Stochastic Analysis and File Availability Enhancement for BT-like File Sharing Systems

John.C.S.Lui The Chinese University of Hong Kong

Introduction

Introduction

Modeling the Performance

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability
- Availability Improvement Algorithms

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability
- Availability Improvement Algorithms
- Conclusion

The Problem with C/S Publishing

The Problem with C/S Publishing

3

The Problem with C/S Publishing

BitTorrent Solution

BitTorrent Solution

BitTorrent Solution

Web Server

Web Server

AAA.torrent

Web Server

Tracker

Tracker

To understand the BT protocol

Why is it good?

- Why is it good?
- Can we do better?

- Why is it good?
- Can we do better?
- Contribution:

- Why is it good?
- Can we do better?
- Contribution:
 - Analytical metrics

- Why is it good?
- Can we do better?
- Contribution:
 - Analytical metrics
 - Insights for Protocol-designers

Related Work

• X. Yang and et al, Infocom 2004:

- Simple Markov Model
- Numerical calculation needed

L. Massoulie and et al, Sigmetrics 2004

Detailed Markov Model

D. Qiu and et al, Sigcomm 2004

- Simple Fluid Model
- Some analytical results are obtained

Simplified Peer States
Simplified Peer States

Simplified Peer States

Simplified Peer States

$$\dot{X}1 = \ddot{e} - R_1$$
$$\dot{X}2 = R_1 - R_2$$
$$\dot{Y} = R_2 - \tilde{a}Y$$

Transfer Rate from State 1 to State 2

Steady State

$$\bar{T}_d = \frac{\bar{X}_1 + \bar{X}_2}{\lambda}$$

$$\bar{T}_p = \begin{cases} O(\bar{N}^2) & Case 1, \\ O(\bar{N}) & Case 2 \text{ or } 3. \end{cases}$$

Steady State

By Little's Law, average downloading time in the steady state is derived by:

$\bar{T}_d = \frac{\bar{X}_1 + \bar{X}_2}{\lambda}$

$$\bar{T}_p = \begin{cases} O(\bar{N}^2) & Case 1, \\ O(\bar{N}) & Case 2 \text{ or } 3. \end{cases}$$
Steady State

By Little's Law, average downloading time in the steady state is derived by:

$\bar{T}_d = \frac{\bar{X}_1 + \bar{X}_2}{\lambda}$

$$\bar{T}_p = \begin{cases} O(\bar{N}^2) & Case 1, \\ O(\bar{N}) & Case 2 \text{ or } 3. \end{cases}$$

Steady State

By Little's Law, average downloading time in the steady state is derived by:

$\bar{T}_d = \frac{\bar{X}_1 + \bar{X}_2}{\lambda}$

$$\bar{T}_p = \begin{cases} O(\bar{N}^2) & Case 1, \\ O(\bar{N}) & Case 2 \text{ or } 3. \end{cases}$$

Steady State

By Little's Law, average downloading time in the steady state is derived by:

$\bar{T}_d = \frac{\bar{X}_1 + \bar{X}_2}{\lambda}$

The system throughput in steady state is derived by:

$$\bar{T}_p = \begin{cases} O(\bar{N}^2) & Case 1, \\ O(\bar{N}) & Case 2 \text{ or } 3. \end{cases}$$

The system shows good scalability:

- Tp=O(N^2) in Case 1
- Tp=O(N) in Case 2 & 3

The system shows good scalability:

- Tp=O(N^2) in Case 1
- Tp=O(N) in Case 2 & 3

(a) \overline{T}_d as the function of N

The system shows good scalability:

- Tp=O(N^2) in Case 1
- Tp=O(N) in Case 2 & 3

(b) \overline{T}_p as the function of N

The system shows good scalability:

- Tp=O(N^2) in Case 1
- Tp=O(N) in Case 2 & 3

Insights: Popularity

- The arrival rate λ represents the popularity of the served file.

$$\frac{\partial \bar{T}_d}{\partial \lambda} = \begin{cases} -\frac{1+\sqrt{5}}{4\sqrt{\alpha}}\lambda^{-3/2} & \text{Case 1,} \\ -\frac{1}{2\sqrt{\alpha}}\lambda^{-3/2} & \text{Case 2,} \\ 0 & \text{Case 3.} \end{cases}$$

- More popular the file is, less downloading time, in Case 1 and 2.
- The downloading time keeps the same in Case 3.

Insights: Seeding

- Let T_s = 1/γ be the average seeding time
 Increase seeding time T_s:
 - less downloading time T_d in case 1 and 2;
 - same downloading time T_d in case 3.
- Extreme situation: T_s=0:
 - Downloading time T_d won't be infinity

Insights: Topology

The average degree of a peer in overlay:

$$\rho(N-1)$$

- This degree is affected by the list returned by tracker (30-60 by default)
- Larger ρ :
 - reduce T_d in case 1 and 2
 - won't help in case 3, only burden the network

Insights: Bandwidth

- Larger B:
 - reduce T_d in case 2 and 3
 - won't help in case 1

Where you are

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability
- Availability Improvement Algorithms
- Conclusion

Impact of Firewall

Seeders Behind Firewall

 Without non-firewalled peers, the peers behind firewalls can not finish downloading

- Without non-firewalled peers, the peers behind firewalls can not finish downloading
- Non-firewalled peers perform better

- Without non-firewalled peers, the peers behind firewalls can not finish downloading
- Non-firewalled peers perform better
- The performance gap is related to the arrival rate

- Without non-firewalled peers, the peers behind firewalls can not finish downloading
- Non-firewalled peers perform better
- The performance gap is related to the arrival rate

This gap can be very large even the two arrival rates are very close

Where you are

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability
- Availability Improvement Algorithms
- Conclusion

The probability that a peer can get ith chunk from its neighborhood:

The probability that a peer can get ith chunk from its neighborhood:

$$\gamma_i = 1 - (1 - \frac{h_i}{n})^{\rho(n-1)} \approx 1 - e^{-\rho h_i}$$

$$\gamma_i = 1 - (1 - \frac{h_i}{n})^{\rho(n-1)} \approx 1 - e^{-\rho h_i}$$

$$\gamma_{i} = 1 - (1 - \frac{h_{i}}{n}) \stackrel{\rho(n-1)}{\approx} 1 - e^{-\rho h_{i}}$$
Average number
of neighbors

$$\gamma_{i} = 1 - (1 - \frac{h_{i}}{n}) \stackrel{\rho(n-1)}{\approx} 1 - e^{-\rho h_{i}}$$
Average number
of neighbors

$$\gamma_{i} = 1 - (1 - \frac{h_{i}}{n}) \stackrel{\rho(n-1)}{\approx} 1 - e^{-\rho h_{i}}$$
Average number
of neighbors

The probability that a peer can get ith chunk from its neighbor Number of copies of Chunk i

$$\gamma_{i} = 1 - (1 - \frac{h_{i}}{n})^{\rho(n-1)} \approx 1 - e^{-\rho h_{i}}$$
Average number
of neighbors

The probability that a peer can finish its download:

The probability that a peer can get ith chunk from its neighbor Number of copies of Chunk i

$$\gamma_{i} = 1 - (1 - \frac{h_{i}}{n})^{\rho(n-1)} \approx 1 - e^{-\rho h_{i}}$$
Average number
of neighbors

The probability that a peer can finish its download:

$$\Theta = \prod_{i=1}^{M} \gamma_i$$

Optimal Chunk Distribution

Max Θ s.t. $\sum_{i=1}^{M} h_i \le C$

- The optimal solution:
 - h1=h2=...hM=C/M

Maximize the probability of downloading all chunks:

Max Θ

Chunks should be distributed as equally as possible

The optimal solution:

h1=h2=...hM=C/M

$$\min V(h_1, h_2, \dots h_M) = \sum_{i=1}^M \frac{(h_i - \overline{h})^2}{M}$$

Where you are

- Introduction
- Modeling the Performance
- Extension on heterogeneous Network
- Modeling the Availability
- Availability Improvement Algorithms
 Conclusion

File Enhancement Algorithm

Choose chunk i probabilistically according to:

$$\sigma_{i} = \frac{\Delta h_{i}}{\sum_{\forall \Delta h_{j} > 0} \Delta h_{j}}.$$

$$\Delta h_{i} = \begin{cases} \frac{\partial V}{\partial h_{i}} = \frac{2(\bar{h} - h_{i})}{M} & \text{if } h_{i} \leq \bar{h} \\ 0 & \text{otherwise.} \end{cases}$$

Experiments Low bandwidth:

Experiments

High bandwidth:

Propose the analytical model to understand BT

- Propose the analytical model to understand BT
 - On Throughput,

- Propose the analytical model to understand BT
 - On Throughput,
 - On Availability,

- Propose the analytical model to understand BT
 - On Throughput,
 - On Availability,
 - Sensitivity analysis on different system parameters.

- Propose the analytical model to understand BT
 - On Throughput,
 - On Availability,
 - Sensitivity analysis on different system parameters.
- Extend the model to consider peers

Conclusion (Cont.)

- Validate the analytical result with extensive simulation (our model is more accurate than the Qiu's model)
- Propose new approach on chunk selection algorithm to enhance file availability