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ABSTRACT
Mobile operating systems like Android failed to provide suf-
ficient protection on personal data, and privacy leakage be-
comes a major concern. To understand the security risks
and privacy leakage, analysts have to carry out data-flow
analysis. In 2014, Android upgraded with a fundamentally
new design known as Android RunTime (ART) environ-
ment in Android 5.0. ART adopts ahead-of-time compi-
lation strategy and replaces previous virtual-machine-based
Dalvik. Unfortunately, many data-flow analysis systems like
TaintDroid [19] were designed for the legacy Dalvik environ-
ment. This makes data-flow analysis of new apps and mal-
ware infeasible. We design a multi-level information-flow
tracking system for the new Android system called Taint-
ART. TaintART employs a multi-level taint analysis tech-
nique to minimize the taint tag storage. Therefore, taint
tags can be stored in processor registers to provide efficient
taint propagation operations. We also customize the ART
compiler to maximize performance gains of the ahead-of-
time compilation optimizations. Based on the general de-
sign of TaintART, we also implement a multi-level privacy
enforcement to prevent sensitive data leakage. We demon-
strate that TaintART only incurs less than 15 % overheads
on a CPU-bound microbenchmark and negligible overhead
on built-in or third-party applications. Compared to legacy
Dalvik environment in Android 4.4, TaintART achieves
about 99.7 % faster performance for Java runtime bench-
mark.

1. INTRODUCTION
Mobile devices such as smartphones, tablets and wearable

devices are widely used for communication, photo taking,
entertainment, and monitoring health status. Many appli-
cations (apps for short) installed on the smartphones provide
useful services, but they may also privately send sensitive in-
formation to remote servers for various data analytics [12].
Worse yet, some of them can gain profit from these personal
data [38]. Furthermore, malware can secretly steal sensitive
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information such as contact lists without users’ consent. All
these indicate that privacy leakage is a serious threat to a
large community of mobile users.

To understand the possibility of privacy leakage, research-
ers seek solutions in two directions of data-flow analysis.
Firstly, with the disassembled code of a given app, research-
ers can perform static data-flow analysis techniques such as
static taint analysis and symbolic execution. This type of
methods can statically derive a set of possible data which
may leave devices at runtime, and decide whether sensitive
data leaks to untrusted channels. The limitation of this
method is that it cannot detect runtime information dis-
closures when the app developers use techniques such as
code with Java reflection, code encryption, or dynamic code
loading techniques. Therefore, researchers proposed to use
dynamic methodologies to monitor suspicious behaviors at
runtime. The dynamic taint analysis technique [46] is one of
many dynamic methodologies which can track the informa-
tion flows within apps at runtime. The dynamic taint anal-
ysis technique will label (taint) sensitive data from certain
sources and handle label transitions (taint propagation) be-
tween variables, files, and procedures at runtime. If a tainted
label transmits out of the mobile device through some func-
tions (sinks), one can then monitor the data leakage dynam-
ically. This method can accurately track data flows at an
app’s execution time.

TaintDroid [19] is a notable dynamic taint analysis system
for Android apps. It customizes Android runtime (Dalvik
Virtual Machine) to achieve taint storage and taint prop-
agation. Many systems [16, 63, 5, 43, 42, 54] are based
on TaintDroid to conduct further analysis. However, there
are several constraints which make TaintDroid can no longer
function on the latest Android for privacy tracking and mal-
ware analysis (and to a certain extent, data flow analysis).

Firstly, TaintDroid was originally designed for virtual-
machine-based system (i.e., Dalvik virtual machine), and
implemented on legacy Android systems 2.1, 2.3, 4.1, and
4.3. TaintDroid utilizes the internal memory of Dalvik vir-
tual machine for taint storage and propagation. To enhance
the performance of Android, Google recently changed to the
ahead-of-time (AOT) compilation strategy and introduced
Android RunTime (ART) to replace Dalvik VM starting
from Android 5 and onward. Instead of interpreting code
(or using JIT [25, 62]) by virtual machine at runtime, the
AOT compilation strategy will directly compile apps into
native code at the first installation time. Therefore, one
cannot use TaintDroid for the newly-designed runtime and
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TaintDroid can at most only support legacy systems up to
Android 4.4.

Secondly, although the latest Android still provides a fall-
back runtime interpreter for debugging, the performance is
not acceptable (as shown in our evaluation). Therefore,
porting TaintDroid to this fallback runtime cannot take ad-
vantage of compiler optimization and the performance issue
hinders effective security and data flow analysis.

Thirdly, because of the compatibility and performance is-
sues, users cannot use TaintDroid for policy enforcement to
prevent privacy leakage. As shown in the Android distribu-
tion statistics [24], about half of Android users have already
upgraded to Android 5.0 or above, and this number contin-
ues to grow.

Last but not least, we discover that app developers tend
to target newer Android versions so as to use latest features
which TaintDroid does not support. We measured SDK ver-
sions of five hundreds apps in Google Play’s “Top Charts”on
October 2015 and February 2016. As shown in Figure 1, the
average target SDK version has changed from 19 (Android
4.4) to 20 (Android 5.0). Again, this implies that many
new apps may not be analyzed by TaintDroid, and malware
can exploit this incapability to bypass security or data flow
analysis.

In this paper, we design and implement TaintART, a dy-
namic information-flow tracking system which targets the
latest Android runtime. TaintART introduces a multi-level
taint label so as to tag the sensitive levels of different taint
sources. TaintART instruments Android’s compiler and
utilizes processor registers for taint storage. Compared to
TaintDroid which needs at least two memory accesses, Taint-
ART only needs few register accesses and hence achieves
faster taint propagation. Therefore, TaintART has a much
better performance than TaintDroid. We also prototype
TaintART on the latest Android system and conduct ex-
tensive performance evaluation.

In summary, we make the following contributions:

• Methodology. We first propose a novel method to
efficiently track dynamic information flows on the An-
droid mobile operating system with ahead-of-time com-
pilation strategy. By instrumenting the compiler, we
conduct multi-level taint analysis on compiled apps
with optimized code rather than the app’s original
bytecode. Furthermore, instead of relying on mem-
ory storage, our method utilizes processor registers to
achieve fast taint storage and propagation, resulting in
minimal performance and memory overheads.

• Implementation. We implement TaintART on the
latest released Android system (Android 6.0 “Marsh-
mallow”) which supports the newly-designed applica-
tion runtime (i.e., ART runtime). TaintART can
track multi-level information flows within a method,
across methods, as well as data transmitted between
apps. To the best of our knowledge, this is the first
information-flow tracking system which supports the
newly-designed ART runtime. Furthermore, because
information-flow analysis is a general analysis tech-
nique which can be used in many research areas, we
shall open-source our system.

• Performance. We also extensively perform the mac-
robenchmarks, microbenchmarks and compatibility test
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Figure 1: Trends of minimum SDK versions and tar-
get SDK versions for apps downloaded from Google
Play’s “Top Charts”.

of TaintART. TaintART incurs an overall Java run-
time overhead of less than 15 % compared to the orig-
inal environment with optimizing compiler backend.
It is worth noting that TaintART can achieve 2.5 %
and 99.7 % faster for overall performance compared to
quick compiler backend ART runtime and Dalvik VM
in Android 4.4. In addition, TaintART incurs negligi-
ble memory overhead and less than 5 % IPC overhead.
More importantly, our CTS test shows that Taint-
ART can analyze apps without compatibility issues.

• Application to privacy leakage analysis. On top
of TaintART platform, we discover privacy leakage
issues on popular apps in Android 6.0 and provide
a solution to prevent data leakage in various levels.
Furthermore, we also find that some functions of apps
could not be analyzed due to compatibility issues when
we analyze these apps using TaintDroid based on An-
droid’s legacy runtime.

The rest of this paper is organized as follows. Section 2
introduces the background of Android runtime. Section 3
describes our TaintART design on taint storage, taint prop-
agation, and taint logic. In Section 4, we show the im-
plementation details of TaintART. We also conduct sev-
eral case studies such as privacy tracking in Section 5. In
Section 6, we extensively evaluate the macrobenchmarks,
microbenchmarks and compatibility issues of TaintART.
Section 7 presents TaintART’s limitations and our future
works. Related work is presented in Section 8 and Section 9
concludes.

2. BACKGROUND
In this section, we discuss essential background of Android

systems and Android app environment.

2.1 Android Overview
Android operating system is based on the Linux kernel.

On top of the kernel, Android provides a set of libraries, such
as database libraries and app runtime libraries. Moreover,
there is a middleware called application framework based on
these common libraries. The application framework provides
various APIs for apps developers, such as activity manage-
ment, content management, and view system. Supported by



app frameworks, many apps and background services run
on the device. There are some system services providing
fundamental functions such as sending and receiving mes-
sages, getting current locations, and reading accelerometer
data. Android apps are mainly written in Java, but to en-
hance performance, developers can also embed C/C++ and
use Java Native Interface (JNI) to interact with apps and
framework APIs. Each app runs in an isolated environment.
Apps can communicate with other apps and services through
a specific inter-process communication mechanism called the
binder. Messages in the binder can hold actions or data ob-
ject references and will be serialized into parcels. A binder
kernel module is responsible for passing parcel messages be-
tween processes. Using this approach, different apps can
request actions or share information across app sandboxes.

2.2 Android App Environment
After developing an app, developers need to compile Java

sources of an app into bytecode by a Java compiler with the
javac tool and convert it to the dex bytecode with the dx

tool. With other resources, the dex file will be zipped into
one single application package file (apk file) for distribution
on app markets. Users can download and install apps from
the markets into their Android devices. Basically, Android
app environment contains two stages: installation stage and
runtime stage. During the installation of apps, Android de-
vices may conduct further compilation or optimizations lo-
cally. After installation, apps can run with the support of
app runtime such as handling method calls to framework
APIs, or interacting with the Java native interface (JNI).
For Android devices, there are two fundamentally different
app environments: Dalvik and ART. Figure 2 illustrates the
basic flow of app environment and compares differences of
these two environments.

Dalvik Environment Legacy Android systems (versions
which are less than 4.4) are equipped with Dalvik environ-
ment. Dalvik adopts virtual machine interpretation strategy
at runtime. During the app installation, a dexopt tool will
optimize original dex bytecode such as pre-computing data,
pruning empty methods, and improving virtual method calls.
At runtime, a Dalvik virtual machine will interpret byte-
code and execute architecture specific native code. Dalvik
VM maintains an internal stack for local variables and argu-
ments. To improve performance, Dalvik also features mod-
ular interpretation and just-in-time compilation.

The modular interpretation technique is to split each op-
code in platform-specific modules. For example, the add-

int dex operation will be interpreted as ARM assembly in
the OP_ADD_INT_LIT16.S file. TaintDroid modified related
modules in the Dalvik VM to implement taint tracking func-
tions.

ART Environment ART was first introduced as an exper-
imental environment along with Android 4.4 in 2014. Start-
ing from Android 5.0 in 2015, Google decided to replace
Dalvik and made ART as the default environment. To im-
prove the runtime performance, ART adopts ahead-of-time
(AOT) compilation strategy instead of virtual machine in-
terpretation. ART provides a compiler called dex2oat. The
dex2oat tool will directly compile dex bytecode into native
code during app’s installation and then store as an oat file.
Because of the AOT compilation, the dex2oat compiler can
perform multiple passes for optimization to achieve better

Figure 2: Comparison between Android Dalvik and
ART environment.

performance. For historical reasons, there are two compiler
backends in the ART compiler which are “quick” backend
and “optimizing” backend. The “optimizing” backend can
perform more optimization strategies, and became the de-
fault compiler backend from Android 6.0. At runtime, ART
will mainly handle dynamic heap management such as ob-
ject allocations and garbage collections. Note that although
the original sources of Dalvik VM were removed from the
code bases, some names of tools and functions still contains
“dalvik”.

Because of the differences of the modular interpreter and
AOT compiler, the design methodologies of taint tracking
are fundamentally different. In addition, TaintDroid cus-
tomizes Dalvik VM and utilizes its internal stack. It dou-
bles the size of stack frame and stores taint tags for each
parameters and local variables in the extra memory slots.
This incurs two times internal memory usage for stack frame
and at least two memory accesses for each taint propagation
event. To better utilize compiler optimization, we propose
to instrument the ART compiler.

3. SYSTEM DESIGN
In this section, we first present an overview of TaintART

and then discuss various building blocks of our taint-based
dynamic information-flow tracking system.

3.1 Overview

Design We design TaintART, a compiler-instrumented
information-flow tracking system. TaintART utilizes dy-
namic taint analysis technique and can track data by insert-
ing tracking logic. TaintART employs a multi-level taint
tag methodology to minimize taint storage so that tags can
be stored in processor registers for fast access. We imple-
ment TaintART by customizing the ART compiler to retain
the original ahead-of-time optimizations (which will be pre-
sented in Section 3.2). TaintART also defines multi-level
data tracking strategy which can be used for policy enforce-
ment on data leakage. Because the compiler and calling
convention are stable across versions, TaintART is durable
and can be easily updated to support future versions.

In dynamic taint analysis, sensitive data is targeted at
any sensitive function called taint source. A taint tag will
be labeled on the sensitive data for tracking. When the data
is copied or transformed to another place, its taint tag will
propagate to the new place. When the data is purged, its
taint tag will be cleared. We call taint propagation and taint
purging as taint logic and it defines the transition of taint



tag. The taint tag status for tracking data will be stored
in taint tag storage. Dynamic taint analysis will track the
tainted sensitive data and monitor if any tainted data leaves
the system at some specified functions called taint sinks,
such as sending out data via the network or save the data
in an external storage.

Figure 3 describes the overview of TaintART, which con-
sists of two components taking actions on two separate stages
respectively. They are TaintART compiler at installation
stage and TaintART runtime at runtime stage. For the in-
stallation stage, the TaintART compiler will compile apps
into native code. Note that the compiler is based on the ART
compiler with the “optimizing” backend containing three ba-
sic building blocks: builder, optimizer, and code generator.
The builder will parse app’s dex bytecode to intermediate
representations, i.e., internal control flow graphs. Using this
internal control graph, the optimizer will combine logic, op-
timize register assignment, eliminate instructions, etc. Fi-
nally, the code generator will compile internal representa-
tions into machine specific native code. Before generating
the native code, the TaintART compiler will insert code
blocks to handle taint logic. For example, if a tainted vari-
able is copied to another variable, the inserted block will
help to propagate taint tags of these variables and mod-
ify tag status in the taint storage. Note that code blocks
will be injected in a fully optimized code, and this will not
only maintain the original program logic, but also preserve
performance gains by compiler’s optimizations. For the run-
time stage, the TaintART runtime can track taint tag of
sensitive data by efficiently accessing tag status in the taint
tag storage. When the tainted data is transported to other
channels, the TaintART runtime can report the event.

Figure 3 illustrates a simple control flow graph. Each
node in the graph represents a program logic and arrows
pointing to the next logic. Node 1 contains an instruction
to get sensitive data from a taint source and save in the R0

variable. Node 2 is to empty R0 and its taint tag will be clear.
Node 3 is to assign the data in R0 to R1. This means the
taint tag in R0 will propagate to R1. For taint propagation
logic, we will insert nodes (e.g., nodes highlighted in gray)
to manage changes of taint tags. For node 4, the logic is
to send the data in R1 to other untrusted channels such
as the WiFi network, i.e., a taint sink. As shown in the
figure, there are two possible paths at runtime resulting in
different data-flow. Only the first one (i.e., red path in solid
line) leads to information leakage. TaintART will track
the taint status of each registers (i.e., variables) so as to
determine if the data is leaked. If the runtime control flow
is the blue path (in dotted line), the taint tag of R1 should
be false in the end meaning no sensitive data is leaked. We
will explain how TaintART efficiently stores taint tags and
handles taint logic in later sections.

3.2 Taint Tag Storage
At runtime, each taint logic may cause status change of

taint tags. Therefore, the design of taint tag storage will
largely affect the runtime performance. TaintART employs
processor registers for taint tag storage to achieve the fastest
storage access. To illustrate, we consider the scenario for
recording two taint tag states only. Essentially, TaintART
can utilize m bits of a register to store a taint tag status of a
variable. If a variable is tainted, its corresponding bits in the
taint storage register will be marked as tainted, otherwise,

Figure 3: Overview of TaintART.

Figure 4: Taint tag storage using register R5.

the bits will be set to untainted. We first use one bit to
represent two taint states, and will discuss the scenario on
multiple taint tag states in Section 4.

Specifically, the TaintART compiler will reserve registers
for taint storage. Figure 4 illustrates the basic idea of storing
taint tag in registers. Our TaintART prototype is built on
Google Nexus 5, which is a 32-bit ARM platform Android
device. There are 16 regular CPU registers and each register
has 32 bits. We reserve the register R5 for taint storage. The
register allocator of the TaintART compiler will ensure that
R5 will not be assigned for other purposes such as variable
storage. The first sixteen bits (from bit 0 to bit 15) will
be used for storing taint tags of sixteen registers (from R0

to R15). Note that the ART runtime will also reserve stack
registers (SP/R13, LR/R14 and PC/R15), thread register (TR/
R9) and temp register (R12). Therefore, we do not need to
maintain bits for taint tag storage of these registers. Besides,
Nexus 5 contains a vector floating-point coprocessor. We use
the remaining sixteen bits for storing taint tag of floating
point registers (from S0 to S15).

Taint Tag Spilling Because a processor has a limited
number of registers and not all variables can be assigned
to registers, the register allocator will temporarily store ex-
tra variables in the main memory. The operation of moving
a variable from a register to the main memory is called reg-
ister spilling. The taint tag storage of TaintART is based
on CPU registers. If a variable in register is spilled to mem-
ory, the taint tag of this register is no longer valid. In our
design, we will store its taint tag into memory right after
the spilled variable. We call this operation taint tag spilling.
Figure 5 illustrates taint tag spilling operation. If R4 spills
into memory, its taint tag will be stored in the next slot
in the memory stack. Normally, the compiler will optimize
register allocations to minimize register spilling. Therefore,
runtime performance will not be affected too much. We will
evaluate this performance overhead in Section 6.

Taint Tag of Object Fields The ART runtime maintains
a heap for storing objects. The TaintART runtime adds



Figure 5: Taint tag spills into memory.

an extra space for each field in an object to indicate its
taint status. For array, object array and string objects, we
only store one taint tag to minimize the memory usage. We
modified the heap allocator in the ART runtime to allocate
spaces for storing taint tag. When there is an access to a field
of an object, the TaintART compiler will load its taint tag
from the memory to the corresponding register taint storage.
We will presents taint propagation logic for field reading and
writing in details later.

3.3 Taint Propagation Logic
TaintART provides variable-level taint tracking by in-

strumenting the Android compiler. Basically, TaintART
tracks registers used for primitive type variables and ob-
ject references. This section presents basic taint propagation
logic, taint propagation via methods calls, and propagation
between apps through binder IPC.

3.3.1 Taint Propagation Logic
The code builder of the ART compiler will transform the

original dex bytecode into an internal control flow graph
(HGraph). The dex instructions will be represented as
HInstruction classes internally in the HGraph. For example,
a const/4 dex bytecode will be built as an HIntConstant

instruction. The HGraph consists of many basic blocks
(or HBasicBlocks). Then based on the HGraph, the opti-
mizer will conduct various optimization strategies such as
phi elimination, liveness analysis, dead code elimination,
and constant folding. The ART compiler generator operates
on HGraph and transforms internal instruction representa-
tion (HInstruction) in basic blocks into native code. The
TaintART compiler instruments the original ART compiler
and inserts code blocks to handle taint propagation logic.

The taint propagation logic is a set of operations (i.e., the
HInstruction classes) which may cause variables’ taint la-
bels to change status. Table 1 shows descriptions of all types
of tracking taint propagation logic including move opera-
tions, unary/binary operations, array operations, and field
operations. The “HInstruction” column indicates classes of
instructions. An HInstruction class contains its instruc-
tion type and related locations. The “Location” field is an
abstraction over the potential registers containing variables
or constants. For instance, the HBinaryOperation class con-
tains a set of binary operations such as addition (HAdd), sub-
traction (HSub) and multiplication (HMul). There are three
locations related to this type of instructions which are first,
second, and out. The semantic of HBinaryOperation is to
conduct an operation (⊗) such as addition (+) on the first

location and the second location, and store (←) the final
result in the out location. Note that because TaintART
tracks taint propagation on optimized compiled code, com-
pared to TaintDroid’s VM-based taint logic, TaintART will

Figure 6: Taint tag propagates from R1 to R0 for
the MOV R0, R1 instruction.

introduce much less instructions on handling taint status
changes. For instance, we do not need to track constant
instructions (e.g., const/4, const/16 and const/high16 in
dex bytecode) as taint logic propagation. This is because
during the optimization of the ART compiler, the optimizer
will conduct constant folding and inline the remaining con-
stants into related instructions. Therefore, the code genera-
tor will ignore this type of instructions.

Because TaintART uses CPU registers as the taint tag
storage, the logic of taint label propagation is simple and
fast. Figure 6 illustrates an example of the four steps to
propagate taint status from an R1 variable to an R0 variable
for the MOV R0, R1 instruction. There are two registers in-
volved. The R5 register is the taint storage. We also need a
temporary register for taint labels propagation. Fortunately,
the ART compiler reserves the R12 register and provides it
for temporary usage. The four steps for taint propagation
are (1) clear destination bit, (2) masking tainted bit, (3)
shifting bits, and (4) merging tainted bits. Note that the
last two steps can be combined into one instruction (3′)
in ARM architecture devices. Therefore, TaintART only
needs three data processing instructions without memory ac-
cess to efficiently propagate a taint label. This is important
because all instructions on taint propagation logic should be
tracked at runtime. If it is not designed properly, this will
introduce a huge impact on the runtime performance. We
will perform instruction-level microbenchmak on Section 6.
For binary operations (i.e., HBinaryOperation), we take the
maximum value of taint tags from the first location and
the second location and set it as the taint tag of the out lo-
cation so as to achieve multi-level awareness. We will discuss
the multi-level scenario in Section 4.

3.3.2 Method Invocation Taint Propagation
For the method invocation, we need to handle the taint

propagation by passing values through method parameters.
According to the method calling convention in ART environ-
ment, the R1, R2 and R3 registers are used for passing first
three parameters. If the number of parameters is greater
than three, the remaining parameters will be spilled into
the memory. The TaintART compiler will push the taint
storage register (i.e., R5) into the memory at the method
frame entry. Then, all bits of R5 are cleared except taint la-
bel bits for R1, R2 and R3 three passing parameters. For the
spilled parameter registers, we do not need to do extra oper-
ations. Same as the taint tag spilling method we discussed
in taint tag storage section, the system utilizes another word



Table 1: Descriptions of multi-level aware taint propagation logic.

HInstruction (Location) Semantic Taint Propagation Logic Description

HParallelMove(dest, src) dest ← src Set dest taint to src taint, if src is constant then clear dest taint

HUnaryOperation(out, in)
out ← in Set out taint to in taint, unary operations ∈ {!, -, ~}

HBooleanNot, HNeg, HNot

HBinaryOperation(out, first, second)

out ← first ⊗ second
Set out taint to max(first taint, second taint),
⊗ ∈ {+, -, *, /, %, <<, >>, &, |, ^}

HAdd, HSub, HMul, HDiv, HRem,

HShl, HShr, HAnd, HOr, HXor

HArrayGet(out, obj, index) out ← obj[index] Set out taint to obj taint

HArraySet(value, obj, index) obj[index] ← value Set obj taint to value taint

HStaticFieldGet(out, base, offset) out ← base[offset] Set out taint to base[offset] field taint

HStaticFieldSet(value, base, offset) base[offset] ← value Set base[offset] field taint to value taint

HInstanceFieldGet(out, base, offset) out ← base[offset] Set out taint to base[offset] field taint

HInstanceFieldSet(value, base, offset) base[offset] ← value Set base[offset] field taint to value taint

to store taint tag and loads into taint tag storage register
when the spilled registers is needed. At the frame exit, R5
will be popped and restored finally.

3.3.3 Binder IPC & Native Code Taint Propagation
Binder mechanism is one common way to exchange mes-

sages between apps. Because the binder implementation in
Android framework is stable, we employ previous methodol-
ogy. We track taint tag propagation in message-level gran-
ularity for performance concern. We add an extra field in
binder parcel to indicate the taint status of this message.
When sending a binder message, the TaintART runtime
will append taint status into the parcel message and unpack
the taint status when a message arrives. Because Taint-
ART mainly focus on tracking information flows within
ART environment. We can employ existing work such as
NDroid [42] which mainly focuses on tracing information
flow through JNI.

4. IMPLEMENTATION
In this section, we discuss implementations on taint

sources and sinks, taint interface library and some deploy-
ment details of TaintART.

4.1 Taint Sources and Sinks
Taint analysis system is a general methodology which

is widely used in vulnerability detection, privacy tracking,
and malware analysis. Based on our design, we implement
TaintART for tracking multi-level information flows. This
will help users to monitor sensitive information and assist
analysts to dissect malware behaviors. Moreover, we can
also adopt TaintART for enforcing policy on sensitive data
leakage.

In our implementation, we track four types of data from
fifteen different sources. Table 2 lists all data sources. We
categorize them as device identity, sensor data, sensitive
content and location data. We place taint source logic in
corresponding classes to track these data. For example, de-
vice identity such as IMEI number can be obtained from
TelephonyManager. TelephonyManager is one of many sys-
tem services in system server process. Apps can acquire
telephony data by sending request message to the telephony
manager through binder IPC. Therefore, our sources are
placed at a method in the TelephonyManager class for han-

dling requests of device identity from binder. The Taint-
ART source logic will attach a taint tag in that binder par-
cel.

For sink placements, we consider leakage to network and
external storage. If tainted data is passed to sink functions,
TaintART will record this event as data leakage. Because
we provide interfaces for placing sources and sinks, analysts
can focus and track data they are interested in.

In Section 3, we use one bit for taint tag to explain our
system design. For some scenarios, we need to track multi-
ple data sources. Therefore, we can use more bits for taint
storage to represent multiple taint tag states. For tracking
sensitive data in multiple levels, we use two bits for storing
one taint tag. We categorize data leakage in four levels. The
level zero indicates that there is data leakage. Because de-
vice identity information are always used for advertisement
tracking and account identity in current apps, these data are
less sensitive and are classified in the first level. Sensor data
such as accelerometer and rotation information is in the sec-
ond level. At last, location data and sensitive content such
as messages, contact lists and call logs are categorized in
the third level. We consider data in level three as the most
sensitive data.

4.2 Taint Analysis Interface
Because TaintART is designed for general data flow anal-

ysis, analysts can develop new tools or services based on
TaintART. We provide two basic interfaces for taint anal-
ysis which are addTaint() and getTaint(). Developers can
use addTaint() to update taint tag of a specific local vari-
able or objects, and inspect taint tag later. To achieve better
performance, we implement these two primitive interfaces as
intrinsic functions so that the TaintART compiler can in-
line the functions at the compilation time.

4.3 Implementation & Deployment Details
We prototype TaintART based on the current latest

Android version (Android 6.0.1 Marshmallow AOSP tag
android-6.0.1_r1) for Nexus 5 (target aosp_hammerhead).
We customize the ART compiler and ART runtime sources
to implement taint tag propagation. We also add sources
tracking logic in Android framework sources. To support
taint propagation through JNI, we also customize binder-
related sources in Android framework. In summary, we
provide customized binary and libraries such as dex2oat,



Table 2: Taint Sources and Privacy Leakage Levels

Level Leaked Data Source Class/Service

0 (00) No Leakage N/A N/A

1 (01) Device Identity

IMSI TelephonyManager

IMEI TelephonyManager

ICCID TelephonyManager

SN TelephonyManager

2 (10)

Sensor Data
Accelerometer SensorManager

Rotation SensorManager

Location Data

GPS Location LocationManager

Last Seen Location LocationManager

Network Location LocationManager

3 (11) Sensitive Content

SMS ContentResolver

MMS ContentResolver

Contacts ContentResolver

Call log ContentResolver

File content File

Camera Camera

Microphone MediaRecorder

libart.so and libart-compiler.so. For the implementa-
tion, we reuse the peer-reviewed code from AOSP as much as
possible to ensure the stability and security of TaintART.
Since the code base of ART environment is stable after An-
droid 5.0, our implementation is generic for Android 5.0 and
6.0 versions.

To deploy TaintART on devices, we do not require users
or analysts to reinstall the customized systems from scratch.
Instead, analysts can overwrite our customized binary and
libraries to a target device with root privilege. Because we
modified Android framework code to place taint sources,
TaintART needs to re-compile framework code again so
that taint tags can transit through the framework code.

5. CASE STUDY
In this section, we study several popular apps and analyze

the possibility of privacy leakage using TaintART.

Experimental Setup We download and compile the lat-
est TaintDroid targeting aosp_arm-eng, which is based on
Android 4.3 released in July 2013 (android-4.3_r1). We
run our TaintART system on Android 6.0.1 which was re-
leased in December 2015 (android-6.0.1_r1). Apps in our
dataset used for the case study are downloaded from the
Google official market (Google Play) in May 2016.

Privacy Tracking We test popular apps to study po-
tential privacy leakage in the “top chart” for various cate-
gories including shopping, payment, social, entertainment,
etc. We execute and manually interact with each app in
TaintDroid and TaintART respectively and record the re-
ports of privacy leakage. Table 3 illustrates details of our
analysis. By default, TaintDroid will deny loading all ex-
ternal native libraries. This makes some apps crashed
at launch time. We comment out those codes and al-
low JNI invocations for TaintDroid. However, some func-
tions of Taobao and Alipay are broken because of com-
patibility issues. One reason is that they try to use

Figure 7: Screenshots of privacy policy enforcement.

MultiDex class in their apps and this interface is not sup-
ported in Android 4.3. For privacy tracking, we found
that shopping apps such as Taobao and JD.COM accesses
device identity and sensor data. By inspecting the out-
bound packets, we found some packets sent to remote
server contain tainted identity and sensor data. For ex-
ample, all HTTP requests of JD.COM contain a device id
field: “client.action?functionId=jshopUrlAdapter&body
=%7B%7D&uuid=[IMEI]&clientVersion=5.1.0”. Taobao will
include device orientation information in the “User-Agent”
field for all requests. Both TaintDroid and TaintART can
capture these leakage events. It is worth noting that the
latest Facebook app no longer supports Android version less
than 5.0. Therefore, TaintDroid cannot analyze new Face-
book app. This shows TaintART is more versatile.

Policy Enforcement Because TaintART supports the
latest Android runtime and provides an efficient, extensible,
as well as easy-to-deploy methodology, it is also suitable
for policy enforcement. Unlike systems enforcing sensitive
API invocations, TaintART knows the sensitivity of data
passing to enforced functions. Based on TaintART, we
prototype a privacy policy enforcement function. In essence,
users can pre-define multi-level policy rules. For instance,
we have already defined four privacy leakage levels in the
previous section. For each level, users can define different
policies. Table 4 shows policies in four levels. We only record
level 1 data leakage in a log because many apps use on device
identity for authentication. For level 2, we alert users with
a notification and replace sensitive information as random
values. Figure 7 depicts a screenshot of a notification of the
level 2 privacy leakage event. For sensitive data in level 3,
TaintART will block any access to the data. Finally, we
also provide interfaces for developers to customize actions
for different policies.

6. EVALUATION
In this section, we perform macrobenchmarks for common

apps and microbenchmarks for the compiler, Java environ-
ment, and investigate the memory usage of TaintART. We
also evaluate the compatibility of TaintART against An-
droid official compatibility test suite. The device used in
our evaluation is a Nexus 5 device with Quadcore 2.3 GHz
CPU, 2 GB memory and 16 GB internal storage. The test
device runs the Google official Android firmware, which is
Marshmallow 6.0.1 with build number MMB29K and the Linux
kernel version 3.4.0.



Table 3: Privacy Leakage Analysis on Popular Apps.

App Name Version Min/Target
SDK

TaintDroid Result (Error Message) TaintART Result

Taobao 5.7.2 14/23 Some functions are broken: “cannot find
method” in config error

2: device identity, sensor data, location data

Alipay 9.6.6.051201 15/23 Cannot login: “It is crowed” error 2: device identity, sensor data, location data

JD.COM 5.1.0 14/14 Device identity and accelerometer leakage 2: device identity, sensor data, location data

Facebook 77.0.0.20.66 21/23 Cannot install: the minimum SDK is Android
5.0

1: device identity

Skype 6.34.0.715 15/23 Device identity leakage 1: device identity

Instagram 8.1.0 16/23 Device identity leakage 1: device identity

Spotify 5.3.0.995 15/23 No leakage 0: no leakage

Amazon Shopping 6.6.0.100 11/23 No leakage 0: no leakage

Table 4: Privacy Enforcement Policy.

Level Description of Enforcement Policy

0 N/A

1 record events

2 record events, alert users and rewrite sensitive information

3 record events, alert users and prevent accesses

6.1 Macrobenchmarks
Because TaintART is a general framework that can be

used by end-users to protect their privacy, we perform sev-
eral macrobenchmarks to measure the overhead for normal
usage. The evaluation results are shown in Table 5.

We first evaluate the app’s load time. We create an app
based on Android 6.0.1 SDK with one activity (generated by
the app template of Android Studio 2.0 with Gradle 1.2.3).
We use an Android UI/application exerciser (i.e., the Monkey
tool [26]) to launch this app and record the time (t0). When
the attachBaseContext method is called, which means the
activity has been displayed on the screen, we record the time
(t1). Therefore, t1− t0 represents the elapsed time from the
launch time into app context. The result indicates 22.1 ms
(6.0 %) overhead on app’s launch time. The overhead is
clearly acceptable because most of the logic for launching an
app is executed in the native code, and TaintART mainly
affects runtime performance on the Java environment. For
the installation time, TaintART introduces about 205.8 ms
(12.2 %) overheads, which are mainly attributed to the in-
strumented ART compiler. We will present the evaluation
result of the compiler microbenchmark in the next subsec-
tion. Since we add taint sources on the content resolver, we
also evaluate the performance of reading and write contacts
in address book so as to demonstrate the impact. We first
write 100 contacts with full information in batch through the
content resolver, then query these inserted contact names
for 100 times. The result shows that there are 20 % and
12 % overhead on read and write respectively. In summary,
TaintART introduces an acceptable level of overhead to
end-users or to analysts if they want to understand the in-
formation flows.

6.2 Microbenchmarks
To understand the performance for some major compo-

nents in TaintART, we perform microbenchmarks on the

Table 5: Macrobenchmark Results.

Macrobenchmark Name
(ms)

Original (with Opti-
mizing Backend)

TaintART

App Launch Time 348.2 370.3

App Installation Time 1680.5 1886.3

Contacts Read/Write 7.0/9538.5 8.4/9655.2

compiler and Java runtime. We also investigate the memory
usage and inter-process communication cost of TaintART.

Compiler Microbenchmarks Because TaintART in-
struments ART compiler and inserts taint logic at compi-
lation time, we evaluate the number of instructions and the
overall compilation time. For compiler microbenchmark, we
utilizes all 80 built-in apps in AOSP which can be found in
/out/target/common/obj/APPS/ as our evaluation dataset
including calculator, contacts, browser, download manager,
etc. We compile all apps using the original compiler and
TaintART compiler respectively and record the time of
compilation. Figure 8 illustrates the compilation time for
80 built-in apps. By adopting the TaintART compiler, the
average time increases from 336.076 milliseconds to 403.064
milliseconds and introduces about 19.9 % overhead. Because
Android uses ahead-of-time compilation strategy, an app is
only compiled once at the installation time. Therefore, the
overhead on compilation time is acceptable for analysis us-
age. In addition, we use oatdump to disassemble compiled
native code and categorize instructions into seven types.
Figure 9 depicts the total number of instructions for all 80
apps and the numbers in different categories. The total num-
ber of instructions increases about 21 %. The increases are
mainly in data processing instructions (Type II) including
arithmetic instructions (ADD, SUB), logical instructions (ORR,
AND), movement instructions (MOV, MVN), etc. For memory
access instructions (Type I) which will cost more CPU cy-
cles, TaintART compiler only introduces about 0.8 % more
instructions. Because of this, the overhead of runtime per-
formance of TaintART is minimal, as we will show in the
Java microbenchmark later. This means that TaintART
can achieve better runtime performance than the VM-based
TaintDroid with the gains of AOT compilation strategy in
the new ART environment.

Java Microbenchmark Because Android apps are mainly
written in Java and TaintART tracks information flows in
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apps, Java microbenchmark can accurately reflect the run-
time overhead introduced by TaintART. We utilize Caf-
feineMark 3.0 Java benchmark tools [39] to evaluate six
types of operations including sieve, loop, logic, string, float
and method call. Note that the scores of CaffeineMark 3.0
are only useful for relative comparison. For comparison, we
evaluate and record scores in five different runtime environ-
ments on the same Nexus 5 device: (1) ART with optimizing
compiler backend, (2) ART with quick compiler backend, (3)
interpreter only, (4) TaintART compiler, and (5) Dalvik in
Android 4.4. We run the tool ten times and record scores
for each sub-benchmark. Figure 10 illustrates scores for each
environment. Compared to the original ART compiler with
optimizing backend, TaintART compiler introduces about
14 % overhead overall and it is comparable with its prede-
cessor TaintDroid. Most importantly, we notice that ART
brings a huge improvement over the legacy Dalvik environ-
ment. Compared to the legacy Dalvik environment without
any instrumentation, TaintART can achieve about 99.8 %
more scores for overall runtime performance.

Memory Microbenchmark We also perform the memory
microbenchmark. We run the CaffeineMark 3 Java bench-
mark tool ten times and monitor the /proc/[pid]/status

file at runtime. Figure 11 shows the virtual memory resi-
dent set (VmRSS) size at runtime representing the portion
of memory occupied by the benchmark process in memory.
Because TaintART mainly relies on CPU registers for taint
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tag storage, the overhead on memory usage is only about
0.4 %. For comparison, TaintDroid introduces 4.4 % mem-
ory overhead mainly because it doubles the size of internal
stack of Dalvik VM for storing taint tags, and we avoid this
by carefully using the register resources.

IPC Microbenchmark To carry out the IPC benchmark
of TaintART, we developed client and server applications
which communicate through binder. The client app will send
messages to server for setting and getting an object. The
object contains a string and an integer field. We continu-
ously conduct pair of getting and setting requests for ten
thousand times and record their execution times. We also
average memory usages for client app and server app during
the communication phase. Table 6 depicts the benchmark
results. There are about 4.35 % overhead on IPC execution,
and less than 4 % memory overhead.

6.3 Compatibility Evaluation
We also evaluate the compatibility of TaintART using

Android Compatibility Test Suite (CTS) in 6.0_r5 version.
We execute the standard CTS plan which contains 131 test
package in total. We select several system, runtime and se-
curity test packages and illustrate some partial results (due
to page limit) in Table 7. Both TaintART and original
devices failed on the same 186 cases among 100317 cases.
These failed cases are relevant and mainly caused by envi-
ronmental setups such SD card or SIM card. There are three



Table 6: IPC Throughput Benchmark (10,000 pairs
of messages).

Macrobenchmark Name Original TaintART Overhead

Execution Time 2987 ms 3117 ms 4.35 %

Memory (client) 51 572 kB 53 170 kB 3.10 %

Memory (server) 38 812 kB 39 689 kB 2.26 %

Table 7: Android Compatibility Test Suite (CTS)
results. The prefixes on test package names were
removed for simple representations.

Test Package # of Tests
Tests Failed

Android TaintART

app 266 6 6

content 619 0 0

bionic 1274 0 0

libcore 23 371 0 0

database 264 0 0

location 99 0 0

os 409 0 0

telephony 67 6 6

util 206 0 0

security 103 0 3

others 100 317 156 159

Total (131 packages) 126 995 186 189

more failed cases introduced by TaintART in security test
package. The reason is that TaintART needs root privilege
to deploy on stock devices. In summary, TaintART cus-
tomizes the Android runtime and compiler, but maintains
similar compatibility level when compare with the original
Android environment.

7. DISCUSSION

Limitations Here, we discuss some limitations of Taint-
ART (and we like to state that other dynamic taint analysis
systems have the same limitations). Firstly, TaintART can-
not effectively track implicit data flows. This means that
attackers can find ways [29, 45] to exchange data without
the track of TaintART. Because of the limitation of taint
analysis methodology, we cannot exhaustively monitor all
implicit leakage. Our goal is to track common explicit data
flows for privacy leakage analysis and increase the bar for
malware writers. Secondly, malware can utilize some anti-
analysis techniques [40] to detect host devices. For example,
malware can infer the running system by inspecting the size
of compilation binary file. Thirdly, for malware analysis,
analysts need to manually trigger the behaviors. However,
researchers [54] have proposed various methodologies to gen-
erate input for dynamic analysis.

TaintART on Other Architectures Because most mo-
bile devices are based on the ARM architecture (99 % ac-
cording to [7]), our TaintART prototype is implemented on
an 32-bit ARM-based device. For the ARM64 (AArch64) ar-
chitecture, it provides 31 general-purpose registers. We can
utilize three of them (i.e., X25, X26, and X27) for taint tags

(tracking 24 registers for data storage in Android). In this
case, we can obtain eight bits for each tag to store more se-
mantics. In addition, AArch64 also has a set of instructions
(e.g., UBFX) for moving and copying bits among registers.
This will make propagation logic much easier and faster.
Moreover, due to availability of registers, performance over-
head will be comparable with (even better than) 32-bit ar-
chitecture. In addition, the latest Android version supports
other architectures including x86-64. To support other ar-
chitectures, we plan to port the ARM code generator of
TaintART compiler to other code generators so as to uti-
lize architecture-specific features. This is our future work.

8. RELATED WORK
With the rapid growth of mobile users, hackers and

researchers investigated many severe vulnerabilities and pro-
posed mitigation solutions [20, 28, 47, 66, 64, 18, 56, 13, 65,
44, 32, 48, 60, 6, 49, 4] in current mobile ecosystem. To un-
derstand the hidden malicious behaviors of malware such as
stealing private and sensitive information, researchers pro-
posed app analysis methodologies via dynamic and static
perspective. Based on these methodologies, some runtime
policy enforcement systems are proposed to prevent mali-
cious events or privacy leakage.

Dynamic Analysis System There are many systems
which dynamically monitor runtime information in differ-
ent layers of the system. DroidScope [59], BareCloud [34]
and CopperDroid [51] introspect Dalvik VM to capture dy-
namic information for reconstructing malware behaviors.
VetDroid [61] analyzes permission usages to find informa-
tion leaks and identifies subtle vulnerabilities of apps. Poe-
plau et al. [41] systematically analyze malicious dynamic
code loading by a customized Dalvik VM. Similar to virtual
machine introspection technique, to reduce privacy leakage
across apps (unregulated aggregation), LinkDroid [21] an-
alyzes app links across different apps dynamically. Note
that these systems are proposed for monitoring malicious
behaviors, they cannot track information-flow which can ac-
curately detect privacy leakage. Minemu [8] is a general dy-
namic taint analysis system based on an optimized emulator
with JIT compilation. Similar with Minemu, TaintDroid [19]
is the most relevant information-flow tracking system for An-
droid. Based on TaintDroid, NDroid [42] can further track
information flows through JNI by customizing Android emu-
lators (QEMU). As we discussed in previous sections, Taint-
Droid is based on legacy runtime and cannot be ported to
current environments, which makes it impossible to analyze
apps developed for the latest Android systems.

Static Analysis System Many systems utilize disassem-
bled code and try to precisely model runtime behavior and
use program analysis technique to resolve information flows.
Lu et al. [37] proposes CHEX framework to detect com-
ponent hijacking by computing data flows using Wala[22].
AndroidLeaks [23] detects potential privacy leaks on a large
scale. FlowDroid [2] can preform more precise context, flow,
field, object-sensitive and lifecycle-aware analysis. Com-
Droid [14], AmanDroid [53], R-Droid [3], IccTA [35] and
HornDroid [10] try to improve the static analyzer to de-
tect implicit data flows across components among Android
apps. Based on call graph, EdgeMiner [11] can automati-
cally generate API summaries to detect implict control flow



transitions through the Android framework. DroidSafe [27]
models runtime using an accurate analysis stubs technique
so as to capture missing semantic events such as life-cycle
events and callback context in the static code. AAPL [36]
can detect privacy leaks by combining multiple special static
analysis techniques and purify results by employing a novel
peer voting technique. AppAudit [57] combines static and
dynamic analysis to reduce the over-estimating problem in-
troduced by static taint analysis. RiskMon [33] can assess
apps’ risk by adopting machine leaning algorithm. Note that
these systems can analyze large number of apps in an of-
fline manner, but without executing apps, the static analysis
technique cannot track the realtime data flows and privacy
leakage.

Policy Enforcement System To detect suspicious behav-
iors and prevent potential privacy leakage, researchers pro-
posed many policy enforcement systems for Android. Aura-
sium [58] and RetroSkeleton [17] can add enforcement poli-
cies and fine-grained mandatory access control on sensitive
API invocations by rewriting and repackaging apps. How-
ever, hackers may bypass these policies due to the incom-
plete app rewriting [30]. Besides using repackage technique,
systems like FlaskDroid [9], Patronus [50], ARTDroid [15],
and ASM [31] can achieve fine-grained mandatory access
control by hooking Android system services and low level
system calls. With the similar technique, DeepDroid [52]
mainly focus on policy enforcement under enterprise do-
main. Airbag [55] can provides an sandbox environment
which is resistant to malware infection for legitimate apps.
Afonso et al. [1] create a sandboxing policy for Android na-
tive code. These systems add policy for each sensitive API
calls, but still cannot differentiate legitimate or malicious
behavior. Because TaintART can track information flows,
our system can accurately detect data leakage and alert users
at runtime.

9. CONCLUSION
In this paper, we design a compiler-instrumented

information-flow analysis platform called TaintART on the
new Android ART environment. We adopt dynamic taint
analysis methodology for tracking sensitive data. Taint-
ART instruments the ART compiler and runtime for han-
dling taint propagation logic, tracking source methods and
report data leakage from sink methods. TaintART em-
ploys CPU registers for multi-level taint tag to minimize
storage and achieve fast taint propagation logic. We also
provide APIs for analysts to track specific data. Based on
this platform, we implement a multi-level privacy tracking
system which can be used for policy enforcement. Our eval-
uation results show that TaintART introduces less than
15 % overheads on an overall CPU-bound microbenchmark
and imposes negligible overhead on built-in and third-party
apps. Additionally, compared to legacy Dalvik environment
in Android 4.4, the TaintART system can achieve two times
faster performance for Java runtime benchmark.
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