traces of 22 typical IoT devices. The
traffic traces come from two sources. One is via our testbed
where we capture the traffic traces of 13 IoT devices. The
other is a public dataset published by the University of New
South Wales [10], offering us the traffic traces of 9 additional
IoT devices. We detail these IoT devices’ names, functions,
manufacturers, and year of manufacture (YoM) in Table I.
Note that all IoT devices under our investigation are Internet-
enabled through WiFi.

A. Three States of Typical IoT Devices

IoT devices, once turned on, have three possible states,
i.e., initialization, idle, active. Their states are used to cate-
gorize the underlying types of activities of an (online) IoT
device.

1) Initialization: Before using a new IoT device, one needs
to configure the parameters of the device, and the configura-
tions depend on the specific function. A new IoT device then
enters the initialization state upon the first time it connects
to the server. Some major tasks of such initialization include
WiFi settings, authentication, and app-device binding.

2) Idle: At the idle state, no functional task is executed by
the device, but heartbeat traffic takes place over a persistent
connection between the device and the server. Consequently,
most devices remain sending and receiving packets which
constitute the idle-state traffic.

3) Active: When one interacts with an IoT device
(e.g., voices and videos control, commands from mobile apps),
the IoT device is updating its firmware, or a scheduled-task
comes to execution, the device is in an active state and
produces active-state traffic. A device is active when it is
running certain tasks exclusive of those during initialization.
For example, when one interacts with a smart speaker via
voices, the smart speaker responds to voice commands and
thus becomes active; Amazon Echo is considered active during
the process of receiving and executing the commands from the
mobile app.

B. IoT Traffic Characteristics

As different tasks are executed, an IoT device transits
from one state to another. Note that the initialization state
is transient, the idle state is the default state, and the active
state only appears when a device is executing tasks. Therefore,
one can expect that 1) the idle-state traffic is persistent; 2) the
active-state traffic is abrupt and task-dependent (i.e., the char-
acteristics may vary for executing different tasks). Throughout
the whole life cycle of an IoT device, the initialization
state may appear only a couple of times, resulting in pretty
sparse traffic samples available in real-world network moni-
toring. Therefore, we focus on the idle-state/active-state traffic
characteristics.

The idle-state traffic is attributed to the persistent connection
between the IoT device and the server. When a user remotely
controls the device, he/she will issue commands from his/her
mobile phone. The commands are relayed by the server
through the persistent connection to the device. The persistent
connections of IoT devices differ from each other in terms of
packet arrivals. In Fig. 2, we demonstrate how the number of
packets extracted by four filters (i.e., TCP UP, TCP DOWN,
UDP UP, and UDP DOWN) varies over time, where the width
and the height of each bar denote one second epoch and the
number of packets in that epoch, respectively. We observe that
the four devices exhibit different packet arrival patterns, but
all patterns comprise regular and irregular ones.

Fig. 2(a) and Fig. 2(b) depict the idle-state traffic pattern of
Mi AI Smart Speaker and Amazon Echo, respectively. It can
be observed that the former produces significant TCP and UDP
traffic, while the latter primarily produces TCP traffic, in both
directions. Despite being idle, both devices have significant
irregular packet arrivals under certain filters (e.g., UDP traffic
of Amazon Echo, TCP traffic of Mi AI Smart Speaker).

When user activities are triggered, the idle-state traffic
will be interleaved with the active-state traffic. Fig. 2(c) and
Fig. 2(d) depict the idle-state traffic with the active-state traffic
of Mijia Camera and Ezviz Plug, respectively. We see that the
two devices mainly produce TCP and UDP traffic, respectively.
The blue bars represent the traffic produced by user activities.
Such occasional occurrences of user activities (e.g., Moving
Human Detection and Power ON/OFF) result in the idle-state
traffic patterns being temporarily interfered.

To further observe user interactions of IoT devices, we col-
lected the traffic of three typical IoT devices, as shown
in Fig. 3. It can be found that the packet transmission
rate varies as different user interactions occur. Take Mijia
Camera as an example in Fig. 3(a). The traffic was captured
in 55 minutes, involving 5 user interactions. At the beginning,
we turned off the camera through the mobile app, and then
turned on the camera. It can be observed that, even when the
camera is turned off, the packet transmission remains. This

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 397

Fig. 2. The number of packets varies over time for four IoT devices in the view of four filters (i.e., TCP UP, TCP DOWN, UDP UP, and UDP DOWN).

Fig. 3. Different user interactions of three typical IoT devices. A significant
increase in traffic can be observed when user interactions are triggered.

means that the “turn off” operation of Mijia Camera can be
regarded as “sleep mood” (rather than “power off”). At the
10th minute, we connected to the camera to remotely see the
live video stream through the mobile app, resulting in rapid
increase of packet transmission. After that, we modified some
configurations about moving detection through the mobile
app and stayed at the configuration user interface (from the
15th to the 20th minute). The traffic transmission rate during
this period drops to a lower range but still greater than that at
the beginning.

Fig. 4. Sankey diagram of Amazon echo traffic. Bars from left to right
represent device name, WAN or LAN, protocol, server IP address, and port.
“None” means that the protocol ICMP has no port.

Besides packet arrivals that characterize IoT traffic from the
temporal perspective, we also use protocol-specific features
encapsulated in packet headers, such as protocol type and
packet length, to provide spatial information to understand
IoT traffic characteristics. Fig. 4 is a Sankey diagram of
Amazon Echo traffic (42,818 packets collected in 24 hours).
The diagram contains statistics of protocols, addresses, ports,
etc. We see that Amazon Echo communicates with diverse
protocols, a large number of local/external server IP addresses,
and distinct ports offering various services. Protocol-specific
features enable us to distinguish between the same type of IoT
devices of different firmware versions. For example, DuSmart
Speaker produced in Apr. 2019, compared to that in Sep. 2018,
incorporates Simple Service Discovery Protocol and reduces
the request frequency of Network Time Protocol.

C. Challenges for Bridging Characteristics and Detection

The IoT traffic characteristics presented above reveal that
(temporal) packet arrivals and (spatial) protocol-specific fea-
tures contain rich information in support of identifying the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

398 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 5. The system architecture of detecting IoT devices and user interactions (SP: Sequence Profile).

presence of IoT devices and distinguishing between different
types of IoT devices. At first glance, exploring certain signif-
icant and regular traffic characteristics to detect IoT devices
may be an obvious approach. For instance, one could easily
leverage the UDP DOWN patterns of Mi AI Smart Speaker
and Mijia Camera demonstrated in Fig. 2(a) and Fig. 2(c) via
spectrum analysis of periodic signals. However, such patterns
are not necessarily unique, thereby resulting in false positives.

To reduce false positives, one may correlate the patterns in
the view of the four filters in Fig. 2. Unfortunately, an internal
IP address, which may represent an IoT device, a non-IoT
device, or many devices behind NAT, may contact numerous
external server IP addresses. One has no prior knowledge
of which internal IP addresses host only one device and
which ones host more than one device. Accordingly, whether
the external server IP addresses that an internal IP address
contacts, in whole or in part, serve for a certain IoT device
is agnostic. Therefore, grouping the traffic associated with an
internal IP address in the view of the four filters becomes
challenging.

One may further combine the observed set of external server
IP addresses that an IoT device contacts in a controlled testbed
so to reduce the combinational space. Nevertheless, matching
the set external server IP addresses may necessitate observing
the inbound-outbound traffic in a monitored network until
most external server IP addresses are contacted. Although
achieving this may not be time-consuming in a controlled
testbed, observing most external server IP addresses in a
monitored network requires a real-life user to trigger all related
functions of an IoT device, which may take a long period
of time (e.g., 24 hours). This long period of time severely
limits the timeliness of IoT detection, not to mention that it
introduces additional storage cost. Worse still, a long period
of time of observation may not result in successfully matching
the set of external server IP addresses in the presence of CDN.

The detection becomes more challenging with the preva-
lence of public services. An increasing number of IoT devices
use public services, such as https://api.amazon.com/.
These public services are also simultaneously used by many
other applications. Even in the case of a private service,
a series of different IoT devices of the same manufacturer
tend to use the same private service. The detection is further
complicated by the fact that many IoT devices are connected
behind NAT, drastically raising the detection complexity
because all devices behind NAT produce traffic originated from
and destined to the same IP address from an ISP’s perspective.

TABLE II

SUMMARY OF MAJOR NOTATIONS

III. SYSTEM DESIGN

To tackle the challenges for bridging traffic characteristics
and IoT detection, we use the following design objectives.
First, a comprehensive approach that can characterize different
IoT devices in a complicated network environment is required.
Second, although an IoT device may occasionally have simple
yet unique features such as external IP addresses (and domain
names) that it contacts, when these features are not used,
the system can also work well to ensure its general suitability
to all types of devices. Third, to minimize training overhead,
user intervention should be kept at a minimum when the
system is learning the traffic characteristics of IoT devices.

Following the above design objectives, we propose the
system architecture in Fig. 5. In the training stage, we capture
and label traffic for each IoT device. To detect the presence
of IoT devices, we keep IoT devices in idle state without user
intervention. We then mix the collected idle-state traffic of
each IoT device with the background traffic (consisting of
non-IoT traffic and the traffic of the remaining IoT devices).
Spatial-temporal features of the mixed traffic are extracted
by the IoT traffic feature learning module. In the detection
stage, the IoT detection engine identifies IoT devices and
estimates their numbers in real-world traffic. To detect the user
interactions, we manually label the different user interactions
of devices. The user interaction traffic learning module gen-
erates several features to represent the interactions for each
device. In the detection stage, the IoT detection engine detects
different user interactions whose features have been previously
learned. Table II lists major notations defined in our system.

A. Hierarchical Feature Extraction

IoT traffic exhibits significantly repeating patterns and some
packet sequences occur frequently. Such packet sequences

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 399

Fig. 6. An example of generating SPs via hierarchical feature extraction.

TABLE III

TRAINING PARAMETER SETTINGS

can be informative in IoT detection because they contain
not only the information of individual packets, but also the
short-term sequential structure of packet arrivals. Inspired by
this observation, our system hierarchically extracts sequence
profile (SP) as features from packet sequences as shown
in Fig. 6.

1) Packet Vectorization: For each packet, we only extract
its header information as its application-layer payload may
be encrypted and processing the payload is time-consuming.
At the network layer, we extract fields in the IP header
including Times to Live (TTL), total length, and protocol flag.
The TTL value depends on networking system implementation
of IoT devices, and could be a discriminative feature. Protocol
flag indicates which transport protocol (i.e., UDP or TCP) is
employed, and we transform it into a binary value. At the
transport layer, we extract flags, window size, options, and
payload length in the TCP header, and only payload length in
the UDP header. Using these cross-layer header information,
we represent each packet by a packet vector (PV). Table III
summarizes PVs of different packets. We would like to point
out that features like domain names and IP addresses of
IoT-contacting servers are not used, since they are not reliable
due to CDNs, and may not be discriminative when different
IoT devices use the same cloud services.

2) Packet Burst Extraction: The traffic between an IoT
device and the server comprises packet bursts. Each packet
burst results from a certain semantic network activity, such as
time calibration. To capture such activities, we group packets
into bursts. The time interval between two adjacent bursts
should not be less than one second (i.e., Interval of Bursts
in Table V). Packet bursts are denoted by B1, B2, . . . , Bn.
As shown in Fig. 6, each burst, say B1, is sequentially
represented by the PVs of packets (i.e., Packet 1 and Packet 2).

3) Sequence Profile Generation: We generate the longest
common subsequence of two bursts as a Sequence Profile
(SP). To extract such subsequences, we define the distance
between two PVs. For two PVs of different protocols, we
define their distance to be infinite. For two PVs pertaining
to the same protocol, the distance is the summation of the
distances between their counterpart elements. Formally, the

distance between two PVs, vi and vj , of Packets i and j is

D (vi, vj) =
len(vi)∑

k=1

min {wkDe (vi(k), vj(k)) , mk} , (1)

where len(·) calculates the vector length, wk is the weight of
the kth field of vi (or equivalently vj), De (vi(k), vj(k)) is the
distance between the counterpart elements of vi and vj , and
mk is the maximum value of De (vi(k), vj(k)). For a field in
a PV, the distance metric can be either binary or digital. If the
distance metric of the kth field needs exact matching, we have

De (vi(k), vj(k)) =
{

0, vi(k) �= vj(k),
1, vi(k) = vj(k).

(2)

Otherwise, we compute the digital distance

De (vi(k), vj(k)) = |vi(k) − vj(k)|. (3)

After defining the distance between two PVs, we extract
the longest common subsequence of two bursts, say Ba and
Bb, based on dynamic programming [11], [12]. Assume that
Ba = (va

1 , va
2 , . . . , va

na
) and Bb = (vb

1, v
b
2, . . . , v

b
nb

), with na

and nb PVs, respectively. Let Ba
i (resp. Bb

j) be the sequence
consisting of the first i (resp. j) PVs of Ba (resp. Bb).
We denote by L (i, j) the longest common subsequence of Ba

i
and Bb

j . Then, we have L(na, nb) represent the longest com-
mon subsequence of Ba and Bb. L(na, nb) can be recursively
derived as follows

L (i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅, if i = 0 or j = 0,
L (i − 1, j − 1) � [I (vi, vj)],

if i, j > 0 and D (vi, vj) < d,
max(L (i, j − 1) , L (i − 1, j)),

if i, j > 0 and D(vi, vj) ≥ d,

(4)

where A � [b] means that b, as a new element, is added to the
end of sequence A, d is a manually selected distance threshold
discriminating the proximity of two PVs, and I(vi, vj) is a
function to compute an abstracted representation of two (sim-
ilar) PVs vi and vj . Such an abstracted representation reflects
whether the kth element of I(vi, vj) is unique or could be
“Any” value. Formally, the kth element of I(vi, vj) is

I(vi, vj)(k) =
{

vi(k), vi(k) = vj(k),
Any, vi(k) �= vj(k).

(5)

For every two bursts Ba and Bb, we obtain one longest
common subsequence L(na, nb) as an SP.

4) Sequence Profile Selection: For some IoT devices, such
as smart plugs, there are usually fewer than 10 different SPs.
For other devices, there may be hundreds of different SPs.
If all the SPs are used as features, though not impossible,
huge computation overhead would be introduced in both train-
ing and detection. Fortunately, according to measurement in
Sec. IV, only a few informative SPs are needed to characterize
an IoT device. Therefore, we only select informative SPs
as features. At first glance, term frequency-inverse document
frequency (TF-IDF), commonly used in NLP [13], can be a
candidate selection method. However, TF-IDF is not suitable
for our problem because SPs with high TF-IDF may be scarce
in IoT traffic and cannot be used to estimate the number
of IoT devices. The scarcity of SPs will also enlarge the
detection time window. As an alternative method, we define

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

400 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

the importance of an SP by combining its temporal frequency
and spatial generalizability, i.e., frequency of occurrences in
all SPs derived from every two bursts and the number of
its elements with a value of “Any”. Compared with TF-IDF,
our importance-based method focuses on frequent common
sequences, avoiding the scarcity of SPs and supporting a small
detection time window. Formally, we define the importance as

V (S) =
√

N(S) ×
len(S)∑
j=1

len(vj)∑
i=1

δ
(
vj

i

)
, (6)

where S is an SP, N(S) is the frequency of occurrences of S,
vj is the jth element of S, vj

i is the ith element of vj , and
δ (x) is an indication function

δ (x) =
{

0 if x =Any,
1 if x �=Any.

(7)

B. IoT Device Detection and Population Estimation

Our system makes use of SPs to detect IoT devices and
estimate their population (i.e., the number of IoT devices of
the same type). Individual SPs can only reflect the short-term
sequential and spatial characteristics of a certain network activ-
ity. To characterize the long-term temporal patterns of network
activities, we search in the mixed traffic, as shown in Fig. 5, for
the (generated and selected) SPs. Then, a temporal represen-
tation of SP matching, in the form of a 3D (time–SPs–match
or not) space, is generated. This representation incorporates
the SPs that form different signal channels describing diverse
aspects of IoT traffic, hence being able to characterize the
spatial-temporal correlation across network activities.

To search for the SPs in the mixed traffic, we transform
all packets in the mixed traffic into PVs, and match them
against the SPs. For each SP, the output is a one-dimensional
array describing the matching results along the time axis. The
matching here is essentially the string subsequence matching.
The only difference is that we need to count the number of SP
matching based on the matched or not information. When one
subsequence of PVs is matched with an SP, the number of SP
matching will be increased by one at the time window where
the subsequence begins. Fig. 8 shows examples of SP matching
over DuSmart Speaker’s traffic and background traffic, which
will be explained in detail in Sec. IV-A.

By leveraging the SP matching representation, we choose
CNN to detect IoT devices and estimate their population. The
reason why we employ CNN is that it can automatically extract
long-term patterns of individual SPs and spatial-temporal
correlation across different SPs [14]–[16]. Our CNN model
consists of 3 convolution layers, 3 pooling layers, 2 fully
connected layers. The input of the first convolution layer
is time arrays corresponding to the selected SPs. To avoid
over-fitting of neural networks, we apply the dropout layers
[17], [18]. During training, if we just detect whether the target
device is in the traffic, we use the softmax and cross-entropy
loss function. If we want to know the number of the target
device, we use the Rectified Linear Unit (ReLU) and MSEloss
function to calculate it, as is more computationally intensive.
Therefore, to ensure the scalability of our system, we train
two CNNs for each IoT device. One is for detection and works
continuously. The other is for population estimation and is only
launched upon successful detection of the target IoT device.

To train the above two CNNs, we need to build positive
and negative samples with ground truth. Considering that IoT
traffic may be interleaved by background traffic, we mix IoT
traffic with background traffic as positive samples, and back-
ground traffic itself as negative samples. Denote IoT traffic
by Ti, and background traffic by Tb. Then, training samples
can be expressed as: Fc(Tb) = 0 and Fc(Tb + n ⊗ Ti) = 1,
where Fc is our CNN classifier for IoT device detection, and
n ⊗ Ti denotes the superposition of the target device’s traffic
for n times. An output of 0 and 1 represent the absence and
presence of the target device, respectively. To estimate the
number of the target device, training samples are expressed
as Fe(Tb + n ⊗ Ti) = n, where n denotes the number of the
target device, and Fe is the regression model for population
estimation.

C. User Interaction Detection

If we already know the presence of an IoT device, say A,
behind a certain IP address, we can train a new model to
identify specific user interactions of device A. Intuitively, each
interaction can be seen as a composite of one or more SPs.
Therefore, we extract SPs for each interaction and select the
SPs that represent it. Unlike the previous CNN model for IoT
detection based on idle-state traffic, we do not map SPs to the
time axis, since the traffic of an interaction generally happens
at discrete time points or in a short time interval (i.e., a burst).
Instead, we directly employ an SP-matching feature vector,
each element of which is the corresponding SP’s number of
matches against traffic under inspection, as detection features
of user interactions.

Detecting user interactions can be regarded as a standard
traffic classification task, either a bi-classification one or a
multi-classification one. Should the task be a bi-classification
one, we need to train a bi-classifier for each individual inter-
action of a device. The bi-classifier will determine whether
the corresponding interaction exists in the traffic. Should the
task be a multi-classification one, we only need to train one
multi-classifier for a device. The multi-classifier will figure out
which interaction occurs in the traffic from among a set of
interactions. The multi-classifier reduces training overhead,
while it may fail if two different interactions of a device occur
in a short period of time.

For a certain IoT device, the interactions are normally
sparsely distributed over time. Therefore, in a small time
window, the interactions would be rare. For example, there
are five devices of the same type sharing one same IP
address using NAT. This device has three different types of
user interactions. Assume that, for each device, each type of
interactions is triggered 20 times (very frequently) a day and
can be modelled as Poisson process. Then, within a 6-second
time window, the probability that an interaction only occurs
once exceeds 95%.

To consider the special cases where multiple user inter-
actions occurring in a short period of time, we propose
a multi-output regression model (instead of a classification
model) that can not only detect multiple interactions but
also identify the number of each interaction. To train this
model, besides feeding training samples involving only one
interaction, we also synthesize training samples that are a
mixture of different or identical interactions in a short period
of time to simulate the aforementioned special cases. We use
multi-layer perceptron (MLP) as the regression model, since it

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 401

Fig. 7. User interaction detection using the sliding window. After finishing
training the detection model, the traffic within the time window of 2T with
a sliding step of T is inspected for detecting user interactions.

has multiple outputs in one model and good nonlinear fitting
ability.

Recall that detecting user interactions depends on training
a model using the active-state traffic. Compared to inspecting
idle-state traffic without user intervention, collecting active-
state traffic is labor-intensive because one needs to repeat
the same type of interaction many times, especially those
interactions relying on physical contact with IoT devices. This
indicates that a detection model without the need to collecting
a large number of training samples is more favorable than a
sample-intensive model like deep neural networks.

While deploying the user interaction detection model to
inspect real-world traffic, we can use the sliding window
mechanism, as shown in Fig. 7. Suppose that the traffic
generated by each user interaction of a device does not exceed
T seconds. To ensure that each interaction is inspected within
at least one time window, we set the width and the sliding
step of the sliding window to be 2T and T , respectively.

IV. EVALUATION

We evaluate the performance of our system in IoT device
identification, population estimation, user interaction detec-
tion, and analyze its scalability in practical deployment.

A. Dataset Collection and Preprocessing

The data includes IoT traffic and background traffic. The
IoT traffic was from our testbed and a public dataset published
by the University of New South Wales [10]. The target IoT
devices are listed in Table I. To further collect high-quality
background traffic, we must ensure the statistical diversity
of the background traffic. Moreover, the background traffic
cannot contain any traffic of the target IoT devices.

To fulfill these requirements, we deliberately build the
background traffic using the traffic before the wide prosper-
ity of IoT. Specifically, the background traffic, with a size
of 1.1TB, was captured on the border of our campus network
from Nov. 9th to Nov. 11th, 2015. It is associated with
2,952 unique IP addresses and all of them are distributed
in students’ apartments. It can be reasonably considered that
the background traffic contains little traffic generated by the
target IoT devices because 1) the target IoT devices produced
after 2015 are impossible to appear in the background traffic
collected in 2015 and 2) other devices are generally not used
in students’ apartments of our campus.

For each IoT device, we extract (idle-state) packet bursts,
generate SPs, and select (informative) SPs to represent its
traffic characteristics. The number of selected SPs is upper
bounded by 10 (i.e., Maximum SP Number in Table V). Then,
we match selected SPs against positive and negative traffic
samples. The aim is to obtain time arrays corresponding to
selected SPs, where each time array depicts how the number
of SP matching (of a certain SP) varies over the time windows

Fig. 8. Time arrays of matching SPs against positive/negative traffic samples.

TABLE IV

DISTANCE PARAMETERS BETWEEN TWO PVS

TABLE V

TRAINING PARAMETER SETTINGS

(i.e., CNN Time Window in Table V). These time arrays can be
directly fed into CNN models for IoT training and detection.

Fig. 8 exemplifies time arrays of matching SPs of DuSmart
Speaker against positive and negative traffic samples. We see
that time arrays for positive samples are regular with occa-
sional irregularity, while those for negative samples are abrupt
and irregular. In this example, for ease of demonstration,
we build positive samples using pure idle-state traffic of
DuSmart Speaker, and negative samples using background
traffic.

In practice, positive and negative traffic samples for generat-
ing time arrays for an IoT device, say X , are built in two steps.
First, we randomly select IoT devices other than X , blend their
traces into background traffic, and get negative traffic samples.
Then, we add the traces of X to negative traffic samples, and
obtain positive traffic samples. Such steps fully consider that
the traffic of a certain IoT device may be interleaved by the
traffic of all other devices.

Tables IV and V list our parameter settings. Table IV is
for calculating the distance between two PVs in (1), where
Weight and Max mean wk and mk, respectively. Table V
includes parameters including maximum SP number, distance
threshold d, interval of bursts, and training parameters.

B. Results and Insights

1) IoT Device Detection: Fig. 9 shows precision and recall
for all devices in Table I. We use 50GB background traffic
in training and the rest in testing, and calculate precision
and recall for the traffic traces within each 360-second time
window. Fig. 9(a) is the results using our default features
without the information of domain name, IP address and port,
while Fig. 9(b) shows the results after adding such information
into our system. We observe that the performance is not

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 9. Precision and recall of IoT device detection.

TABLE VI

DETECTION RESPONSE TIME FOR IOT DEVICES

improved when domain name, IP address and port is added,
implying that our system does not rely on these features.

Precision and recall of most devices are greater than 99.9%.
Netatmo Weather Station and PIX-STAR Photo-frame have
high precision but relatively low recall. This is because for
these two devices the time interval between two consecutive
packets is larger than the CNN time window. We can simply
increase recall to 99% by increasing the CNN time window.

Both precision and recall increase as the detection time
proceeds. Further, we want to know the minimum time for
successfully detecting IoT devices. We test the detection
response time for all devices (i.e., the time lag between an
IoT device being connected and the successful detection) with
the F1-Score larger than 0.99. Table VI presents the detection
response time rounded up to one minute. We see that most
IoT devices can be detected in just a few minutes after they
are connected.

Answer to RQ1: We profile each IoT device using idle-
state traffic characteristics, and represent spatial-temporal
features in a CNN-resolvable form. We can accurately
detect IoT devices with F1-Score above 0.999 in just a
few minutes.

2) IoT Device Population Estimation: To perform popula-
tion estimation (i.e., estimate the number of the same type of
IoT devices behind NAT), we mix the device’s traffic multiple
times to simulate the scenario of multiple devices are behind
NAT. Note that the range of the estimated number in testing
is the same as that in training. If the actual number is outside
this range, our system can still estimate a number. However,
the error would be uncontrollable. We perform population
estimation for all IoT devices with a maximum number of 100,
and the average error is less than 5%.

Fig. 10 shows the results of two particular IoT devices.
The X-axis represents the actual number, and the Y-axis is
the estimated number. We see that the two numbers are pretty
close when we vary the actual number. For a certain device,
our observation is that the error increases as the actual number
grows. Estimation errors also differ across different devices.
Normally, IoT devices with complicated traffic patterns tend
to have large estimation errors.

Answer to RQ2: We can accurately estimate the number
of IoT devices of the same type behind NAT with the
average error less than 5%.

Fig. 10. Scatter plot of estimated/actual numbers for IoT devices behind
NAT.

3) User Interaction Detection: We repeat a certain user
interaction multiple times to collect traffic samples. Our
experiments involve seven IoT devices. Four of them are
fro1m our testbed: Mijia Camera, Lecoo Camera, Orvibo Light
and HUAWEI AI Speaker Mini. The others are from the
Mon(IoT)r dataset [19]. The Mon(IoT)r dataset contains user-
IoT interaction traces from 55 distinct IoT devices. However,
most of them only have two interactions (e.g., on and off),
and many interactions are triggered for a very small number of
times. Consequently, we select three devices, namely, Amazon
Echo Plus, TP-LINK Bulb and Honeywell Thermostat. The
selected devices involve no less than three interactions, each
of which is triggered at least 30 times, thereby ensuring
sufficient training samples. For each device from our testbed,
we manually trigger all its interactions except those that do
not generate traffic or are difficult to repeat (e.g., firmware
updating). Each interaction is repeated 50 times.

We perform two experiments for evaluating the detection
performance in normal cases and special cases, respectively.
The first experiment evaluates the detection model’s capability
of distinguishing different interactions of a target device,
focusing on the normal cases where only one interaction of
the target device exits in the traffic within the sliding window
under inspection. In the second experiment, we are interested
in the detection model’s performance in special cases where
multiple interactions of the target device exist in the traffic
within the sliding window under inspection. When performing
both experiments for a target device, in the background traffic,
we also consider the practical situation of the presence of
multiple devices of the same type as the target device, as well
as other types of devices, behind an IP address.

In the first experiment, Support Vector Machine (SVM) is
used as the classifier. For each type of IoT device, we train a
classifier to detect its interactions. To calculate the F1-Score
of the classifier, we use 10-fold cross validation. The classifi-
cation results will be accumulated across all rounds of traffic
samples. Table VII lists the detection performance of different
interactions of all devices. “Prediction Results” describes the
distribution of model prediction results when the traffic sample
is known to be a certain type (i.e., different interactions,
or background traffic), in the form of a sparse representation of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 403

TABLE VII

EXPERIMENT RESULTS OF DETECTING USER-IOT INTERACTIONS

confusion matrix. For example, “ 1©98% 3©2%” means “Sleep
mode change” of Mijia Camera are correctly identified in 98%
cases while falsely detected as “Turn on moving detection” in
the remaining 2% cases. “F1-Score” will be derived from the
confusion matrix.

In the second experiment, the MLP regression model is
used to predict the number of each interaction when multiple
interactions occur simultaneously. In the training process,
the training samples are randomly mixed to simulate concur-
rent interactions. In our experiment, we set the maximum num-
ber of concurrent interactions to be 10. This number is tunable.
If more than 10 interactions concurrently occur (though this
rarely happens), one can just increase this parameter and
retrain the model. During the testing process, we increase
the number of concurrent interactions from 0 to 10 with a
step of one. For a certain number of concurrent interactions,

we select the test samples uniformly at random from all
possible interactions for 100 times, resulting in 100 samples.
Again, we use 10-fold cross validation to evaluate the MLP
regression model. The performance metric Relative Total Error
(RTE) is defined as:

RTE =
∑N

n=1 |Xn − [Yn]|∑N
n=1 |Xn|

, (8)

where N represents the number of test samples, Xn and Yn

are the actual number of interactions and the predicted number
of interactions of the nth test sample, respectively, and [Yn]
represents the rounding of Yn.

In Table VII, RTE-1 represents the RTE of the MLP
regression model. We see that, when different interactions of
the same type of device are mixed, the error varies broadly

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 11. Relationship between RTE and the number of concurrent
interactions.

ranging from 0.06 to 0.92. To further improve the performance
of detecting concurrent interactions, we introduce stream SPs
as additional features. A stream SP is an SP that requires
all elements of the SP belonging to the same four tuple
stream: source IP address, destination IP address, source
port, and destination port. These additional features enhance
the distinguishability of mixed traffic streams from different
devices, thereby beneficial to detecting concurrent interactions.
RTE-2 lists the errors that use additional 10 stream SPs
for detecting each interaction. In most cases, it outperforms
RTE-1.

To gain insight into the detection sensitivity to the number of
concurrent interactions, we trained the models with 7 different
devices, and tested the RTE under the different number of
concurrent interactions. The results are shown in Fig. 11. Note
that the denominator of the RTE cannot be 0, and in this case,
we set it to the sample number. For those devices with low
errors like Mijia Plug and TP-LINK Bulb, there is a trend that
the RTE increases as the number of concurrent interactions
increases. For other devices, no such trend exists. The reason
for the high error is generally due to the significant variation
of the interaction’s traffic characteristics. For example, in 50%
of cases, Honeywell Themostat’s interaction “set thermostat”
does not trigger any traffic, while in the left 50% of cases,
it triggers traffic with diverse characteristics.

Overall, our model has good interaction classification ability
on most devices like Mijia Camera and TP-LINK Bulb. Note
that, although RTE evaluates the effect of detecting concurrent
interactions, and F1-Score represents the effect of classifying
individual interactions, there is a strong correlation between
RTE and F1-Score. Specifically, if F1-Score is close to 1,
there is a high probability that RTE will be very low. This
implies that accurately classifying individual interactions is a
cornerstone of detecting concurrent interactions of a device.

C. Analysis of Distinguishability

We would like to point out that some interactions of a device
may be indistinguishable. For example, by observing data
packets with different interactions of Orvibo Light, we found
that the packets of brighten and dim are indistinguishable,
and turn on and off power are also indistinguishable. Such
indistinguishability is also reflected in the “Prediction Results”
in Table VII, where these pairs of similar interactions have
high probabilities to be misclassified as each other.

To further verify whether the indistinguishable interactions
of Orvibo Light, we conduct analysis from the perspective
of data complexity. Specifically, we select four features that

Fig. 12. Fisher’s discriminant ratio matrix for four features. Each element
in the matrix represents the Fisher’s discriminant ratio of the Orvibo Light’s
interactions corresponding to the horizontal and vertical coordinates. Large
values mean significant difference between the two interactions.

are usually used in traffic classification tasks, and calculate
their Fisher’s discriminant ratio (FDR) [20] for each pair
of similar interactions, as shown in Figure 12. The higher
FDR is, the easier it is to distinguish between the two
interactions. We see that no features can clearly distinguish
between interaction 1 and interaction 2, and interaction 3 and
interaction 4.

As demonstrated in Table VII, if we merge similar (sep-
arate) interactions that are indistinguishable into one type,
the performance metric would be improved. This implies that
the classification performance metric also depends on the
granularity of labeling interaction types.

Answer to RQ3: Our method is promising in classifying
user interactions and detecting concurrent interactions.
Our method can detect user interactions with an average
F1 score of 0.80, and half of the user interactions with
F1 scores above 0.90.

D. Scalability in Practical Deployment

As we train CNN models separately for each device before-
hand, the scalability of our system mainly depends on the
detection stage. The detection includes two computation-
critical tasks, namely, CNN model processing and SP match-
ing. CNN model processing does not consume too many
computational resources, especially when the number of model
parameters is small (less than 20MB of memory usage under
our settings).

The main computational cost is attributed to SP matching.
The time complexity of SP matching is O(pq), where p is the
number of packets, and q is the length of an SP. Since q is
a constant in detection, the time complexity of our system is
almost linear to the number of packets. Therefore, our system
is competent at large-scale deployment.

During training, there is no need to observe the traffic of an
IoT device for a very long period of time so to generate SPs.
Thus, the training time, along with the needed size of IoT
traffic, is limited. As shown in Fig. 13(a), we generate SPs

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 405

Fig. 13. The trend of the ratio of SP coverage as the number of SPs increases
in temporal order and in ascending order of their importance.

in different time periods for Amazon Echo. As time proceeds,
the number of SPs becomes larger. If we use the SPs to match
all the original packets, we derive the ratio of SP coverage to
represent the proportion of the original packets that can be
characterized by these SPs. We see that the number of SPs
increases smoothly and (almost) constantly, while the ratio of
SP coverage grows very slowly after an initial rapid climb.
That is, the marginal utility of generating SPs to characterize
the original packets is drastically reduced after the initial
period (e.g., 30 minutes or one hour). As shown in Fig. 13(b),
the SPs of the x-axis are arranged in ascending orders of their
importance defined in (6). Mijia Plug (MP) has only 9 different
SPs, and the first SP characterizes 95% of the original packets.
DuSmart Speaker (DS) induces more than 1,900 different SPs
in one hour, and 10 of them characterize over 35% of the
original packets. Although 35% is not high, using only 10 SPs
still achieves excellent detection performance.

When our system is deployed in large-scale networks, train-
ing CNN models for each device separately is favorable. For
instance, no more than 5 SPs are sufficient to represent Ezviz
Plug’s behavior without undermining detection performance.
The packet time intervals of PIX-STAR Photo-frame exceeds
360 seconds, and one needs to increase the CNN time window.
All these customized operations reduce computational over-
head while assuring or even improving detection performance.

V. DISCUSSION

The key to passively detecting IoT devices and user interac-
tions is training a detection engine that incorporates the traffic
characteristics of various IoT devices. Our work provides a
solution to training such a detection engine. However, labeling
training samples at scale, especially those for user interactions,
remains labor-intensive. Exhaustively labeling training sam-
ples is impossible given the increasing number and diversity of
IoT devices. A possible way is to outsource the labeling task to
IoT users. For example, Sundaresan et al. and Schmitt et al.
proposed to deploy physical hardware devices for collecting
traffic samples on home networks by users [21], [22].

However, deploying hardware devices would be costly.
In contrast, Huang et al. developed and released IoT Inspector
to outsource the labeling task. IoT Inspector is an open-source
software that allows users to collect, observe, and label the
traffic from smart home devices on their own home net-
works [23]. Such a software-based outsourcing approach well
complements our work. Note that the outsourcing approach is
perfectly suited to labeling IoT devices, since users’ marking
MAC or IP addresses in home networks as different types of
IoT devices only requires their temporary workload.

Compared to collecting training samples of idle-state traffic
of IoT devices, collecting training samples of user interactions
is labor-intensive due to its requirement of user intervention.

One can outsource the labeling of user interactions to IoT
users. The participating users may upload their interaction
records, along with the device types, to the outsourcing plat-
form and get a certain reward. Alternatively, the labeling could
be performed by reverse-engineering the mobile app of the
IoT device, and automatically driving the device into different
user interactions through running the app on a simulator. Also,
these labeling approaches for user interactions are well suited
to automating labeling idle-state traffic of IoT devices.

Note that we base our detection method on the de facto
traffic characteristics of existing IoT devices. A recent study by
Apthorpe et al. presented a traffic-shaping method capable of
defending against passively inferring user activities at the cost
of higher bandwidth overhead [24]. As the users’ growing need
for a high level of privacy, we believe that some IoT devices
may adopt defenses against traffic analysis. However, given
the already established fact of the proliferation and the huge
number of IoT devices, it can be argued that it is extremely
challenging, if not impossible, for such defenses to be adopted
at scale in the foreseeable future. We conjecture that the rea-
sons are two-fold. First, passive traffic analysis can hardly be
perceived by IoT users. Hence, privacy breaches due to passive
traffic analysis may not attract attention of IoT users. Second,
compared to designing defenses against (sophisticated) passive
traffic analysis, producing reliable, effective, and protocol-
secure (e.g., adopting SSL/TLS) IoT devices is the top priority
for the vast majority of IoT manufacturers at the present stage.

There are situations where the traffic of an IoT device
may be changed. For example, a hacker compromises an IoT
device, and then utilizes this device to attack other devices. In
this example, the simplest and most efficient method for the
hacker to launch the attack is to deploy the attack program on
the device operating system without modifying its original net-
work function. Otherwise, the device owner may find that the
device cannot be used properly, thereby likely to recover the
operating system and consequently render the attack program
completely removed. Therefore, the attack would just induce
additional (attack) traffic without changing the original (IoT)
traffic. In such a case, our system will still work as expected.

In the extreme case that the hacker would like to fully
reshape the traffic characteristics and evade our detection, he
may need to modify either the client side (i.e., the device
firmware) or the server side (e.g., the IoT cloud servers),
or both sides. The client-side modification, though diffi-
cult, is possible. However, successful server-side modification
would expose the hacker due to its wide-ranging influence on
all devices. Therefore, the client-side modification would be
the only feasible choice for the hacker. However, as the client-
side modification scales up to a number of IoT devices, our
system could have a chance to re-learn the modified traffic
fingerprints when the modification is captured by honeynet.
More importantly, continuous operation of our system could
also be aware of the sudden disappearance of a device’s
previous traffic fingerprints, as well as the appearance of new
traffic fingerprints. Last but not least, our system is based on
passive traffic analysis. Hence, the hacker cannot perceive the
its deployment, drastically making the hacker confused about
when and where the detection evasion is needed.

In IPv6 environment, our system will still play an important
role in two aspects. First, in addition to translating the address
between IPv6 hosts, IPv6 NAT (e.g., NAT-PT) also helps to
translate IPv4 addresses to IPv6 addresses (and vice versa) of
network devices because of the IPv4/IPv6 coexistence [25].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Therefore, the emergence of IPv6, though offering a tremen-
dous number of IP addresses, may not completely eliminate
NAT in the foreseeable future. Second, even in the case that
all devices have an IPV6 address without NAT, our system can
detect IoT devices because all primitive features, except the
TTL (at the IP layer), originate from the transport layer and
the layers above. These features remain unchanged in IPv6.

As a matter of fact, the major obstacle to deploying our
system in IPv6 lies in the problem of IP layer encryption,
i.e., IPsec. If IPsec is enabled by a device, our system will
no longer be applicable due to the disappearance of the
primitive features. Fortunately, there are currently few IoT
devices using IPv6 on the market, not to mention the use
of IPsec. More importantly, although IPsec is a mandatory
part of an IPv6 specification, its use is optional as described
in RFC 6434 [26]. The reason is that special-purpose devices
may support only very limited applications, and an application-
specific security approach may be sufficient, and some devices
may run on extremely constrained hardware where the full
IPsec architecture is not justified.

While our system could detect IoT devices for security
purposes, it may also introduce privacy concerns. In the long
run, the IoT manufacturers should hide the traffic fingerprint
of the devices for private networks (e.g., home networks). This
would definitely prevent anyone tapping on the network from
inferring running IoT devices and other privacy (e.g., whether
a home is occupied). However, in this case, ISPs would fail
to make security polices for these IoT devices. Therefore,
a compromise solution is to hide the traffic fingerprint of user
interactions while retaining the fingerprint only indicative of
the presence of a device. When it comes to the IoT devices in
enterprise and industrial networks, it would be more favorable
to keep all the traffic fingerprints, since such networks involve
less privacy and require more security management.

VI. RELATED WORK

With the prosperity of IoT, traffic fingerprinting is gradually
leveraged for detecting IoT devices. For example, Amar et al.
disclosed the feasibility of detecting IoT devices through traffic
fingerprinting by case studies [27]. They did not build a
detection system. Yang et al. implemented an IoT discovery
system through actively probing the IPv4 space [28]. How-
ever, many devices residing behind NAT limit the application
scope of their system. Acar et al. revealed that, when a user
behind NAT occasionally accesses a phishing website with
DNS rebinding scripts, IoT devices behind the same NAT
can be fingerprinted [29]. Such vulnerability-based methods
are not general and are unlikely to be adopted in network
management.

Several studies built machine learning based passive traffic
fingerprinting systems for detecting IoT devices [30], [31].
According to the learning algorithms, they can be categorized
into feature-based and deep learning-based studies. Feature-
based studies craft traffic feature vectors, and then employ
supervised classification algorithms to conduct training and
testing [32]–[35]. Deep learning-based studies use raw data as
input. Then, CNN and Recurrent Neural Network (RNN) are
used to automatically generate features and perform the classi-
fication [36], [37]. These studies confirmed that passive traffic
fingerprinting empowers the network manager to accurately
identify IoT devices [10], [32]–[34], [36]–[38]. For example,
Bezawada et al. extracted 20 features for each packet and
obtained consistently good results [33]. Meidan et al. designed

a session-based classifier [34]. Jafari et al. collected physical
layer information from several ZigBee devices and achieved
detection with neural networks [36].

There are another branch of works studying IoT device
fingerprinting through directly inspecting wireless protocols,
such as Zigbee [39], Bluetooth [40], and LoRa [41]. Different
from our study, the systems of these works are usually
deployed at gateways (e.g., IoT hubs) directly connected to
IoT devices, capturing the wireless traffic at the physical layer.
Since the deployment location is very close to the devices,
lower-layer features like MAC addresses could be used detect
devices with standard (and product-specified) MAC addresses.
However, these systems are physical-protocol specific and their
detection scope is limited within IoT hubs.

In recent years, several studies have found that the
user interaction traffic of IoT devices may leak user pri-
vacy [42], [43]. Ren et al. analyzed the encryption of IoT
devices for revealing information exposure of 81 devices [19].
Trimananda et al. used a sequence of packet lengths to
identify the interactions [44]. OConnor et al. generated fea-
tures for each TCP connection and designed an interaction
classifier [45].

Our work is fundamentally different. Existing studies,
such as [10] and [27], have an underlying assumption: each
observed IP address just hosts a single (IoT) device. Given a
period of traffic traces associated with an IP address, their
model categorizes the traces into only one class (i.e., one
IoT device). However, it is pretty common for IoT devices
to be deployed behind NAT, generating complicated traffic
sharing the same IP address. Naturally, a period of traffic traces
associated with an IP address should be categorized into one
or more classes. The underlying assumption makes existing
studies practical only in limited scenarios. Additionally, exist-
ing studies may require the training/testing traffic traces to
be split into separate samples, hence not well suited to the
continuously arriving traffic.

Eliminating the underlying assumption and prerequisite, we
aim to infer IoT devices and user interactions from an ISP’s
perspective. When designing our system, we consider the com-
mon fact that many IoT devices are hidden behind NAT and
the traffic’s continuous arriving property. Additionally, in our
design, we remove simple features that could be easily adapted
(hence less reliable), including domain names, IP addresses
and port numbers, yet without detection performance degrada-
tion. Besides just detecting the presence of IoT devices, we can
accurately estimate their numbers, and detect user interactions,
in an online fashion without the need to explicitly split traffic
traces. Extensive experiments proved the effectiveness of our
system. Although Thangavelu et al. developed a distributed
device fingerprinting technique (DEFT) from an ISP’s perspec-
tive [46], DEFT requires control over routers, and necessitates
extensive router configurations. Therefore, its scalability and
immediate availability are limited.

VII. CONCLUSION

Motivated by the fact that many IoT devices are placed
behind NAT and hidden to network administrators, we make
the first effort towards passively pinpointing hidden IoT
devices from an ISP perspective. Our system can accurately
identify IoT devices, estimate their numbers, and detect user
interactions via spatial-temporal traffic fingerprinting, even
when devices are hidden behind NAT. Extensive evaluation
showed that our system can generally identify IoT devices

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

MA et al.: INFERRING HIDDEN IoT DEVICES AND USER INTERACTIONS 407

with an F1-Score above 0.999, and estimate the number of the
same type of IoT device behind NAT with an average error
below 5%. We performed experiments to show that our system
is promising in detecting fine-grained user interactions. We
revealed that the performance may vary from device to device,
depending on the interaction’s stability and distinguishability
in terms of traffic characteristics. The system can scale up
to large networks and work in an online fashion (identify IoT
devices in just a few minutes after they are connected) because
of its indispensability to user intervention during training and
low time complexity during detection.

REFERENCES

[1] (2019). Internet of Things (IoT) Connected Devices Installed Base
Worldwide From 2015 to 2025 (in Billions). [Online]. Available:
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] A. O. Prokofiev and Y. S. Smirnova, “Counteraction against Internet of
Things botnets in private networks,” in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (EIConRus), Jan. 2019, pp. 301–305.

[4] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT botnet of high
wattage devices can disrupt the power grid,” in Proc. USENIX Secur.,
2018, pp. 15–32.

[5] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “IoT security: Ongoing challenges and research opportunities,”
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl., Nov. 2014,
pp. 230–234.

[6] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use AI to enhance
security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41–49,
Sep. 2018.

[7] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
“A survey on IoT security: Application areas, security threats, and
solution architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019.

[8] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine learning
in IoT security: Current solutions and future challenges,” IEEE Commun.
Surveys Tuts., vol. 22, no. 3, pp. 1686–1721, 3rd Quart., 2020.

[9] (2021). CVE-2021-23853 Detail. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2021-23853

[10] A. Sivanathan et al., “Classifying IoT devices in smart environments
using network traffic characteristics,” IEEE Trans. Mobile Comput.,
vol. 18, no. 8, pp. 1745–1759, Aug. 2019.

[11] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Commun. ACM, vol. 20, no. 5, pp. 350–353,
May 1977.

[12] C. Bepery, S. Abdullah-Al-Mamun, and M. S. Rahman, “Computing a
longest common subsequence for multiple sequences,” in Proc. 2nd Int.
Conf. Electr. Inf. Commun. Technol. (EICT), Dec. 2015, pp. 118–129.

[13] K. Chen, Z. Zhang, J. Long, and H. Zhang, “Turning from TF-IDF to
TF-IGM for term weighting in text classification,” Expert Syst. Appl.,
vol. 66, pp. 245–260, Dec. 2016.

[14] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific
ECG classification by 1-D convolutional neural networks,” IEEE Trans.
Biomed. Eng., vol. 63, no. 3, pp. 664–675, Mar. 2016.

[15] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time
motor fault detection by 1-D convolutional neural networks,” IEEE
Trans. Ind. Electron., vol. 63, no. 11, pp. 7067–7075, Nov. 2016.

[16] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22, no. 10,
pp. 1533–1545, Jul. 2014.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580. [Online]. Avail-
able: https://arxiv.org/abs/1207.0580

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958,
Jan. 2014.

[19] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer IoT devices: A
multidimensional, network-informed measurement approach,” in Proc.
IMC, 2019, pp. 267–279.

[20] J. M. Sotoca, J. Sanchez, and R. A. Mollineda, “A review of data com-
plexity measures and their applicability to pattern classification prob-
lems,” Actas III Taller Nacional Mineria Datos Aprendizaje, vol. 2005,
pp. 77–83, Jan. 2005.

[21] S. Sundaresan, S. Burnett, N. Feamster, and W. de Donato, “Bismark:
A testbed for deploying measurements and applications in broadband
access networks,” in Proc. USENIX ATC, 2014, pp. 383–394.

[22] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, and
N. Feamster, “Enhancing transparency: Internet video quality inference
from network traffic,” in Proc. Res. Conf. Commun., Inf. Internet Policy,
2018, pp. 1–12.

[23] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “IoT
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale,” in Proc. ACM IMWUT, 2020, pp. 1–21.

[24] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster,
“Keeping the smart home private with smart(er) IoT traffic shaping,”
Proc. Privacy Enhancing Technol., vol. 2019, no. 3, pp. 128–148,
Jul. 2019.

[25] (2021). NAT-PT for IPv6. [Online]. Available: https://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-
book/ip6-natpt.html

[26] (2021). RFC 8504: IPv6 Node Requirements. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8504

[27] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley, and
A. Crabtree, “An analysis of home IoT network traffic and behav-
iour,” 2018, arXiv:1803.05368. [Online]. Available: https://arxiv.org/abs/
1803.05368

[28] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting of
IoT devices in the cyberspace,” Comput. Netw., vol. 148, pp. 318–327,
Jan. 2019.

[29] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-based
attacks to discover and control local IoT devices,” in Proc. Workshop
IoT Secur. Privacy, Aug. 2018, pp. 29–35.

[30] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “IoT devices
recognition through network traffic analysis,” in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2018, pp. 5187–5192.

[31] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device
classification from network traffic streams of Internet of Things,” in
Proc. IEEE 43rd Conf. Local Comput. Netw. (LCN), Oct. 2018, pp. 1–9.

[32] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and
D. Sicker, “Passive data link layer 802.11 wireless device driver fin-
gerprinting,” in Proc. UNISEX Secur., 2006, pp. 16–89.

[33] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and
I. Ray, “IoTSense: Behavioral fingerprinting of IoT devices,” 2018,
arXiv:1804.03852. [Online]. Available: https://arxiv.org/abs/1804.03852

[34] Y. Meidan et al., “ProfilIoT: A machine learning approach for IoT device
identification based on network traffic analysis,” in Proc. ACM SAC,
2017, pp. 506–509.

[35] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “IoT SENTINEL: Automated device-type identification for
security enforcement in IoT,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2017, pp. 2177–2184.

[36] H. Jafari, O. Omotere, D. Adesina, H.-H. Wu, and L. Qian, “IoT devices
fingerprinting using deep learning,” in Proc. IEEE Mil. Commun. Conf.
(MILCOM), Oct. 2018, pp. 1–9.

[37] S. Aneja, N. Aneja, and M. S. Islam, “IoT device fingerprint using deep
learning,” in Proc. IEEE Int. Conf. Internet Things Intell. Syst. (IOTAIS),
Nov. 2018, pp. 174–179.

[38] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural net-
works for Internet of Things,” IEEE Access, vol. 5, pp. 18042–18050,
2017.

[39] L. Babun, H. Aksu, L. Ryan, K. Akkaya, E. S. Bentley, and
A. S. Uluagac, “Z-IoT: Passive device-class fingerprinting of ZigBee
and Z-wave IoT devices,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–7.

[40] A. M. Ali, E. Uzundurukan, and A. Kara, “Assessment of features
and classifiers for Bluetooth RF fingerprinting,” IEEE Access, vol. 7,
pp. 50524–50535, 2019.

[41] P. Robyns, E. Marin, W. Lamotte, P. Quax, D. Singelée, and B. Preneel,
“Physical-layer fingerprinting of LoRa devices using supervised and
zero-shot learning,” in Proc. 10th ACM Conf. Secur. Privacy Wireless
Mobile Netw., Jul. 2017, pp. 58–63.

[42] N. J. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and
N. Feamster, “Spying on the smart home: Privacy attacks and defenses
on encrypted IoT traffic,” 2017, arXiv:1708.05044. [Online]. Available:
https://arxiv.org/abs/1708.05044

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

[43] N. J. Apthorpe, D. Reisman, and N. Feamster, “A smart home is
no castle: Privacy vulnerabilities of encrypted IoT traffic,” 2017,
arXiv:1705.06805. [Online]. Available: https://arxiv.org/abs/1705.06805

[44] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Ping-
Pong: Packet-level signatures for smart home device events,” 2019,
arXiv:1907.11797. [Online]. Available: https://arxiv.org/abs/1907.11797

[45] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and
A.-R. Sadeghi, “HomeSnitch: Behavior transparency and control for
smart home IoT devices,” in Proc. 12th Conf. Secur. Privacy Wireless
Mobile Netw., May 2019, pp. 128–138.

[46] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and
M. Gurusamy, “DEFT: A distributed IoT fingerprinting technique,” IEEE
Internet Things J., vol. 6, no. 1, pp. 940–952, Feb. 2019.

Xiaobo Ma (Member, IEEE) received the Ph.D.
degree in control science and engineering from Xi’an
Jiaotong University, Xi’an, China, in 2014. He was a
Post-Doctoral Research Fellow with The Hong Kong
Polytechnic University. He is currently an Asso-
ciate Professor with the MOE Key Laboratory for
Intelligent Networks and Network Security, Faculty
of Electronic and Information Engineering, Xi’an
Jiaotong University. He is an XJTU Tang Scholar.
His research interests include internet measurement
and cyber security.

Jian Qu received the bachelor’s degree in computer
science and technology in 2019. He is currently pur-
suing the Ph.D. degree with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an, China. He was in
the Special Class for the Gifted Young at Xi’an
Jiaotong University. His current research interests
include internet traffic analysis and cyber security.

Jianfeng Li received the Ph.D. degree in control
science and engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2018. He was with the
MOE Key Laboratory for Intelligent Networks and
Network Security, Faculty of Electronic and Infor-
mation Engineering, Xi’an Jiaotong University. He is
currently a Post-Doctoral Research Fellow with The
Hong Kong Polytechnic University. His research
interests include network security and privacy.

John C. S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from UCLA. He is
currently Choh-Ming Li Chair Professor with the
Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong. He is
also leading a group of students and post-doctoral
students at the Advanced Networking and Sys-
tem Research Laboratory (ANSRLab). His current
research interests are in online learning algorithms
and applications, machine learning on network sci-
ences and networking systems, large scale data

analytics, network/system security, network economics, large scale storage
systems, and performance evaluation theory. He is a Fellow of ACM and a
Croucher Senior Research Fellow.

Zhenhua Li received the B.S. and M.S. degrees
from Nanjing University in 2005 and 2008,
respectively, and the Ph.D. degree from Peking
University in 2013, all in computer science and tech-
nology. He is currently an Associate Professor with
the School of Software, Tsinghua University. His
research areas cover mobile networking/emulation
and cloud computing/storage. He is a Professional
Member of IEEE and a Senior Member of ACM.

Wenmao Liu received the Ph.D. degree in infor-
mation security from Harbin Institute of Technol-
ogy in 2013. He is currently the Director of the
Innovation Center and also a Leader of XingYun
Lab, NSFOCUS Inc., and the Co-Chair of Cloud
Security Service WG, CSA. During the first two
years at NSFOCUS, he was worked as a Post-
Doctoral Researcher at Tsinghua University. His
research interests are focused on cloud security,
the IoT security, data-driven analytics, and other new
research areas of network security.

Xiaohong Guan (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from the Univer-
sity of Connecticut, Storrs, in 1993. Since 1995,
he has been with the Department of Automation,
Tsinghua National Laboratory for Information Sci-
ence and Technology, and the Center for Intelli-
gent and Networked Systems, Tsinghua University.
He is currently with the MOE Key Laboratory for
Intelligent Networks and Network Security, Faculty
of Electronic and Information Engineering, Xi’an
Jiaotong University, Xi’an, China, where he is also

the Dean of the Faculty of Electronic and Information Engineering. He is an
Academician of Chinese Academy of Sciences.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 25,2022 at 07:08:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

