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The origin of large but rare cascades that are triggered by small initial
shocks is a phenomenon that manifests itself as diversely as cultural
fads, collective action, the diffusion of norms and innovations, and
cascading failures in infrastructure and organizational networks. This
paper presents a possible explanation of this phenomenon in terms
of a sparse, random network of interacting agents whose decisions
are determined by the actions of their neighbors according to a simple
threshold rule. Two regimes are identified in which the network is
susceptible to very large cascades—herein called global cascades—
that occur very rarely. When cascade propagation is limited by the
connectivity of the network, a power law distribution of cascade sizes
is observed, analogous to the cluster size distribution in standard
percolation theory and avalanches in self-organized criticality. But
when the network is highly connected, cascade propagation is limited
instead by the local stability of the nodes themselves, and the size
distribution of cascades is bimodal, implying a more extreme kind of
instability that is correspondingly harder to anticipate. In the first
regime, where the distribution of network neighbors is highly
skewed, it is found that the most connected nodes are far more
likely than average nodes to trigger cascades, but not in the second
regime. Finally, it is shown that heterogeneity plays an ambiguous
role in determining a system’s stability: increasingly heteroge-
neous thresholds make the system more vulnerable to global
cascades; but an increasingly heterogeneous degree distribution
makes it less vulnerable.

How is it that small initial shocks can cascade to affect or disrupt
large systems that have proven stable with respect to similar

disturbances in the past? Why do some books, movies, and albums
emerge out of obscurity, and with small marketing budgets, to
become popular hits (1), when many a priori indistinguishable
efforts fail to rise above the noise? Why does the stock market
exhibit occasional large fluctuations that cannot be traced to the
arrival of any correspondingly significant piece of information (2)?
How do large, grassroots social movements start in the absence of
centralized control or public communication (3)?

These phenomena are all examples of what economists call
information cascades (ref. 4; but which are herein called simply
cascades), during which individuals in a population exhibit
herd-like behavior because they are making decisions based on
the actions of other individuals rather than relying on their own
information about the problem. Although they are generated by
quite different mechanisms, cascades in social and economic
systems (3–6) are similar to cascading failures in physical infra-
structure networks (7, 8) and complex organizations (9) in that
initial failures increase the likelihood of subsequent failures,
leading to eventual outcomes that, like the August 10, 1996
cascading failure in the western United States power transmis-
sion grid (8), are extremely difficult to predict, even when the
properties of the individual components are well understood.
Not as newsworthy, but just as important as the cascades
themselves, is that the very same systems routinely display great
stability in the presence of continual small failures and shocks
that are at least as large as the shocks that ultimately generate
a cascade. Cascades can therefore be regarded as a specific
manifestation of the robust yet fragile nature of many complex
systems (10): a system may appear stable for long periods of time

and withstand many external shocks (robust), then suddenly and
apparently inexplicably exhibit a large cascade (fragile).

Although the social, economic, and physical mechanisms respon-
sible for the occurrence of cascades are complex and may vary
widely across systems and even between particular cascades in the
same system, it is proposed in this paper that some generic features
of cascades can be explained in terms of the connectivity of the
network by which influence is transmitted between individuals.
Specifically, this paper addresses the set of qualitative observations
that (i) global (i.e., very large) cascades can be triggered by
exogenous events (shocks) that are very small relative to the system
size, and (ii) global cascades occur rarely relative to the number of
shocks that the system receives, and may be triggered by shocks that
are a priori indistinguishable from shocks that do not.

Model Motivation: Binary Decisions with Externalities
This model is motivated by considering a population of individuals
each of whom must decide between two alternative actions, and
whose decisions depend explicitly on the actions of other members
of the population. In social and economic systems, decision makers
often pay attention to each other either because they have limited
information about the problem itself or limited ability to process
even the information that is available (6). When deciding which
movie (11) or restaurant (12) to visit, we often have little informa-
tion with which to evaluate the alternatives, so frequently we rely on
the recommendation of friends, or simply pick the movie or
restaurant to which most people are going. Even when we have
access to plentiful information, such as when we evaluate new
technologies, risky financial assets, or job candidates, we often lack
the ability to make sense of it; hence, again we rely on the advice
of trusted friends, colleagues, or advisors. In other decision making
scenarios, such as in collective action problems (3) or social
dilemmas (13), an individual’s payoff is an explicit function of the
actions of others. And in other problems still, involving say the
diffusion of a new technology (14), the utility of a single additional
unit—a fax machine for example—may depend on the number of
units that have already been sold. In all these problems, therefore,
regardless of the details, individual decision makers have an incen-
tive to pay attention to the decisions of others.

In economic terms, this entire class of problems is known
generically as binary decisions with externalities (6). As simplistic as
it appears, a binary decision framework is relevant to surprisingly
complex problems. To take an extreme example, the creation of a
political coalition or an international treaty is unquestionably a
complex, multifaceted process with many potential outcomes. But
once the coalition exists or the treaty has been drafted, the decision
of whether or not to join is essential a binary one. Similar reasoning
applies to a firm’s choice between two technologies, or an individ-
ual’s choice between two neighborhood restaurants—the factors
involved in the decision may be many, but the decision itself can be
regarded as binary.

Both the detailed mechanisms involved in binary decision prob-
lems, and also the origins of the externalities can vary widely across
specific problems. Nevertheless, in many applications that have
been examined in the economics and sociology literature—for
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example, fads (1, 4, 5), riots (15), crime (16), competing technol-
ogies (14), and the spread of innovations (17, 18), conventions (6),
and cooperation (13)—the decision itself can be considered a
function solely of the relative number of other agents who are
observed to choose one alternative over the other (6). Because
many decisions are inherently costly, requiring commitment of time
or resources, the relevant decision function frequently exhibits a
strong threshold nature: agents display inertia in switching states,
but once their personal threshold has been reached, the action of
even a single neighbor can tip them from one state to another.

Model Specification
A particularly simple binary decision rule with externalities that
captures the essential features outlined above is the following:
An individual agent observes the current states (either 0 or 1) of
k other agents, which we call its neighbors, and adopts state 1 if
at least a threshold fraction � of its k neighbors are in state 1,
else it adopts state 0.

To account for variations in knowledge, preferences, and obser-
vational capabilities across the population of decision-making
agents, both individual thresholds and also the number of neighbors
k are allowed to be heterogeneous. First, each agent is assigned a
threshold � drawn at random from a distribution f(�) that is defined
on the unit interval and normalized such that �0

1 f(�)d� � 1, but
which is otherwise arbitrary. Next, we construct a network of n
agents, in which each agent is connected to k neighbors with
probability pk and the average number of neighbors is �k� � z.
Although we shall continue to speak of an agent’s neighbors, we
should think of them simply as the set of incoming signals that are
relevant to the problem at hand. More formally, we say that agents
are represented by vertices (or nodes) in a graph; neighboring
vertices are joined by edges; pk is the degree distribution of the graph;
and z is the average degree (in physics, z is usually called the
coordination number). To model the dynamics of cascades, the
population is initially all-off (state 0) and is perturbed at time t �
0 by a small fraction �0 �� 1 of vertices that are switched on (state
1). The population then evolves at successive time steps with all
vertices updating their states in random, asynchronous order ac-
cording to the threshold rule above. Once a vertex has switched on,
it remains on (active) for the duration of the dynamics.

In the social science literature, decision rules of this kind are
usually derived either from the payoff structure of noncooperative
games such as the prisoner’s dilemma (3, 6), or from stochastic
sampling procedures (18). But when regarded more generally as a
change of state—not just a decision—the model belongs to a larger
class of contagion problems that includes models of failures in
engineered systems such as power transmission networks (8) or the
internet (19, 20), epidemiological (21) and percolation (22, 23)
models of disease spreading, and a multiplicity of cellular-automata
models including random-field Ising models (24), bootstrap perco-
lation (25, 26), majority voting (27, 28), spreading activation (29),
and self-organized criticality (8, 29).

The model, however, differs from these other contagion models
in some important respects. (i) Unlike epidemiological models,
where contagion events between pairs of individuals are indepen-
dent, the threshold rule effectively introduces local dependencies;
that is, the effect that a single infected neighbor will have on a given
node depends critically on the states of the node’s other neighbors.
(ii) Unlike bootstrap percolation, and self-organized criticality
models (which also exhibit local dependencies), the threshold is not
expressed in terms of the absolute number of a node’s neighbors
choosing a given alternative, but the corresponding fraction of the
neighborhood. This is a natural condition to impose for decision
making problems, because the more signals a decision maker
receives, the less significant any one signal becomes. (iii) Unlike
random-field Ising and majority vote models, which are typically
modeled on regular lattices, here we are concerned with hetero-
geneous networks; that is, networks in which individuals have

different numbers of neighbors. All these features—local depen-
dencies, fractional thresholds, and heterogeneity—are essential to the
dynamics of cascades. Furthermore, although they are clearly
related by the threshold condition, network heterogeneity and
threshold heterogeneity turn out not to be equivalent, and therefore
need to be considered separately.

Exact Solution on an Arbitrary Random Graph
The main objective of this paper is to explore how the vulner-
ability of interconnected systems to global cascades depends on
the network of interpersonal influences governing the informa-
tion that individuals have about the world, and therefore their
decisions. Because building relationships and gathering infor-
mation are both costly exercises, interaction and influence
networks tend to be very sparse (17)—a characteristic that
appears to be true of real networks in general (30)—so we
consider only the properties of networks with z �� n. In the
absence of any known geometry for the problem, a natural first
choice for a sparse interaction network is an undirected random
graph (31), with n vertices and specified degree distribution pk.
Although random graphs are not considered to be highly realistic
models of most real-world networks (30), they are often used as
first approximations (19, 20, 32) because of their relative trac-
tability, and this tradition is followed here. Our approach
concentrates on two quantities: (i) the probability that a global
cascade will be triggered by a single node (or small seed of
nodes), where we define a global cascade formally as cascade that
occupies a finite fraction of an infinite network; and (ii) the
expected size of a global cascade once it is triggered. When
describing our results, the term cascade therefore refers to an
event of any size triggered by an initial seed, whereas global
cascade is reserved for sufficiently large cascades (in practice, this
means more than a fixed fraction of large, but finite network).

In any sufficiently large random graph with z � c ln n (where c
is some constant) and �0 �� 1 (i.e., sparsely connected with a small
initial seed), we can assume that the local neighborhood of a small
seed will not contain any short cycles; hence, no vertex neighboring
the initial seed will be adjacent to more than one seed member. This
approximation becomes exact in the case of an infinite network,
with finite z, or a seed consisting of a single vertex. Under this
condition, the only way in which the seed can grow is if at least one
of its immediate neighbors has a threshold such that � � 1�k, or
equivalently has degree k � K � 1�� . We call vertices that are
unstable in this one-step sense, vulnerable, and those that are not,
stable, noting that the distinction only applies when the seed in
question is small (numerical simulations suggest that seeds that are
three orders of magnitude less than the system size are sufficiently
small). The case of large seeds will be discussed later.

Although the vulnerability condition is quite general, for con-
creteness we use the language of the diffusion of innovations (17),
in which the initial seed plays the role of the innovators, and
vulnerable vertices correspond to early adopters. Unless the inno-
vators are connected to a community of early adopters, no cascade
is possible. In fact, as we show below, the success or failure of an
innovation may depend less on the number and characteristics of
the innovators themselves than on the structure of the community
of early adopters. Clearly, the more early adopters exist in the
network, the more likely it is that an innovation will spread. But the
extent of its growth—and hence the susceptibility of the network as
a whole—depends not only on the number of early adopters, but on
how connected they are to one another, and also to the much larger
community consisting of the early and late majority, who do not tend
to respond to the innovators directly, but who can be influenced
indirectly if exposed to multiple early adopters. In the context of this
model, we conjecture that the required condition for a global
cascade is that the subnetwork of vulnerable vertices must percolate
(22) throughout the network as a whole, which is to say that the
largest, connected vulnerable cluster must occupy a finite fraction
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of an infinite network. Regardless of how connected the network as
a whole might be, the claim here is that only if the largest vulnerable
cluster percolates are global cascades possible.

This condition, which we call the cascade condition (see Eq. 5
below), has the considerable advantage of reducing a complex
dynamics problem to a static, percolation problem that can be
solved using a generating function approach. A similar technique
has been used elsewhere (20, 32) to study the connectivity prop-
erties of random graphs; here the basic approach is modified
(described in detail in ref. 32) to focus on vulnerable vertices. By
construction, every vertex has degree k with probability pk, and by
the vulnerability condition above, a vertex with degree k is vulner-
able with probability �k � P[� � 1�k]. Hence, the probability of a
vertex u having degree k and being vulnerable is �kpk, and the
corresponding generating function of vulnerable vertex degree is:

G0�x� � �k� k pk x k , [1a]

where �k � � 1 k � 0
F�1�k� k � 0 [1b]

and F(�) � �0
�f(�)d�. By incorporating all of the information

contained in the degree distribution and the threshold distribution,
G0(x) generates all of the moments of the degree distribution solely
of vulnerable vertices, where the relevant moments can be extracted
by evaluating the derivatives of G0(x) at x � 1. For the purposes of
this paper, the two most important quantities are (i) the vulnerable
fraction of the population Pv � G0(1), and (ii) the average degree
of vulnerable vertices zv � G0

	(1). Because we are interested in the
propagation of cascades from one vertex to another, we also require
the degree distribution of a vulnerable vertex v that is a random
neighbor of our initially chosen vertex u. The larger the degree of
v, the more likely it is to be a neighbor of u; hence, the probability
of choosing v is proportional to kpk, and the correctly normalized
generating function G1(x) corresponding to a neighbor of u is:

G1�x� �
�k k� k pk x k
1

�k kpk
�

G	0�x�

z
. [2]

To calculate the properties of clusters of vulnerable vertices (the
community structure of the early adopters), we introduce the
analogous generating functions

H0(x) � �nqnxn and H1(x) � �nrn xn ,

where qn is the probability that a randomly chosen vertex will
belong to a vulnerable cluster of size n, and rn is the correspond-
ing probability for a neighbor of an initially chosen vertex. Any
finite cluster of size n that we arrive at by following a random
edge can be regarded as composed of smaller such clusters,
whose cumulative sizes must sum to n. Because a sufficiently
large random graph below percolation can be regarded as a pure
branching structure, we can therefore ignore the possibility that
the subclusters will be connected in cycles, so each subcluster can
be treated independently of the others. (The presence of an
infinite cluster above percolation will be dealt with below.)
Hence, the probability of a finite cluster of size n is simply the
product of the probabilities of its (also finite) subclusters. It
follows from the properties of generating functions (20, 32) that
H1(x) satisfies the following self-consistency equation:

H1�x� � �1 � G1�1�� � xG1�H1�x��, [3a]

from which H0(x) can be computed according to

H0�x� � �1 � G0�1�� � xG0�H1�x��. [3b]

where the first term in both Eqs. 3a and 3b corresponds to the
probability that the vertex chosen is not vulnerable, and the

second term accounts for the size distribution of vulnerable
clusters attached to a vertex that is, itself, vulnerable. H0(x)
therefore generates all moments of the distribution of vulnerable
cluster sizes, the most important of which, for our current
purpose, is the average vulnerable cluster size �n� � H	0(1), because
this is the quantity that diverges at percolation. Substituting the
expressions for H0(x) and H1(x) above, we find that

�n� � G0�1� � �G	0�1��2��z � G
0�1�� � P � zv
2��z � G
0�1��,

[4]

which diverges when

G 
0�1� � �k k�k � 1��k pk � z. [5]

Eq. 5—the cascade condition—is interpreted as follows: When
G
0(1) � z, all vulnerable clusters in the network are small; hence,
the early adopters are isolated from each other and will be unable
to generate the momentum necessary for a cascade to become
global. But when G
0(1) � z, the typical size of vulnerable clusters
is infinite, implying the presence of a percolating vulnerable cluster,
in which case random initial shocks should trigger global cascades
with finite probability. Because Eq. 5 marks the transition between
these two regimes, or phases, at which the average cluster size
diverges and global cascades first commence, it is called a phase
transition (31–33). The conditions necessary to generate global
cascades can, in other words, be determined by locating the position
and nature of the relevant phase transition. Note, however, that the
k(k 
 1) term in Eq. 5 is monotonically increasing in k, but �k is
monotonically decreasing. Thus we would expect that Eq. 5 will
have either two solutions (resulting in two phase transitions), or
none at all, in contrast with the usual percolation model, which
exhibits a single phase transition in z for all finite values of the
occupation probability. Furthermore, in the case where we have two
solutions, we should observe a continuous interval in z, inside which
cascades occur.

Results and Discussion
Although the cascade condition (Eq. 5) applies to random graphs
with arbitrary degree distributions pk and threshold distributions
f(�) (expressed through the weighting function �k), we can illustrate
its main features for the special case of a uniform random graph (in
which any pair of vertices is connected with probability p � z�n),
and where all vertices have the same threshold �; that is, f(�) �
	(� 
 �*). A characteristic of uniform random graphs is that pk �
e
zzk�k! (the Poisson distribution), in which case Eq. 5 reduces to
zQ(K* 
 1, z) � 1, where K* � 1��* and Q(a, x) is the incomplete
gamma function. Fig. 1 expresses the cascade condition graphically
as a boundary in the (�*, z) phase diagram (dashed line) and
compares it to the region (outlined by solid circles) in which
cascades are observed over 1,000 realizations of the dynamics (each
realization consists of a randomly constructed network of 10,000
vertices, in which a single vertex is switched on at t � 0). Because
the simulated system is finite, the predicted and actual boundaries
of the cascade window do not agree perfectly, but they are very
similar. In particular, as predicted above, both display a lower and
an upper boundary as a function of the average degree z, at which
the characteristic time scale of the dynamics diverges (see Fig. 2a).

To understand the nature of the phase transitions that define the
boundaries of the cascade window, we solve exactly for the frac-
tional size Sv of the vulnerable cluster inside the cascade window.
Because the generation function approach requires the largest
vulnerable cluster to be a pure branching structure, and because the
vulnerable cluster will, in general, contain cycles above percolation,
Eq. 4 only applies below percolation, which is why Eq. 5 can only
specify the boundary of the cascade window. However, we can still
solve for Sv above the phase transition, as well as below it, by
evaluating H0(1) exclusively over the set of finite clusters; that is, by
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explicitly excluding the percolating cluster (when it exists) from the
sum �nqnxn. Using Eq. 3b, it follows that Sv � 1 
 H0(1) � P 

G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) � 1, which yields Sv �
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv � Q(K* � 1, z) 
 ez(H1
1)Q(K* � 1, zH1),
in which H1 satisfies H1 � 1 
 Q(K*, z) � ez(H1
1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S � 1 
 e
zS (32), which is equivalent to
allowing K*3� (or �*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of �*
� 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (�

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(�) �
	(� 
 �

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n � 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at �
*

� 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of the extended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n � 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).
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vulnerable cluster should always be sufficient to activate the entire
connected component, even when the former is a very small
fraction of the latter, is not an obvious result, but it appears to hold
consistently, at least within the class of random graphs. Whether or
not it turns out to hold for networks more general than random
graphs is a matter of current investigation.

As Figs. 1 and 2 suggest, the onset of global cascades can occur
in two distinct regimes—a low connectivity regime and a high
connectivity regime—corresponding to the lower and upper phase
transitions respectively. The nature of the phase transitions at the
two boundaries is different, and this has important consequences
for the apparent stability of the systems involved. As Fig. 3 (open
squares) demonstrates, the cumulative distribution of cascades at
the lower boundary of the cascade window follows a power law,
analogous to the distribution of avalanches in models of self-
organized criticality (29) or the cluster size distribution at criticality
for standard percolation (22). In fact, the slope of the cascade size
distribution is indistinguishable from the known critical exponent

 � 3�2 for the cluster size distribution of random graphs at
percolation (32). This result is expected because, when z � 1, most
vertices satisfy the vulnerability condition, so the propagation of
cascades is constrained principally by the connectivity of the
network, which for random graphs is known to undergo a second-
order phase transition at z � 1 (31).

The upper boundary, however, is different. Here, the propa-
gation of cascades is limited not by the connectivity of the
network, but by the local stability of the vertices. Most vertices
in this regime have so many neighbors that they cannot be
toppled by a single neighbor perturbation; hence, most initial
shocks immediately encounter stable vertices. Most cascades
therefore die out before spreading very far, giving the appear-
ance that large cascades are exponentially unlikely. A percolat-
ing vulnerable cluster, however, still exists, so very rarely a
cascade will be triggered in which case the high connectivity of
the network ensures that it will be extremely large, typically
much larger than cascades at the lower phase transition. The
result is a distribution of cascade sizes that is bimodal rather than
a power law (see Fig. 3, solid circles). As the upper phase
transition is approached from below, global cascades become

larger, but increasingly rare, until they disappear altogether,
implying a discontinuous (i.e., first-order) phase transition in the
size of successful cascades (see Fig. 2b, solid circles). The main
consequence of the first-order phase transition is that just inside
the boundary of the window, where global cascades occur very
rarely (Fig. 3 shows only a single cascade occurring in 1,000
random trials), the system will in general be indistinguishable
from one that is highly stable, exhibiting only tiny cascades for
many initial shocks before generating a massive, global cascade
in response to a shock that is a priori indistinguishable from any
other.

These qualitative results are quite general within the class of
random networks, applying to arbitrary distributions both of thresh-
olds f(�) and degree pk. Variations in either distribution, however,
can affect the quantitative results—and thus the effective vulner-
ability of the system—considerably, as is demonstrated in Fig. 4 a
and b. Fig. 4a shows the original cascade window for homogeneous
thresholds (solid line) and also two windows (dashed lines) derived
by the same generating function method, but corresponding to
threshold distributions f(�) that are normally distributed with mean
�* and increasing standard deviation �. Numerical results (not
shown) correspond to the analytically derived windows. Clearly,
increased heterogeneity of thresholds causes the system to be less

Fig. 3. Cumulative distributions of cascade sizes at the lower and upper
critical points, for n � 1,000 and z � 1.05 (open squares) and z � 6.14 (solid
circles), respectively. The straight line on the double logarithmic scale indi-
cates that cascades at the lower critical point are power-law distributed, with
slope 3�2 (the cumulative distribution has slope 1�2). By contrast, the distri-
bution at the upper critical point is bimodal, with an exponential tail at small
cascade size, and a second peak at the size of the entire system corresponding
to a single global cascade. Above the upper boundary, the global cascade
disappears and large cascades are always exponentially unlikely.

Fig. 4. Analytically derived cascade windows for heterogeneous networks. The
solid lines are the same as Fig. 1. (a) The dashed lines represent cascade windows
for uniform random graphs, but where the threshold distributions (�) are nor-
mally distributed with mean � and SD � � 0.05 and � � 0.1. (b) The dashed line
represents the cascade window for a random graph with a degree distribution
that is a power law with exponent � and exponential cut-off 
0, where � has been
fixed at � � 2.5 and 
0 has been adjusted to generate graphs with variable z.
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stable, yielding cascades over a greater range of both �* and z. Fig.
4b, however, presents a different view of heterogeneity. Now the
threshold distribution is held fixed, with all vertices exhibiting the
same threshold, but the distribution of degree pk is given by pk �
Ck
�e
k/
 (k � 0), where C, �, and 
 are constants that can be
adjusted such that we retain �k� � z. This class of power-law random
graphs has attracted much recent interest (19, 20, 32) as a model of
many real networks, including the internet. Unlike the Poisson
distribution of a uniform random graph, which is sharply peaked
around a well defined mean, power law distributions are highly
skewed with long tails, corresponding to increased network heter-
ogeneity. Fig. 4b implies that random graphs with power law degree
distributions tend to be much less vulnerable to random shocks than
uniform random graphs with the same z, a point observed else-
where (19, 20) with respect to network connectivity. Although this
distinction between threshold and network heterogeneity is slightly
surprising (because both kinds of heterogeneity are related by the
fractional threshold condition), it is understandable. Nodes that are
vulnerable because of a low threshold can still be well connected to
the network, making them ideal early adopters. But nodes that are
vulnerable to small perturbations because they have very few
neighbors are therefore also poorly connected; hence, they have
difficulty propagating any influence.

Network heterogeneity has an additional, complicating effect.
Although networks with highly skewed degree distributions are
more stable overall, within the cascade window they display in-
creased susceptibility with respect to initial shocks that explicitly
target high-degree nodes (19), even though such nodes are unlikely
to be vulnerable themselves. If instead of choosing an initial node
at random, we deliberately target a node with degree k, then the
probability of at least one of its neighbors being a part of the largest
vulnerable cluster, and therefore the probability of triggering a
cascade, is Pk � 1 
 (1 
 Sv)k, where Sv is the strength of the
vulnerable cluster—a prediction that is well fit by numerical data
(not shown) for uniform random graphs. Near the boundaries of the
cascade window, where Sv is small, Pk � kSv, implying that the ratio
between the probability of a global cascade being triggered by the
most connected node in the network (with k � kmax) and an average
node (with k � z) is approximately kmax�z, which is a rough measure
of the skewness of the degree distribution pk. Networks with highly
skewed pk (such as uniform random graphs near the lower cascade
boundary in Fig. 1, or those with power-law degree distributions)
should therefore exhibit the property that their most connected
nodes are disproportionately likely to trigger global cascades when
chosen as initial sites. By contrast, networks in which pk is sharply
peaked, with rapidly decaying tails (such as near the upper bound-
ary of Fig. 1) will not display this property. Numerical results for

uniform random graphs (not shown) support this conclusion.
Hence, the value of deliberately targeting highly connected initial
nodes depends significantly on the global degree distribution, and
therefore, in the case of uniform random graphs, whether the
system is in its high-connectivity or low-connectivity regime.

Conclusions
Global cascades in social and economic systems, as well as cascading
failures in engineered networks, display two striking qualitative
features: they occur rarely, but by definition are large when they do.
This general observation, however, presents an empirical mystery.
Both power-law and bimodal distributions of cascades would satisfy
the claim of infrequent, large events, but these distributions are
otherwise quite different, and might require quite different expla-
nations. Unfortunately a lack of empirical data detailing cascade
size distributions prevents us from determining which distribution
(if either) correctly describes which systems. Here we have moti-
vated and analyzed a simple, binary-decision model that, under
different conditions, exhibits both kinds of behaviors and thus sets
up some testable predictions about cascades in real systems. When
the network of interpersonal influences is sufficiently sparse, the
propagation of cascades is limited by the global connectivity of the
network; and when it is sufficiently dense, cascade propagation is
limited by the stability of the individual nodes. In the first case,
cascades exhibit a power-law distribution at the corresponding
critical point, and the most highly connected nodes are critical in
triggering cascades. In the second case, the distribution of cascades
is bimodal, and nodes with average connectivity, by virtue of their
greater frequency, are much more likely to serve as triggers. In the
latter regime, the system displays a more dramatic kind of robust-
yet-fragile quality than in the former, remaining almost completely
stable throughout many shocks before exhibiting a sudden and giant
cascade—a feature that would make global cascades exceptionally
hard to anticipate. Finally, systemic heterogeneity has mixed effects
on systemic stability. On the one hand, increased heterogeneity of
individual thresholds appears to increase the likelihood of global
cascades; but on the other hand, increased heterogeneity of vertex
degree appears to reduce it. It is hoped that the introduction of this
simple framework will stimulate theoretical and empirical efforts to
analyze more realistic network models (incorporating social struc-
ture, for example) and obtain comprehensive data on the fre-
quency, size, and time scales of global cascades in real networked
systems.
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