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19.1 Diffusion in Networks

A basic issue in the preceding several chapters has been the way in which an individual’s

choices depend on what other people do — this has informed our use of information cascades,

network effects, and rich-get-richer dynamics to model the processes by which new ideas

and innovations are adopted by a population. When we perform this type of analysis,

the underlying social network can be considered at two conceptually very different levels

of resolution: one in which we view the network as a relatively amorphous population of

individuals, and look at effects in aggregate; and another in which we move closer to the

fine structure of the network as a graph, and look at how individuals are influenced by their

particular network neighbors. Our focus in these past few chapters has been mainly on

the first of these levels of resolution, capturing choices in which each individual is at least

implicitly aware of the previous choices made by everyone else, and takes these into account.

In the next few chapters, we bring the analysis closer to the detailed network level.

What do we gain by considering this second level of resolution, oriented around network

structure? To begin with, we can address a number of phenomena that can’t be modeled

well at the level of homogeneous populations. Many of our interactions with the rest of the

world happen at a local, rather than a global, level — we often don’t care as much about

the full population’s decisions as about the decisions made by friends and colleagues. For

example, in a work setting we may choose technology to be compatible with the people we

directly collaborate with, rather than the universally most popular technology. Similarly,

we may adopt political views that are aligned with those of our friends, even if they are

nationally in the minority.
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564 CHAPTER 19. CASCADING BEHAVIOR IN NETWORKS

In this way, considering individual choices with explicit network structure merges the

models of the past several chapters with a distinct line of thinking begun in Chapter 4,

when we examined how people link to others who are like them, and in turn can become

more similar to their neighbors over time. The framework in Chapter 4 dealt explicitly with

network connections, but did not explore the individual decision-making that leads people

to become similar to their neighbors: instead, a tendency toward favoring similarity was

invoked there as a basic assumption, rather than derived from more fundamental principles.

In contrast, the last several chapters have developed principles that show how, at an aggre-

gate population level, becoming similar to one’s neighbors can arise from the behavior of

individuals who are seeking to maximize their utility in given situations. We saw in fact that

there are two distinct kinds of reasons why imitating the behavior of others can be beneficial:

informational effects, based on the fact that the choices made by others can provide indi-

rect information about what they know; and direct-benefit effects, in which there are direct

payoffs from copying the decisions of others — for example, payoffs that arise from using

compatible technologies instead of incompatible ones.

We now connect these two approaches by exploring some of the decision-making principles

that can be used to model individual decision-making in a social network, leading people to

align their behaviors with those of their network neighbors.

The Diffusion of Innovations. We will consider specifically how new behaviors, prac-

tices, opinions, conventions, and technologies spread from person to person through a social

network, as people influence their friends to adopt new ideas. Our understanding of how

this process works is built on a long history of empirical work in sociology known as the

diffusion of innovations [115, 351, 382]. A number of now-classic studies done in the middle

of the 20th century established a basic research strategy for studying the spread of a new

technology or idea through a group of people, and analyzing the factors that facilitated or

impeded its progress.

Some of these early studies focused on cases in which the person-to-person influence was

due primarily to informational effects: as people observed the decisions of their network

neighbors, it provided indirect information that led them to try the innovation as well. Two

of the most influential early pieces of research to capture such informational effects were

Ryan and Gross’s study of the adoption of hybrid seed corn among farmers in Iowa [358]

and Coleman, Katz, and Menzel’s study of the adoption of tetracycline by physicians in the

United States [115]. In Ryan and Gross’s study, they interviewed farmers to determine how

and when they decided to begin using hybrid seed corn; they found that while most of the

farmers in their study first learned about hybrid seed corn from salesmen, most were first

convinced to try using it based on the experience of neighbors in their community. Coleman,

Katz, and Menzel went further when they studied the adoption of a new drug by doctors,
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mapping out the social connections among the doctors making decisions about adoption.

While these two studies clearly concerned very different communities and very different

innovations, they — like other important studies of that period — shared a number of basic

ingredients. In both cases, the novelty and initial lack of understanding of the innovation

made it risky to adopt, but it was ultimately highly beneficial; in both cases, the early

adopters had certain general characteristics, including higher socio-economic status and a

tendency to travel more widely; and in both cases, decisions about adoption were made in

the context of a social structure where people could observe what their neighbors, friends,

and colleagues were doing.

Other important studies in the diffusion of innovations focused on settings in which

decisions about adoption were driven primarily by direct-benefit effects rather than infor-

mational ones. A long line of diffusion research on communication technologies has explored

such direct-benefit effects; the spread of technologies such as the telephone, the fax machine,

and e-mail has depended on the incentives people have to communicate with friends who

have already adopted the technology [162, 285].

As studies of this type began proliferating, researchers started to identify some of the

common principles that applied across many different domains. In his influential book on

the diffusion of innovations, Everett Rogers gathered together and articulated a number of

these principles [351], including a set of recurring reasons why an innovation can fail to

spread through a population, even when it is has significant relative advantage compared to

existing practices. In particular, the success of an innovation also depends on its complexity

for people to understand and implement; its observability, so that people can become aware

that others are using it; its trialability, so that people can mitigate its risks by adopting it

gradually and incrementally; and perhaps most crucially, its overall compatibility with the

social system that it is entering. Related to this, the principle of homophily that we have

encountered in earlier chapters can sometimes act as a barrier to diffusion: since people

tend to interact with others who are like themselves, while new innovations tend to arrive

from “outside” the system, it can be difficult for these innovations to make their way into a

tightly-knit social community.

With these considerations in mind, we now begin the process of formulating a model for

the spread of an innovation through a social network.

19.2 Modeling Diffusion through a Network

We build our model for the diffusion of a new behavior in terms of a more basic, underlying

model of individual decision-making: as individuals make decisions based on the choices

of their neighbors, a particular pattern of behavior can begin to spread across the links

of the network. To formulate such an individual-level model, it is possible to start either
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from informational effects [2, 38, 186] or direct-benefit effects [62, 147, 308, 420]. In this

chapter, we will focus on the latter, beginning with a natural model of direct-benefit effects

in networks due to Stephen Morris [308].

Network models based on direct-benefit effects involve the following underlying consid-

eration: you have certain social network neighbors — friends, acquaintances, or colleagues

— and the benefits to you of adopting a new behavior increase as more and more of these

neighbors adopt it. In such a case, simple self-interest will dictate that you should adopt the

new behavior once a sufficient proportion of your neighbors have done so. For example, you

may find it easier to collaborate with co-workers if you are using compatible technologies;

similarly, you may find it easier to engage in social interaction — all else being equal — with

people whose beliefs and opinions are similar to yours.

A Networked Coordination Game. These ideas can be captured very naturally using

a coordination game, a concept we first encountered in Section 6.5. In an underlying social

network, we will study a situation in which each node has a choice between two possible

behaviors, labeled A and B. If nodes v and w are linked by an edge, then there is an

incentive for them to have their behaviors match. We represent this using a game in which

v and w are the players and A and B are the possible strategies. The payoffs are defined as

follows:

• if v and w both adopt behavior A, they each get a payoff of a > 0;

• if they both adopt B, they each get a payoff of b > 0; and

• if they adopt opposite behaviors, they each get a payoff of 0.

We can write this in terms of a payoff matrix, as in Figure 19.1. Of course, it is easy to

imagine many more general models for coordination, but for now we are trying to keep things

as simple as possible.

v

w
A B

A a, a 0, 0
B 0, 0 b, b

Figure 19.1: A-B Coordination Game

This describes what happens on a single edge of the network; but the point is that each

node v is playing a copy of this game with each of its neighbors, and its payoff is the sum of

its payoffs in the games played on each edge. Hence v’s choice of strategy will be based on

the choices made by all of its neighbors, taken together.
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Figure 19.2: v must choose between behavior A and behavior B, based on what its neighbors
are doing.

The basic question faced by v will be the following: suppose that some of its neighbors

adopt A, and some adopt B; what should v do in order to maximize its payoff? This clearly

depends on the relative number of neighbors doing each, and on the relation between the

payoff values a and b. With a little bit of algebra, we can make up a decision rule for v quite

easily, as follows. Suppose that a p fraction of v’s neighbors have behavior A, and a (1− p)

fraction have behavior B; that is, if v has d neighbors, then pd adopt A and (1− p)d adopt

B, as shown in Figure 19.2. So if v chooses A, it gets a payoff of pda, and if it chooses B, it

gets a payoff of (1− p)db. Thus, A is the better choice if

pda ≥ (1− p)db,

or, rearranging terms, if

p ≥ b

a + b
.

We’ll use q to denote this expression on the right-hand side. This inequality describes a very

simple threshold rule: it says that if at least a q = b/(a+ b) fraction of your neighbors follow

behavior A, then you should too. And it makes sense intuitively: when q is small, then

A is the much more enticing behavior, and it only takes a small fraction of your neighbors

engaging in A for you to do so as well. On the other hand, if q is large, then the opposite

holds: B is the attractive behavior, and you need a lot of your friends to engage in A before

you switch to A. There is a tie-breaking question when exactly a q fraction of a node’s
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(d) After a second step, everyone has adopted

Figure 19.3: Starting with v and w as the initial adopters, and payoffs a = 3 and b = 2, the new behavior
A spreads to all nodes in two steps. Nodes adopting A in a given step are drawn with dark borders; nodes
adopting B are drawn with light borders.

neighbors follow A; in this case, we will adopt the convention that the node chooses A rather

than B.

Notice that this is in fact a very simple — and in particular, myopic — model of individual

decision-making. Each node is optimally updating its decision based on the immediate

consideration of what its neighbors are currently doing, but it is an interesting research

question to think about richer models, in which nodes try to incorporate more long-range

considerations into their decisions about switching from B to A.

Cascading Behavior. In any network, there are two obvious equilibria to this network-

wide coordination game: one in which everyone adopts A, and another in which everyone

adopts B. Guided by diffusion questions, we want to understand how easy it is, in a given
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situation, to “tip” the network from one of these equilibria to the other. We also want to

understand what other “intermediate” equilibria look like — states of coexistence where A

is adopted in some parts of the network and B is adopted in others.

Specifically, we consider the following type of situation. Suppose that everyone in the

network is initially using B as a default behavior. Then, a small set of “initial adopters”

all decide to use A. We will assume that the initial adopters have switched to A for some

reason outside the definition of the coordination game — they have somehow switched due

to a belief in A’s superiority, rather than by following payoffs — but we’ll assume that all

other nodes continue to evaluate their payoffs using the coordination game. Given the fact

that the initial adopters are now using A, some of their neighbors may decide to switch to

A as well, and then some of their neighbors might, and so forth, in a potentially cascading

fashion. When does this result in every node in the entire network eventually switching over

to A? And when this isn’t the result, what causes the spread of A to stop? Clearly the

answer will depend on the network structure, the choice of initial adopters, and the value of

the threshold q that nodes use for deciding whether to switch to A.

The above discussion describes the full model. An initial set of nodes adopts A while

everyone else adopts B. Time then runs forward in unit steps; in each step, each node uses

the threshold rule to decide whether to switch from B to A.1 The process stops either when

every node has switched to A, or when we reach a step where no node wants to switch, at

which point things have stabilized on coexistence between A and B.

Let’s consider an example of this process using the social network in Figure 19.3(a).

• Suppose that the coordination game is set up so that a = 3 and b = 2; that is, the

payoff to nodes interacting using behavior A is 3/2 times what it is with behavior B.

Using the threshold formula, we see that nodes will switch from B to A if at least a

q = 2/(3 + 2) = 2/5 fraction of their neighbors are using A.

• Now, suppose that nodes v and w form the set of initial adopters of behavior A, while

everyone else uses B. (See Figure 19.3(b), where dark circles denote nodes adopting

A and lighter circles denote nodes adopting B.) Then after one step, in which each

of the other nodes evaluates its behavior using the threshold rule, nodes r and t will

switch to A: for each of them, 2/3 > 2/5 of their neighbors are now using A. Nodes s

and u do not switch, on the other hand, because for each of them, only 1/3 < 2/5 of

their neighbors are using A.

1While we won’t go through the details here, it is not hard to show that no node that switches to A at
some point during this process will ever switch back to B at a later point — so what we’re studying is indeed
a strictly progressive sequence of switches from A to B. Informally, this fact is based on the observation that
for any node that switches to A at some point in time, the number of neighbors of this node that follow A
only continues to increase as time moves forward beyond this point — so if the threshold rule said to switch
to A at some point in time, it will only say this more strongly at future times. This is the informal version
of the argument, but it is not hard to turn this into a proof.
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Figure 19.4: A larger example.

• In the next step, however, nodes s and u each have 2/3 > 2/5 of their neighbors using

A, and so they switch. The process now comes to an end, with everyone in the network

using A.

Notice how the process really is a chain reaction: nodes v and w aren’t able to get s and u

to switch by themselves, but once they’ve converted r and t, this provides enough leverage.

It’s also instructive to consider an example in which the adoption of A continues for a

while but then stops. Consider the social network in Figure 19.4, and again let’s suppose

that in the A-B coordination game, we have a = 3 and b = 2, leading to a threshold of

q = 2/5. If we start from nodes 7 and 8 as initial adopters (Figure 19.5(a)), then in the next

three steps we will first see (respectively) nodes 5 and 10 switch to A, then nodes 4 and 9,

and then node 6. At this point, no further nodes will be willing to switch, leading to the

outcome in Figure 19.5(b).

We’ll call this chain reaction of switches to A a cascade of adoptions of A, and we’d like

to distinguish between two fundamental possibilities: (i) that the cascade runs for a while

but stops while there are still nodes using B, or (ii) that there is a complete cascade, in

which every node in the network switches to A. We introduce the following terminology for

referring to the second possibility.

Consider a set of initial adopters who start with a new behavior A, while every

other node starts with behavior B. Nodes then repeatedly evaluate the decision to

switch from B to A using a threshold of q. If the resulting cascade of adoptions
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(a) Two nodes are the initial adopters
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(b) The process ends after three steps

Figure 19.5: Starting with nodes 7 and 8 as the initial adopters, the new behavior A spreads
to some but not all of the remaining nodes.
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of A eventually causes every node to switch from B to A, then we say that the

set of initial adopters causes a complete cascade at threshold q.

Cascading Behavior and “Viral Marketing.” There are a few general observations to

note about the larger example in Figure 19.5. First, it nicely illustrates a point from the

opening section, that tightly-knit communities in the network can work to hinder the spread

of an innovation. Summarizing the process informally, A was able to spread to a set of nodes

where there was sufficiently dense internal connectivity, but it was never able to leap across

the “shores” in the network that separate nodes 8-10 from nodes 11-14, or that separate node

6 from node 2. As a result, we get coexistence between A and B, with boundaries in the

network where the two meet. One can see reflections of this in many instances of diffusion

— for example, in different dominant political views between adjacent communities. Or, in

a more technological setting, consider the ways in which different social-networking sites are

dominated by different age groups and lifestyles — people will have an incentive to be on the

sites their friends are using, even when large parts of the rest of the world are using something

else. Similarly, certain industries heavily use Apple Macintosh computers despite the general

prevalence of Windows: if most of the people you directly interact with use Apple software,

it’s in your interest to do so as well, despite the increased difficulty of interoperating with

the rest of the world.

This discussion also suggests some of the strategies that might be useful if A and B

in Figure 19.5 were competing technologies, and the firm producing A wanted to push its

adoption past the point at which it has become stuck in Figure 19.5(b). Perhaps the most

direct way, when possible, would be for the maker of A to raise the quality of its product

slightly. For example, if we change the payoff a in the underlying coordination game from

a = 3 to a = 4, then resulting threshold for adopting A drops from q = 2/5 down to q = 1/3.

With this threshold, we could check that all nodes would eventually switch to A starting

from the situation in Figure 19.5(b). In other words, at this lower threshold, A would be able

to break into the other parts of the network that are currently resisting it. This captures an

interesting sense in which making an existing innovation slightly more attractive can greatly

increase its reach. It also shows that our discussion about the coexistence between A and B

along a natural boundary in the network depended not just on the network structure, but

also on the relative payoffs of coordinating on A versus B.

When it’s not possible to raise the quality of A — in other words, when the marketer

of A can’t change the threshold — a different strategy for increasing the spread of A would

be to convince a small number of key people in the part of the network using B to switch

to A, choosing these people carefully so as to get the cascade going again. For example, in

Figure 19.5(b), we can check that if the marketer of A were to focus its efforts on convincing

node 12 or 13 to switch to A, then the cascading adoption of A would start up again,
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Figure 19.6: A collection of four-node clusters, each of density 2/3.

eventually causing all of nodes 11–17 to switch. On the other hand, if the marketer of A

spent effort getting node 11 or 14 to switch to A, then it would have no further consequences

on the rest of the network; all other nodes using B would still be below their threshold of

q = 2/5 for switching to A. This indicates that the question of how to choose the key nodes

to switch to a new product can be subtle, and based intrinsically on their position in the

underlying network. Such issues are important in discussions of “viral marketing” [230], and

have been analyzed in models of the type we are considering here [71, 132, 240, 309, 348].

Finally, it is useful to reflect on some of the contrasts between population-level network

effects in technology adoption, as we formulated them in Chapter 17, and network-level cas-

cading adoption as illustrated here. In a population-level model, when everyone is evaluating

their adoption decisions based on the fraction of the entire population that is using a partic-

ular technology, it can be very hard for a new technology to get started, even when it is an

improvement on the status quo. In a network, however, where you only care about what your

immediate neighbors are doing, it’s possible for a small set of initial adopters to essentially

start a long fuse running that eventually spreads the innovation globally. This idea that a

new idea is initially propagated at a local level along social network links is something one

sees in many settings where an innovation gains eventual widespread acceptance.

19.3 Cascades and Clusters

We continue exploring some of the consequences of our simple model of cascading behavior

from the previous section: now that we’ve seen how cascades form, we look more deeply at

what makes them stop. Our specific goal will be to formalize something that is intuitively

apparent in Figure 19.5 — that the spread of a new behavior can stall when it tries to

break in to a tightly-knit community within the network. This will in fact provide a way

of formalizing a qualitative principle discussed earlier — that homophily can often serve

as a barrier to diffusion, by making it hard for innovations to arrive from outside densely

connected communities.
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Figure 19.7: Two clusters of density 2/3 in the network from Figure 19.4.

As a first step, let’s think about how to make the idea of a “densely connected community”

precise, so that we can talk about it in the context of our model. A key property of such

communities is that when you belong to one, many of your friends also tend to belong. We

can take this as the basis of a concrete definition, as follows.

We say that a cluster of density p is a set of nodes such that each node in the set

has at least a p fraction of its network neighbors in the set.

For example, the set of nodes a, b, c, d forms a cluster of density 2/3 in the network in

Figure 19.6. The sets e, f, g, h and i, j, k, l each form clusters of density 2/3 as well.

As with any formal definition, it’s important to notice the ways in which it captures

our motivation as well as some of the ways in which it might not. Each node in a cluster

does have a prescribed fraction of its friends residing in the cluster as well, implying some

level of internal “cohesion.” On the other hand, our definition does not imply that any two

particular nodes in the same cluster necessarily have much in common. For example, in any

network, the set of all nodes is always a cluster of density 1 — after all, by definition, all

your network neighbors reside in the network. Also, if you have two clusters of density p,

then the union of these two clusters (i.e. the set of nodes that lie in at least one of them) is

also a cluster of density p. These observations are consistent with the notion that clusters
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in networks can exist simultaneously at many different scales.

The Relationship between Clusters and Cascades. The example in Figure 19.7 hints

at how the cluster structure of a network might tell us something about the success or failure

of a cascade. In this example, we see two communities, each of density 2/3, in the network

from Figure 19.4. These correspond precisely to the parts of the network that the cascading

behavior A was unable to break into, starting from nodes 7 and 8 as initial adopters. Could

this be a general principle?

In fact it is, at least within the context of the model we’ve developed. We now formulate

a result saying, essentially, that a cascade comes to a stop when it runs into a dense cluster;

and furthermore, that this is the only thing that causes cascades to stop [308]. In other

words, clusters are the natural obstacles to cascades. Here is the precise statement, phrased

in terms of the set of initial adopters and the remaining network — the portion of the network

consisting of all nodes other than these initial adopters.

Claim: Consider a set of initial adopters of behavior A, with a threshold of q for

nodes in the remaining network to adopt behavior A.

(i) If the remaining network contains a cluster of density greater than 1 − q,

then the set of initial adopters will not cause a complete cascade.

(ii) Moreover, whenever a set of initial adopters does not cause a complete cas-

cade with threshold q, the remaining network must contain a cluster of den-

sity greater than 1− q.

It is appealing how this result gives a precise characterization for the success or failure of a

cascade, in our simple model, using a natural feature of the network structure. Further, it

does so by concretely formalizing a sense in which tightly-knit communities block the spread

of cascades.

We now prove this result by separately establishing parts (i) and (ii). In going through

the proofs of the two parts, it’s useful to think about them both in general, and also in light

of the example in Figure 19.7, where clusters of density greater than 1 − 2
5 = 3

5 block the

spread of A at threshold 2
5 .

We begin with part (i).

Part (i): Clusters are Obstacles to Cascades. Consider an arbitrary network in which

behavior A is spreading with threshold q, starting from a set of initial adopters. Suppose

that the remaining network contains a cluster of density greater than 1− q. We now argue

that no node inside the cluster will ever adopt A.

Indeed, assume the opposite — that some node inside the cluster does eventually adopt

A — and consider the earliest time step t at which some node inside the cluster does so. Let
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v
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Figure 19.8: The spread of a new behavior, when nodes have threshold q, stops when it
reaches a cluster of density greater than (1− q).

v be the name of a node in the cluster that adopts A at time t. The situation is depicted

schematically in Figure 19.8 — essentially, we want to argue that, at the time v adopted,

it could not possibly have had enough neighbors using A to trigger its threshold rule. This

contradiction will show that v in fact could not have adopted.

Here is how we do this. At the time that v adopted A, its decision was based on the set

of nodes who had adopted A by the end of the previous time step, t − 1. Since no node in

the cluster adopted before v did (that’s how we chose v), the only neighbors of v that were

using A at the time it decided to switch were outside the cluster. But since the cluster has

density greater than 1− q, more than a 1− q fraction of v’s neighbors are inside the cluster,

and hence less than a q fraction of v’s neighbors are outside the cluster. Since these are the

only neighbors who could have been using A, and since the threshold rule requires at least a

q fraction of neighbors using v, this is a contradiction. Hence our original assumption, that

some node in the cluster adopted A at some point in time, must be false.

Having established that no node in the cluster ever adopts A, we are done, since this

shows that the set of initial adopters does not cause a complete cascade.

Part (ii): Clusters are the Only Obstacles to Cascades. We now establish part

(ii) of our claim, which says in effect that not only are clusters a natural kind of obstacle

to cascades — they are in fact the only kind of obstacle. From a methodological point

of view (although all the details are different), this is reminiscent of a question we asked

with matching markets: having found that constricted sets are natural obstacles to perfect

matchings, we went on to find that they are in fact the only obstacle.
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Figure 19.9: If the spread of A stops before filling out the whole network, the set of nodes
that remain with B form a cluster of density greater than 1− q.

To prove part (ii) we show that whenever a set of initial adopters fails to cause a complete

cascade with threshold q, there is a cluster in the remaining network of density greater than

(1−q). In fact, this is not difficult: consider running the process by which A spreads, starting

from the initial adopters, until it stops. It stops because there are still nodes using B, but

none of the nodes in this set want to switch, as illustrated in Figure 19.9.

Let S denote the set of nodes using B at the end of the process. We want to claim that

S is a cluster of density greater than 1 − q, which will finish the proof of part (ii). To see

why this is true, consider any node w in this set S. Since w doesn’t want to switch to A,

it must be that the fraction of its neighbors using A is less than q — and hence that the

fraction of its neighbors using B is greater than 1 − q. But the only nodes using B in the

whole network belong to the set S, so the fraction of w’s neighbors belonging to S is greater

than 1− q. Since this holds for all nodes in S, it follows that S is a cluster of density greater

than 1− q.

This wraps up our analysis of cascades and clusters; the punch-line is that in this model, a

set of initial adopters can cause a complete cascade at threshold q if and only if the remaining

network contains no cluster of density greater than (1 − q). So in this sense, cascades and

clusters truly are natural opposites: clusters block the spread of cascades, and whenever a

cascade comes to a stop, there’s a cluster that can be used to explain why.
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Figure 19.10: The years of first awareness and first adoption for hybrid seed corn in the
Ryan-Gross study. (Image from [358].)

19.4 Diffusion, Thresholds, and the Role of Weak Ties

One of the fundamental things we learn from studying diffusion is that there is a crucial

difference between learning about a new idea and actually deciding to adopt it. This contrast

was already important in the early days of diffusion research. For example, Figure 19.10

comes from the original Ryan-Gross study of hybrid seed corn [358]; it shows a clear wave

of awareness of this innovation that significantly precedes the wave of adoptions.

Our models also illustrate this contrast. If we imagine that people first hear about an

innovation when any of their neighbors first adopts, then we see for example in Figure 19.5

that nodes 4 and 9 are aware of A as a new behavior right away, but it takes further time

for them to actually adopt it. In an even stronger direction, nodes 2 and 11-14 eventually

become aware of A but never adopt it.

Centola and Macy [101] and Siegel [369] make the interesting observation that threshold

models for diffusion thus highlight an interesting subtlety in the strength-of-weak-ties theory

that we discussed in Chapter 3. Recall that the strength of weak ties is rooted in the idea

that weak social connections, to people we see infrequently, often form local bridges in a

social network. They therefore provide access to sources of information — things like new

job opportunities — that reside in parts of the network we otherwise wouldn’t have access

to. To take a canonical picture from Chapter 3, shown here in Figure 19.11, the u-w and v-w

edges span tightly-knit communities that wouldn’t otherwise be able to communicate, and
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Figure 19.11: The u-w and v-w edges are more likely to act as conduits for information than
for high-threshold innovations.

thus we expect v, for example, to receive information from his edge to w that he wouldn’t

get from his other edges.

But things look very different if we consider the spread of a new behavior that requires

not just awareness, but an actual threshold for adoption. Suppose, for example, w and x in

Figure 19.11 are the initial adopters of a new behavior that is spreading with a threshold

of 1/2. Then we can check that everyone else in their tightly-knit six-node community will

adopt this behavior, but u and v will not. (Nor, therefore, will anyone else lying beyond

them in the network.)

This illustrates a natural double-edged aspect to bridges and local bridges in a social

network: they are powerful ways to convey awareness of new things, but they are weak at

transmitting behaviors that are in some way risky or costly to adopt — behaviors where you

need to see a higher threshold of neighbors doing it before you do it as well. In this sense,

nodes u and v in Figure 19.11 have strong informational advantages over other members of

their respective tightly-knit communities — they can learn from node w about a new behavior

currently spreading in w’s community — but for behaviors with higher thresholds they will

still want to align themselves with others in their own community. If we think about it, this

is actually remarkably consistent with the picture from Chapter 3, in which local bridges and

positions near structural holes can provide access to information that you’re not otherwise
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learning about from your own cluster in the network: for behaviors that spread with high

thresholds, a local bridge may well connect you to someone whose network neighborhood

has caused them to settle on a different behavior than you have.

The trade-offs inherent in this picture have been used to motivate some of the reasons

why many social movements tend to build support locally and relatively slowly. Although

a world-spanning system of weak ties in the global friendship network is able to spread

awareness of a joke or an on-line video with remarkable speed, political mobilization moves

more sluggishly, needing to gain momentum within neighborhoods and small communities.

Thresholds provide a possible reason: social movements tend to be inherently risky under-

takings, and hence individuals tend to have higher thresholds for participating; under such

conditions, local bridges that connect very different parts of the network are less useful. Such

considerations provide a perspective on other well-known observations about social move-

ments in the diffusion literature, such as Hedstrom’s findings that such movements often

spread geographically [215], and McAdam’s conclusion that strong ties, rather than weak

ties, played the more significant role in recruitment to student activism during Freedom

Summer in the 1960s [290, 291].

19.5 Extensions of the Basic Cascade Model

Our discussion thus far has shown how a very simple model of cascades in networks can

capture a number of qualitative observations about how new behaviors and innovations

diffuse. We now consider how the model can be extended and enriched, keeping its basic

points the same while hinting at additional subtleties.

Heterogeneous Thresholds. Thus far we have been keeping the underlying model of

individual behavior as simple as possible — everyone has the same payoffs, and the same

intensity of interaction with their network neighbors. But we can easily make these assump-

tions more general while still preserving the structure of the model and the close connection

between cascades and clusters.

As the main generalization we consider, suppose that each person in the social network

values behaviors A and B differently. Thus, for each node v, we define a payoff av — labeled

so that it is specific to v — that it receives when it coordinates with someone on behavior

A, and we define a payoff bv that it receives when it coordinates with someone on behavior

B. When two nodes v and w interact across an edge in the network, they are thus playing

the coordination game in Figure 19.12.

Almost all of the previous analysis carries over with only small modifications; we now

briefly survey how these changes go. When we first defined the basic coordination game,

with all nodes agreeing on how to value A and B, we next asked how a given node v should
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A av, aw 0, 0
B 0, 0 bv, bw

Figure 19.12: A-B Coordination Game

choose its behavior based on what its neighbors are doing. A similar question applies here,

leading to a similar calculation. If v has d neighbors, of whom a p fraction have behavior A

and a (1 − p) fraction have behavior B, then the payoff from choosing A is pdav while the

payoff from choosing B is (1− p)dbv. Thus A is the better choice if

p ≥ bv

av + bv
.

Using qv to denote the right-hand side of this, we again have a very simple decision rule —

now, each node v has its own personal threshold qv, and it chooses A if at least a qv fraction

of its neighbors have done so. Moreover the variation in this set of heterogeneous node

thresholds has an intuitive meaning in terms of the variation in payoffs: if a node values A

more highly relative to B, its threshold qv is correspondingly lower.

The process now runs as before, starting from a set of initial adopters, with each node

evaluating its decision according to its own threshold rule in each time step, and switching

to A if its threshold is reached. Figure 19.13 shows an example of this process (where each

node’s threshold is drawn to the upper-right of the node itself).

A number of interesting general observations are suggested by what happens in Fig-

ure 19.13. First, the diversity in node thresholds clearly plays an important role that in-

teracts in complex ways with the structure of the network. For example, despite node 1’s

“central” position, it would not have succeeded in converting anyone at all to A were it not

for the extremely low threshold on node 3. This relates closely to a point made in work by

Watts and Dodds [409], who argue that for understanding the spread of behaviors in social

networks, we need to take into account not just the power of influential nodes, but also the

extent to which these influential nodes have access to easily influenceable people.

It is also instructive to look at how the spread of A comes to a stop in Figure 19.13, and

to ask whether the notion of clusters as obstacles to cascades can be extended to hold even

in the case when thresholds are heterogeneous. In fact, this is possible, by formulating the

notion of a cluster in this setting as follows. Given a set of node thresholds, let’s say that a

blocking cluster in the network is a set of nodes for which each node v has more than a 1− qv

fraction of its friends also in the set. (Notice how the notion of cluster density — like the

notion of thresholds — becomes heterogeneous as well: each node has a different requirement

for the fraction of friends it needs to have in the cluster.) By a fairly direct adaptation of the

analysis from Section 19.3, one can show that a set of initial adopters will cause a complete
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(b) The process ends after four steps

Figure 19.13: Starting with node 1 as the unique initial adopter, the new behavior A spreads
to some but not all of the remaining nodes.
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cascade — with a given set of node thresholds — if and only if the remaining network does

not contain a blocking cluster.

19.6 Knowledge, Thresholds, and Collective Action

We now switch our discussion to a related topic that integrates network effects at both the

population level and the local network level. We consider situations where coordination

across a large segment of the population is important, and the underlying social network is

serving to transmit information about people’s willingness to participate.

Collective Action and Pluralistic Ignorance. A useful motivating example is the prob-

lem of organizing a protest, uprising, or revolt under a repressive regime [109, 110, 192].

Imagine that you are living in such a society, and are aware of a public demonstration against

the government that is planned for tomorrow. If an enormous number of people show up,

then the government will be seriously weakened, and everyone in society — including the

demonstrators — will benefit. But if only a few hundred show up, then the demonstrators

will simply all be arrested (or worse), and it would have been better had everyone stayed

home. In such circumstances, what should you do?

This is an example of a collective action problem, where an activity produces benefits

only if enough people participate. In this way, it is reminiscent of our analysis in Chapter 17

of population-level network effects: as with joining a large-scale demonstration, you only

want to buy a fax machine if enough other people do. The starker setting of the present

example highlights a few points, however. In the case of a fax machine, you can watch the

experience of early adopters; you can read reviews and advertisements; you can canvass a

wide array of friends and colleagues to see what they plan to do. Due to the much stronger

negative payoffs associated with opposing a repressive government, many of these options

are closed to you — you can talk about the idea with a small number of close friends whom

you trust, but beyond this your decision about whether to show up for the demonstration is

made difficult by a lack of knowledge of other people’s willingness to participate, or of their

criteria for deciding whether to participate.

These considerations illustrate some of the reasons why repressive governments work so

hard to limit communication among their citizens. It is possible, for example, that a large

fraction of the population is strong enough in its opposition to be willing to take extreme

measures, but that most of these people believe they’re in a small minority — and hence

view opposition as too risky. In this way, a government could survive long after there is

enough strong opposition in principle to get rid of it.

This phenomenon is known as pluralistic ignorance [330], in which people have wildly

erroneous estimates about the prevalence of certain opinions in the population at large. It
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Figure 19.14: Each node in the network has a threshold for participation, but only knows
the threshold of itself and its neighbors.

is a principle that applies widely, not just in settings where a central authority is actively

working to restrict information. For example, a survey conducted in the U.S. in 1970 (and

replicated several times in the surrounding years with similar results) showed that while

only a minority of white Americans at that point personally favored racial segregation,

significantly more than 50% believed that it was favored by a majority of white Americans

in their region of the country [331].

A Model for the Effect of Knowledge on Collective Action. Let’s consider how the

structure of the underlying social network can affect the way people make decisions about

collective action, following a model and a set of illustrative examples proposed by Michael

Chwe [109, 110]. Suppose that each person in a social network knows about a potential

upcoming protest against the government, and she has a personal threshold which encodes

her willingness to participate. A threshold of k means, “I will show up for the protest if I

am sure that at least k people in total (including myself) will show up.”

The links in the social network encode strong ties, where the two endpoints of each link

trust each other. Thus, we assume that each person in the network knows the thresholds

of all her neighbors in the network, but — due to the risky nature of communication about

dissent in this society — does not know the thresholds of anyone else. Now, given a network

with a set of thresholds, how should we reason about what is likely to happen?

Let’s consider the examples in Figure 19.14, which show some of the subtleties that arise

here. Scaling down our notion of “uprising” to a size commensurate with these 3-4 person

examples, suppose that each node represents one of the senior vice-presidents at a company,

each of whom must decide whether to actively confront the unpopular CEO at the next day’s

board meeting. It would be disastrous to do so without reasonable support from the others,

so each is willing to confront the CEO provided that at least a certain number of them do
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so in total. We’ll also assume that each node knows what the social network looks like.

First, Figure 19.14(a) indicates some of the reasoning that nodes must do about the

decisions being made by other nodes. Here, node w would only join the protest if at least

four people do; since there are only three people in total, this means he will never join. Node

v knows that w’s threshold is four, so v knows that w won’t participate. Since v requires

three people in order to be willing to join, v won’t participate either. Finally, u only requires

two people in order to participate, but she knows the thresholds of both other nodes, and

hence can determine that neither will participate. So she doesn’t either. Hence, the protest

doesn’t happen.

Figure 19.14(b) introduces even more subtle considerations, in which nodes must reason

about what other nodes know in order to reason about what they will do. In particular,

consider the situation from u’s perspective (since it’s symmetric for all nodes). She knows

that v and w each have a threshold of three, and so each of u, v, and w would feel safe taking

part in a protest that contained all three of them. But she also knows that v and w don’t

know each other’s thresholds, and so they can’t engage in the same reasoning that she can.

Is it safe for u to join the protest? The answer is no, for the following reason. Since u

doesn’t know x’s threshold, there’s the possibility that it’s something very high, like 5. In

this case, node v, seeing neighbors with thresholds of 3 and 5, would not join the protest.

Neither would w. So in this case, if u joined the protest, she’d be the only one — a disaster

for her. Hence, u can’t take this chance, and so she doesn’t join the protest.

Since the situation is symmetric for all four nodes in Figure 19.14(b), we can conclude that

no node will join the protest, and so no protest happens. There is something striking about

this: each node in the network knows the fact that there are three nodes with thresholds of

3 — enough for a protest to form — but each holds back because they cannot be sure that

any other nodes know this fact.

Things would turn out very differently if the link from v to x were shifted to instead

connect v and w, resulting in the network of Figure 19.14(c). Now, each of u, v, and w not

only knows the fact that there are three nodes with thresholds of 3, but this fact is common

knowledge [29, 154, 276]: among the set of nodes consisting of u, v, and w, each node knows

this fact, each node knows that each node knows it, each node knows that each node knows

that each node knows it, and so on indefinitely. We touched on common knowledge briefly

in the context of game theory in Chapter 6; as we see here, it also plays an important role

in interactions designed to achieve coordination.

So the differences between the examples in Figures 19.14(b) and 19.14(c) are subtle, and

come down to the different networks’ consequences for the knowledge that nodes have about

what others know. This contrast also highlights another way of thinking about the power of

strong ties and tightly-knit communities for encouraging participation in high-risk activities,

a topic that we discussed in Section 19.4. Weak ties have informational advantages since
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your strong ties are to people who knows things that heavily overlap with what you know.

But for collective action, such overlaps in knowledge can be precisely what is needed.

This model for common knowledge and coordination is developed further in [110]; under-

standing the precise interaction of knowledge with collective action remains an interesting

direction for further research.

Common Knowledge and Social Institutions. Building on these models, Chwe and

others have argued that a broad range of social institutions in fact serve the role of helping

people achieve common knowledge [111]. A widely-publicized speech, or an article in a high-

circulation newspaper, has the effect not just of transmitting a message, but of making the

listeners or readers realize that many others have gotten the message as well.

This is a useful context for thinking about freedom of the press and freedom of assembly,

and their relationship to open societies. But institutions relatively far from the political

sphere can also have strong roles as generators of common knowledge. For example, Chwe

argues that Super Bowl commercials are often used to advertise products where there are

strong network effects — things like cell-phone plans and other goods where it’s in your

interest to be one of a large population of adopters [111]. For example, the Apple Macintosh

was introduced in a Ridley-Scott-directed commercial during the 1984 Super Bowl. (Years

later, it was declared the “Greatest Television Commercial of All Time” by both TV Guide

and Advertising Age magazine.) As Chwe writes of the event, “The Macintosh was completely

incompatible with existing personal computers: Macintosh users could easily exchange data

only with other Macintosh users, and if few people bought the Macintosh, there would be

little available software. Thus a potential buyer would be more likely to buy if others bought

them also; the group of potential Macintosh buyers faced a coordination problem. By airing

the commercial during the Super Bowl, Apple did not simply inform each viewer about the

Macintosh; Apple also told each viewer that many other viewers were informed about the

Macintosh” [111].

Recently, David Patel has used principles of common knowledge to argue that differences

between the organization of Sunni and Shiite religious institutions can help explain much

about the power dynamics that followed the 2003 U.S. invasion of Iraq [339]. In particular,

strong organizational structures enabled Friday sermons at Shiite mosques to be centrally

coordinated, while the Sunni religious establishment lacked comparable structures: “Shiite

Ayatollahs, controlling hierarchical networks of clerical deputies, can reliably and consis-

tently disseminate similar messages in different mosques, generating common knowledge and

coordination across dispersed Shiite congregations on national-level issues like federalism

and voting strategies. Through mosque networks, Shiites reliably know what Shiites in far

distant areas know” [339]. Patel thus argues that these mechanisms for facilitating shared

knowledge enabled Shiites to achieve coordination on goals at a national scale, in a way that
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other groups in post-invasion Iraq lacked the institutional power to do.

Through all of this, we’re seeing that social networks don’t simply allow for interaction

and the flow of information, but that these processes in turn allow individuals to base

decisions on what others know, and on how they expect others to behave as a result. The

potential of this framework for studying social processes and social institutions is still being

actively explored.

19.7 Advanced Material: The Cascade Capacity

If we go back to the basic model of this chapter, in which nodes choose between behaviors

A and B based on thresholds derived from a networked coordination game, an interesting

perspective is to understand how different network structures are more or less hospitable to

cascades. A first version of this perspective is the analysis in Section 19.3, where we showed

that clusters in the network structure form the natural obstacles to cascades. Here we take

a different approach; given a network, we ask: what is the largest threshold at which any

“small” set of initial adopters can cause a complete cascade? This maximum threshold is

thus an inherent property of the network, indicating the outer limit on its ability to support

cascades; we will refer to it as the cascade capacity of the network.

In order to make this idea work at a technical level, we clearly need to be careful about

what we mean by a “small” set. For example, clearly if we take the set of initial adopters

to be the full set of nodes, or (in most cases) something that is almost the full set of nodes,

then we can get cascades even at thresholds approaching or equal to 1.

It turns out that the cleanest way to formalize the question is in fact to consider infinite

networks in which each node has a finite number of neighbors. We can then define the

cascade capacity as the largest threshold at which a finite set of nodes can cause a complete

cascade. In this way, “small” will mean finite, in the context of a network where the full

node set is infinite.

A. Cascades on Infinite Networks

With this goal in mind, we now describe the model in general. The social network will be

modeled as a connected graph on an infinite set of nodes; although the node set is infinite,

each individual node is only connected to a finite number of other nodes.

The model of node behavior is the same one that we defined earlier in the chapter — the

fact that the node set is infinite doesn’t pose any problems, since each node only has a finite

set of neighbors, and it is only making decisions based on the behavior of these neighbors.

To be concrete, initially, a finite set S of nodes has behavior A (this is the small set of early

adopters), and all other nodes adopt B. Time then runs forward in steps t = 1, 2, 3, . . ..

In each step t, each node other than those in S uses the decision rule with threshold q to
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Figure 19.15: An infinite path with a set of early adopters of behavior A (shaded).

decide whether to adopt behavior A or B. (As before, we assume that the nodes in S are

committed to A, and never re-evaluate this decision.) Finally, we say that the set S causes

a complete cascade if, starting from S as the early adopters of A, every node in the network

eventually switches permanently to A. (Given the fact that the node set is infinite, we must

be careful to be clear on what this means: for every node v, there is some time t after which

v is always using behavior A.)

The Cascade Capacity. The key definition is now the following. We say that the cascade

capacity of the network is the largest value of the threshold q for which some finite set of

early adopters can cause a complete cascade. To illustrate this definition, let’s consider two

simple examples. First, in Figure 19.15, we have a network consisting of a path that extends

infinitely in both directions. Suppose that the two shaded nodes are early adopters of A, and

that all other nodes start out adopting B. What will happen? It’s not hard to check that if

q ≤ 1
2 , then nodes u and v will switch to A, after which nodes w and x will switch, and the

switches will simply propagate all the way down the path: for each node, there will come

some time at which it chooses to switch permanently to A. So the cascade capacity of the

infinite path is at least 1
2 , since we have just seen a finite set of initial adopters that causes

a complete cascade at threshold 1
2 . In fact, 1

2 is the exact value of the cascade capacity of

the infinite path: with q > 1
2 , no finite set of initial adopters can get any node to their right

to switch to A, and so A clearly cannot spread to all nodes.

Figure 19.16 shows a second simple example, a network consisting of an infinite grid in

which each node is connected to its eight nearest neighbors. Suppose that the nine shaded

nodes are early adopters of A, and that all other nodes start out adopting B. You can check

that if the threshold q is at most 3
8 , then behavior A gradually pushes its way out to the

neighbors of the shaded nodes: first to the nodes labeled c, h, i, and n; then to the nodes b,

d, f , g, j, k, m, and o; and then to other nodes from there, until every node in the grid is

eventually converted to A. (With a smaller threshold — when q ≤ 2
8 for example — behavior

A spreads even faster.) We can check that in fact 3
8 is the cascade capacity of the infinite

grid: given any finite set of initial adopters, they are contained in some rectangle of the grid,

and if q > 3
8 , no node outside this rectangle will ever choose to adopt A.

Note that the cascade capacity is an intrinsic property of the network itself. A network

with a large cascade capacity is one in which cascades happen more “easily” — in other words,
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Figure 19.16: An infinite grid with a set of early adopters of behavior A (shaded).

they happen even for behaviors A that don’t offer much payoff advantage over the default

behavior B. As we discussed in Section 19.2, the fact that a small set of initial adopters

can eventually cause the whole population to switch illustrates how a better technology (A,

when q < 1
2) can displace an existing, inferior one (B). Viewed in this sense, the example

of the grid in Figure 19.16 can be viewed as a kind of failure of social optimality. The fact

that the cascade capacity on the grid is 3
8 means that when q is strictly between 3

8 and 1
2 ,

A is the better technology, but the structure of the network makes B so heavily entrenched

that no finite set of initial adopters of A can cause A to win.

We now consider the following fundamental question: how large can a network’s cascade

capacity be? The infinite path shows that there are networks in which the cascade capacity

can be as large as 1
2 : this means that a new behavior A can displace an existing behavior

B even when the two confer essentially equivalent benefits (with A having only the “tie-

breaking” advantage that when a node has an equal number of neighbors using A and B, it

chooses A). Does there exist any network with a higher cascade capacity? This would be

a bit surprising, since such a network would have the property that an inferior technology
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can displace a superior one, even when the inferior technology starts at only a small set of

initial adopters.

In fact, we will show that no network has a cascade capacity larger than 1
2 . In other

words, regardless of the structure of the underlying network, if a new behavior requires 51%

of someone’s friends to adopt it before they do, then it can’t spread very far through the

population. Despite the fact that this is perhaps an intuitively natural fact, proving it is a

bit subtle, requiring a way to bound the extent of a behavior that is spreading at a threshold

beyond 1
2 .

B. How Large Can the Cascade Capacity Be?

We now formulate and prove this basic fact about the cascade capacity.

Claim: There is no network in which the cascade capacity exceeds 1
2 .

Although we motivated this claim as a natural one just above, it is less clear why it is true.

After all, it’s certainly imaginable a priori that there could be some cleverly constructed

network, set up in just the right way, so that even though each node needs 51% of its

neighbors to adopt before it does, the cascade rolls on steadily, eventually causing everyone

to switch. What we really need to show is the following: if q > 1
2 , then regardless of what

the underlying network looks like, a new behavior starting at a finite set of nodes will not

spread to every other node.

Analyzing the Interface. We’re going to approach this question by tracking the “inter-

face” where adopters of A are linked to adopters of B. At a very high level, we’re going

to show that as the process runs, this interface becomes narrower and narrower, eventually

shrinking to the point where the process must stop, having failed to reach all nodes.

More precisely, suppose the behavior A spreads from a finite initial set S with threshold

q > 1
2 . As time moves forward in steps t = 1, 2, 3, . . ., potentially larger and larger sets

become adopters of A. At any given point in time, each edge in the network can be described

as an A-A edge (connecting two adopters of A), a B-B edge (connecting two adopters of B),

or an A-B edge (connecting an adopter of A to an adopter of B). We define the interface to

be the set of A-B edges. Figure 19.17 shows a useful way to picture the interface: if the set

of adopters of A consists of the nodes inside the dark oval, then the edges in the interface

are the ones that cross the oval.

What we’re going to show is that, in each step, the size of the interface — i.e., the

number of edges it contains — must strictly decrease. This will be enough to show what we

need, for the following reason. The size of the interface clearly starts at some number I0:

since there is some finite set of initial adopters S, and since each of these has a finite set of

neighbors, the set of A-B edges is finite, and has some size I0. The size of the interface is
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(a) Before v and w adopt A

u

v

w

x

(b) After v and w adopt A

Figure 19.17: Let the nodes inside the dark oval be the adopters of A. One step of the
process is shown, in which v and w adopt A: after they adopt, the size of the interface has
strictly decreased. In general, the size of the interface strictly decreases with each step of
the process when q > 1

2 .

always a non-negative whole number, so if it strictly decreases in each step, the spread of

A can run for at most I0 steps before terminating. Since each step only results in a finite

number of nodes converting to A, the process will terminate with only a finite set of nodes

having adopted A. (So in fact we’ll get something stronger than we needed: not only does

A not spread everywhere, it only reaches a finite set starting from S.)

The Size of the Interface Decreases in Each Step. So the crux of this is to consider

one step of the process, and show that the size of the interface strictly decreases. What

happens in one step of the process? Figure 19.17 illustrates a way to think about this.

Certain nodes that are currently adopters of B discover, for the first time, that at least a q

fraction of their neighbors are now adopters of A, and so they too switch to A.

This causes the interface to change in the following way. When a node w switches from

B to A, its edges to nodes that remain with B change from being B-B edges to being A-B

edges — so this causes them to join the interface. (An example is the edge linking w and x

in Figure 19.17.) On the other hand, the edges from w to nodes that were already with A

change from being A-B edges to being A-A edges; in other words, they leave the interface.

(See for example the edge linking u and w.) Each edge that joins or leaves the interface in

this step can be accounted for in this way by exactly one node that switches from B to A.

So to analyze the change in the size of the interface, we can separately consider the

contribution from those edges accounted for by each individual node that switches. Thus,
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consider a node w that switches; suppose that before the switch, it had a edges to nodes

that were already adopters of A, and b edges to nodes that will remain adopters of B at the

end of the step. So node w accounts for b edges joining the interface and a edges leaving

it. But since q > 1
2 , and node w decided to switch to A in this step, it must be that w had

more edges to adopters of A than to adopters of B — so a > b, and hence w accounts for

more edges leaving the interface than edges joining the interface. But this is true for each

node that switches in this step, and so the overall size of the interface goes down.

This is what we needed to show. Chaining back through the earlier arguments, since the

interface starts at some fixed size I0, the process can only go for at most I0 steps before

running out of steam and stopping, not having reached all nodes.

Some Final Thoughts. We’ve shown that when q > 1
2 , no finite set of nodes can cause

a complete cascade, in any network. In terms of an underlying story about users choosing

between technologies A and B, the situation in which q > 1
2 corresponds intuitively to the

case in which the new technology A is in fact worse — the payoff from an A-A interaction is

lower than that of a B-B interaction, and so you’ll only switch to A in cases where more than

half your friends already have. So at least in the simple model we’ve been studying here,

a worse technology will not displace a better technology that’s already in widespread use.

(However, recall the connection with our earlier discussion of network effects: in networks

where the cascade capacity is strictly less than 1
2 , it is possible for a better technology to be

unable to displace a worse one that is already in widespread use.)

It is also interesting to reflect a bit on the way in which we argued that A can’t spread

to all nodes when q > 1
2 ; there’s a methodological parallel here to our discussion of matching

markets (though again the details are completely different). There too we had a process

— the bipartite auction procedure that updated prices — and we wanted to show that it

must come to a halt. Lacking any obvious measure of progress on the process, we invented a

non-obvious one — a kind of “potential energy” that steadily drained out of the process as

it ran, eventually forcing it to terminate. In retrospect, we used a very similar strategy here,

with the size of the interface serving as the potential energy function that steadily decreases

until the process had to stop.

C. Compatibility and its Role in Cascades

We’ve gotten a lot of mileage in this chapter from taking a game that is fundamentally

very simple — a coordination game with two possible strategies — and analyzing how it

is played across the edges of a potentially complex network. There are many directions in

which the game can be extended and generalized, and most of these lead quickly to current

research and open questions. To illustrate how even small extensions to the underlying game

can introduce new sources of subtlety, we discuss here an extension that takes into account
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the notion that a single individual can sometimes choose a combination of two available

behaviors. [225].

To illustrate what we mean by this, let’s go back to the extended example we considered

in Figure 19.5, and the discussion at the end of Section 19.2 of how behaviors A and B

ended up coexisting in the network. Coexistence is a common outcome, and it is interesting

to ask what things look like along the boundaries between A and B. For example, A and

B could be different languages coexisting along a national border, or A and B could be

social-networking sites that appeal respectively to students in college and to students in

high school. Our current model says that anyone positioned along the interface between

A and B in the network — for example, nodes 8–14 in Figure 19.5 — will receive positive

payoffs from neighbors who adopt the same behavior, but payoffs of 0 from their interactions

with neighbors who adopt different behaviors.

Experience suggests that when people are actually faced with such situations, they often

choose an option that corresponds to neither A nor B — rather, they become bilingual,

adopting both A and B. In some cases, bilinguality is meant literally: for example, someone

who lives near speakers of both French and German is reasonably likely to speak (some

amount of) both. But technological versions of bilinguality abound as well: people with

friends on two incompatible IM systems, or two different social-networking sites, will likely

have accounts on both; people whose work requires dealing with two different computer

operating systems will likely have a way to run both. The common feature of all these

examples is that an individual chooses to use some form of both available behaviors, trading

off the greater ease of interaction with people of multiple types against the cost of having to

acquire and maintain both forms of behavior (i.e. the costs of having to learn an additional

language, maintain two different versions of a technology, and so forth). What effect does

this bilingual option have on the spread of a behavior through a network?

Modeling the Bilingual Option. In fact, it is not hard to set up a model that captures

the possibility that a node will choose to be bilingual. On each edge, connecting two nodes v

and w, we still imagine a game being played, but now there are three available strategies: A,

B, and AB. The strategies A and B are the same as before, while the strategy AB represents

a decision to adopt both behaviors. The payoffs follow naturally from the intuition discussed

above: the nodes can interact with each other using any behavior that is available to both

of them. If they interact using A, they each get a payoff of a, while if they interact using

B, they each get a payoff of b. In other words, two bilingual nodes can interact using the

better of the two behaviors; a bilingual node and a monolingual node can only interact using

the monolingual node’s behavior; and two monolingual nodes can only interact at all if they

have the same behavior. Written as a payoff matrix, the game is shown in Figure 19.18,

where we use the notation (a, b)+ to denote the larger of a and b.
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v

w
A B AB

A a, a 0, 0 a, a
B 0, 0 b, b b, b

AB a, a b, b (a, b)+, (a, b)+

Figure 19.18: A Coordination Game with a bilingual option. Here the notation (a, b)+

denotes the larger of a and b.

r s u w yvxz

Figure 19.19: An infinite path, with nodes r and s as initial adopters of A.

It’s easy to see that AB is a dominant strategy in this game: why not be bilingual when

it gives you the best of both worlds? However, to model the trade-off discussed earlier, we

need to also incorporate the notion that bilinguality comes with a cost — the meaning of

the cost varies with the context, but the cost in general corresponds to the additional effort

and resource expenditure needed to maintain two different behaviors. Thus, we assume that

each node v will play a copy of this three-strategy Bilingual Coordination Game with each

of its neighbors; as in our models earlier in the chapter, v must use the same strategy in

each copy of the game it plays. Its payoff will be equal to the sum of its payoffs in its game

with each neighbor, minus a single cost of c if v chooses to play the strategy AB. It is this

cost that creates incentives not to play AB, balancing the incentives that exist in the payoff

matrix to play it.

The remainder of the model works as before. We assume that every node in an infinite

network starts with the default behavior B, and then (for non-strategic reasons) a finite set S

of initial adopters begins using A. We now run time forward in steps t = 1, 2, 3, . . .; in each of

these steps, each node outside S chooses the strategy that will provide it the highest payoff,

given what its neighbors were doing in the previous step. We are interested in how nodes

will choose strategies as time progresses, and particularly which nodes eventually decide to

switch permanently from B to A or AB.

An Example. To get some practice with the model, let’s try it on the infinite path shown

in Figure 19.19. Let’s suppose that nodes r and s are the initial adopters of A, and that the

payoffs are defined by the quantities a = 2, b = 3, and c = 1.

Here is how nodes behave as time progresses. In the first time step, the only interesting

decisions are the ones faced by nodes u and v, since all other nodes are either initial adopters

(who are hard-wired to play A) or nodes that have all neighbors using B. The decisions faced
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r s u w yvxz

Start B B B A A B B B

Step 1 B B AB A A AB B B

Step 2 B AB AB A A AB AB B

Step 3 AB AB A A A A AB AB

Step 4 AB A A A A A A AB

Figure 19.20: With payoffs a = 5 and b = 3 for interaction using A and B respectively, and
a cost c = 1 for being bilingual, the strategy A spreads outward from the initial adopters r
and s through a two-phase structure. First, the strategy AB spreads, and then behind it,
nodes switch permanently from AB to A.

by u and v are symmetric; for each of them, we can check that the strategy AB provides

the highest payoff. (It yields a payoff of 2 + 3− 1 = 4 from being able to interact with both

neighbors, but having to pay a cost of 1 to be bilingual.) In the second time step, nodes w

and x have a fresh decision to make, since they now have neighbors using AB, but we can

check that B still yields the highest payoff for each of them. From here on, no node will

change its behavior in any future time steps. So with these payoffs, the new behavior A does

not spread very far: the decision by the initial adopters to use A caused their neighbors to

become bilingual, but after that further progress stopped.

We can further experiment with this example by keeping the network the same, but

changing the payoffs so that A becomes much more desirable: specifically, let’s set a = 5,

and keep b = 3 and c = 1. What happens in this case is more complex, and is depicted in

Figure 19.20. (For the discussion below, we will only talk about what happens to the right

of the initial adopters, since what’s going on to the left is symmetric.)

• In the first step, node u will switch to AB, since it receives a payoff of 5 + 3− 1 = 7

from doing this. As a result, in the second step, node w also switches to AB.

• From the third step onward, the strategy AB continues to move to the right, one node

at a time. However, something additional happens starting in the third step. Because

node w switched to AB in the second step, node u faces a new decision: it has one

neighbor using A and the other using AB, and so now u’s best choice is to switch from
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AB to A. Essentially, there’s no point in being bilingual anymore if all your neighbors

now have the higher-payoff behavior available to them (A in this case).

• In the fourth step, node w also switches from AB to A, and more generally, the strategy

A moves to the right, two steps behind the strategy AB. No other changes in strategy

happen, so each node switches first to AB (as the wave of billinguality passes through

it), and then permanently switches to A (the higher-payoff monolingual option) two

steps later.

Here is one way to view what is happening in this version of the example: as AB spreads

through the nodes, B becomes vestigial — there is no longer any point for a node to use it.

Thus, nodes abandon B completely over time, and so in the long run only A persists.

A Two-Dimensional Version of the Cascade Capacity. In the basic model earlier in

this chapter, with the underlying coordination game based just on strategies A and B, we

formulated the following question. We are given an infinite graph; for which payoff values a

and b is it possible for a finite set of nodes to cause a complete cascade of adoptions of A?

Phrased this way, the question appears to depend on two numbers (a and b), but we saw

earlier that in fact it depends only on the single number q = b/(a + b).

We can ask the analogous question for our model that includes the strategy AB: given

an infinite graph, for which payoff values a, b, and c is it possible for a finite set of nodes to

cause a complete cascade of adoptions of A? As with our earlier question, we can eliminate

one of the numbers from this question quite easily. The easiest way to do this is to note

that the answer to our question remains the same if we were to multiply each of a, b, and

c by the same fixed factor. (For example, it does not matter if we multiply each of a, b,

and c by 100 and measure the payoffs in cents instead of dollars.) Therefore, we can assume

that b = 1 — fixing this as our basic “unit of currency” — and ask how the possibility of a

cascade depends on a and c. Choosing b as the number that we fix equal to 1 makes some

intuitive sense, since it is the payoff from using the default behavior B; in this way, we’re

essentially asking: how much better does the new behavior A have to be (the payoff a) and

how compatible should it be with B (the payoff c) in order for a cascade to have a possibility

of forming?

This question has recently been studied for graphs in general [225], and an interesting

qualitative conclusion arises from the model: A does better when it has a higher payoff

(this is natural), but in general it has a particularly hard time cascading when the level

of compatibility is “intermediate” — when the value of c is neither too high nor too low.

Rather than describing the general analysis of this phenomenon, we show how it happens on

the infinite path, where the analysis is much simpler and where the main effects are already

apparent. We then discuss some possible interpretations of this effect.
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w

A ? B

payoff from choosing A: a

payoff from choosing B: 1

payoff from choosing AB: a + 1 - c

Figure 19.21: The payoffs to a node on the infinite path with two neighbors using A and B.

When do Cascades Happen on an Infinite Path? The infinite path is an extremely

simple graph, and we saw earlier in this section that in the model with only the strategies

A and B, the condition for A to cascade is correspondingly very simple: a cascade of A’s

can occur precisely when the threshold q is at most 1/2 — or, equivalently, when a ≥ b. In

other words, a better technology will always spread on the path.

Once we add the strategy AB as an option, however, the situation becomes more subtle.

Since we are only concerned with whether some finite set of initial adopters can cause a

complete cascade of A’s, we can assume that this set of initial adopters forms a contiguous

interval of nodes on the path. (If not, we can take the leftmost and rightmost initial adopter,

and study the situation in which every node in between is also an initial adopter — this set

is still finite, and it will have just as good a chance of causing a complete cascade.) So

changes in nodes’ strategies will spread outward symmetrically to the left and right of the

initial adopters, and we simply need to account for the possible decisions that nodes make

in evaluating their strategies as this happens. Because of the symmetry, we will only think

about how strategy changes occur to the right of the initial adopters, since what is going on

to the left is the same.

There are two kinds of node-level decisions that are particularly useful for our analysis.

• First, we’ll have to think about nodes like w in Figure 19.21, with a left neighbor

using A and a right neighbor using B. (For example, this happens in the first step of

the cascade with the node immediately to the right of the initial adopters.) In this

situation, node w receives a payoff of a from choosing A (because it can interact with

its left neighbor), a payoff of 1 from choosing B (because it can interact with its right

neighbor), and a payoff of a + 1 − c from choosing AB (because it can interact with

both neighbors, but pays a cost of c to be bilingual).

Node w will choose the strategy that provides the highest payoff, and that’s determined

by the relationship between a and c. In other words, we should be asking: for which
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A vs. B
AB vs. B

A vs. AB1

1

(a) Lines showing break-even points between strategies.

c

a

1

1

B

A

AB

(b) Regions defining the best choice of strategy.

Figure 19.22: Given a node with neighbors using A and B, the values of a and c determine
which of the strategies A, B, or AB it will choose. (Here, by re-scaling, we can assume
b = 1.) We can represent the choice of strategy as a function of a and c by dividing up the
(a, c)-plane into regions corresponding to different choices.

values of a and c will node w choose A, for which will it choose B, and for which will it

choose AB? This can be answered easily if we plot the comparisons among the payoffs

in the (a, c)-plane as shown in Figure 19.22(a), with the value of a on the x-axis and

the value of c on the y-axis. The break-even point between strategies AB and B, for

example, is given by the line defined by setting the two payoffs equal: a+1− c = 1, or

equivalently a− c = 0. This is the diagonal line in the figure. Similarly, we draw lines

for the break-even point between strategies A and B (a = 1) and between strategies A

and AB (a = a + 1− c, or equivalently c = 1).

These three lines all meet at the point (1, 1), and so we see that they divide the (a, c)-

plane into six regions. As shown in Figure 19.22(b), A is the best strategy in two of

these regions, B is the best strategy in two of them, and AB is the best strategy in

two of them.

• If AB begins to spread, then we’ll also have to think about the situation pictured in

Figure 19.23: a node whose left neighbor is using AB and whose right neighbor is using

B.

Now, if a < 1, then B will provide w with the highest payoff regardless of the value of

the cost c (as long as it is positive). So let’s consider the more interesting alternative,

when a ≥ 1. This is very similar to the previous case, when w’s left-hand neighbor

was using A; the one change is that the payoff to w for using B has now gone up to 2,

since now w can use B to interact with both neighbors rather than just one.
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w

AB ? B

payoff from choosing A: a

payoff from choosing B: 2

payoff from choosing AB: a + 1 - c (if A is better)

Figure 19.23: The payoffs to a node on the infinite path with two neighbors using AB and
B.

As a result of this, the lines in the (a, c)-plane defining the break-even points between

B and the other strategies shift to the right (they are now a = 2 and a + 1 − c = 2).

This in turn shifts the three regions of the (a, c)-plane that define which strategy will

be chosen by w. We show this in Figure 19.24.

We are now in a position to determine the values of a and c for which a cascade of A’s

can occur. We start with a contiguous interval of initial adopters of A, and we consider the

node u immediately to the right of the initial adopters. (Again, everything here also applies

to the left of the initial adopters by symmetry.)

• If we are in the B region of Figure 19.22(b), then node u will favor B as its strategy,

so it will stick with this and the new strategy A will not spread at all.

• If we are in the A region of Figure 19.22(b), then node u will favor A as its strategy,

and it will switch to A. So in the next time step we will have exactly the same situation

shifted one node to the right, and as a result the new strategy A will spread all the

way down the path: a cascade will occur.

• Most interestingly, suppose we are in the AB region of Figure 19.22(b). Then, in the

next time step, the situation will look different: the crucial decision will now be faced

by the next node w to the right of u, who will have its left neighbor (u) now using AB,

and its right neighbor still using B.

To understand what w will do, based on values of a and c, the we consult the regions in

Figure 19.24(b). But crucially, since we know that AB was the best choice in the first

step, we know that the values of a and c lie in the AB region from Figure 19.22(b) — so

when we consider Figure 19.24(b), we are concerned not with how its regions carve up

the full (a, c)-plane, but only how they carve up the AB region from Figure 19.22(b).
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AB vs. B

A vs. AB1

1 2

(a) Lines showing break-even points between strategies.
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(b) Regions defining the best choice of strategy.

Figure 19.24: Given a node with neighbors using AB and B, the values of a and c determine
which of the strategies A, B, or AB it will choose, as shown by this division of the (a, c)-plane
into regions.

In fact, they divide the AB region from Figure 19.22(b) by a diagonal line segment

from the point (1, 0) to the point (2, 1), as shown in Figure 19.25. To the left of this

line segment, B wins and the cascade stops. To the left of this line segment, AB wins

— so AB continues spreading to the right, and behind this wave of AB’s, nodes will

steadily drop B and use only A. This is the scenario that we saw in our example,

where B fails to persist because it becomes vestigial in a bilingual world.

Figure 19.25 in fact summarizes the four possible cascade outcomes, based on the values

of a and c (i.e. where they lie in the (a, c)-plane). Either (i) B is favored by all nodes outside

the initial adopter set, (ii) A spreads directly without help from AB, (iii) AB spreads for

one step beyond the initial adopter set, but then B is favored by all nodes after that, or (iv)

AB spreads indefinitely to the right, with nodes subsequently switching to A.

So a cascade of A’s can occur if the pair of values (a, c) lies in one of the two regions

described by (ii) and (iv). This means that the portion of the (a, c) plane where a cascade

can occur looks as depicted in Figure 19.26: it lies to the right of a vertical line with a

strange triangular “cut-out.” The vertical line makes a lot of sense: it corresponds to a ≥ 1,

or in other words, the requirement that interaction using A produces a higher payoff than

interaction using B. But what does the triangular cut-out mean? Formally, it says that when

the cost of bilinguality is neither too high nor too low, the new strategy A has to be “extra

good” — i.e. produce a payoff a significantly higher than 1 — in order to spread. Moreover,

although we won’t consider more complex graphs here, the region of the (a, c)-plane where a

cascade of A’s can occur in any graph turns out to have some kind of indentation analogous

to the triangular cut-out — though the particular boundary of the indentation depends on
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c

a

1

1 2

neither A nor

AB spreads

A spreads directly (no adoption of AB)

AB spreads

but then

stops

AB spreads indefinitely,

followed by A

(B becomes vestigial)

Figure 19.25: There are four possible outcomes for how A spreads or fails to spread on the
infinite path, indicated by this division of the (a, c)-plane into four regions.

the structure of the graph [225].

This triangular cut-out region has a natural qualitative interpretation that provides po-

tential insight into how compatibility and bilinguality affect the process of diffusion in a

network. We discuss this interpretation now.

Interpretations of the Cascade Region. One way to appreciate what’s going on in the

triangular cut-out region is to consider the following question, phrased in terms of technology

adoption. Suppose that you’re the firm manufacturing the default technology B, and the

payoff from interacting via B is equal to 1. Now a new technology A with payoff a = 1.5

begins to appear. For which values of the bilinguality cost c should you expect B to survive?

Even without performing any concrete calculations, you could reason as follows. If it’s

extremely easy to maintain both technologies simultaneously, then adoption of AB will

become widespread — and once it is sufficiently widespread, people will begin dropping B

altogether, since A is better and it’s possible to interact with everyone using A. Essentially, A

will have won through “infiltration,” working its way into the population via coexistence with

B. On the other hand, if it’s extremely hard to maintain both technologies simultaneously,

then people on the boundary between the two user populations — those who have friends
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Figure 19.26: The set of values for which a cascade of A’s can occur defines a region in the
(a, c)-plane consisting of a vertical line with a triangular “cut-out.”

using both technologies — will have to simply choose one or the other. And in this case,

you could expect that they may well choose A, since it’s in fact better. In this case, A will

win through a kind of “direct conquest,” simply eliminating B as it goes.

But in between — when it’s neither extremely easy nor extremely hard to maintain both

technologies — something more favorable to B can happen. Specifically, a bilingual “buffer

zone” may form between people who adopt only A and those who adopt only B. On the

B-side of this buffer zone, no one will have an incentive to change what they’re doing, since

by using B they can interact with all their neighbors — the bilingual ones and the ones using

only B — rather than interacting with only a fraction of their neighbors by switching to

the marginally better technology A. In other words, the inferior technology B has survived

because it was neither too compatible nor too incompatible with A — rather, by partially

accommodating A, it prevented A from spreading too far.2

2On the infinite path, the bilingual buffer zones that form are very simple — just one node thick. But
in general graphs, the buffer zones can have a more complex structure. In fact, it is possible to prove an
analogue of the result from Section 19.3, where we showed that clusters are the only obstacle to cascades in
the two-strategy model. The more general result is that with an additional bilingual option AB, a structure
consisting of a cluster and a bilingual buffer zone accompanying it is the only obstacle to a cascade of A’s
[225].
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One can tell this story about non-technological settings as well: for example, how dis-

course in a succession of geographically adjacent towns may switch from a traditional lan-

guage B to a more global language A that confers benefits beyond the immediate community

— or it may end up with bilingual inhabitants who use both. In related vein, one could even

consider how a more traditional set of cultural practices (B) may persist in the face of more

modern ones (A), depending on how easy it is for a person to observe both.

Of course, the model we are discussing is extremely simple, and the full story in any of

these scenarios will include many additional factors. For example, in studying competition

between technology firms, there has been a long line of work on the role that compatibility

and incompatibility can play [143, 235, 415], including case studies of technologies includ-

ing instant messaging [158] and electronic imaging [283]. But as with many of our earlier

analyses, the streamlined nature of the model helps provide insight into principles that have

reflections in more complex settings as well. In this particular case, the model also shows

how detailed network structure can play a role in a setting that has otherwise been analyzed

primarily at the population level, treating individuals as interacting in aggregate.

Finally, the discussion shows how the basic diffusion model — based on a simple coordi-

nation game — is amenable to extensions that capture additional features of real situations

where diffusion can take place. Even small extensions such as the one considered here can in-

troduce significant new sources of complexity, and the development of even richer extensions

is an open area of research.

19.8 Exercises

1. Consider the network depicted in Figure 19.27; suppose that each node starts with the

behavior B, and each node has a threshold of q = 1
2 for switching to behavior A.

(a) Now, let e and f form a two-node set S of initial adopters of behavior A. If other

nodes follow the threshold rule for choosing behaviors, which nodes will eventually

switch to A?

(b) Find a cluster of density greater than 1 − q = 1
2 in the part of the graph outside

S that blocks behavior A from spreading to all nodes, starting from S, at threshold q.

2. Consider the model from Chapter 19 for the spread of a new behavior through a social

network. Suppose we have the social network depicted in Figure 19.28; suppose that

each node starts with the behavior B, and each node has a threshold of q = 2
5 for

switching to behavior A.

(a) Now, let c and d form a two-node set S of initial adopters of behavior A. If other

nodes follow the threshold rule for choosing behaviors, which nodes will eventually

switch to A? Give a brief (1-2 sentence) explanation for your answer.
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Figure 19.27: Starting from nodes e and f , the new behavior A fails to spread to the entire
graph.

(b) Find a cluster of density greater than 1 − q = 3
5 in the part of the graph outside

S that blocks behavior A from spreading to all nodes, starting from S, at threshold q.

Give a brief (1-2 sentence) explanation for your answer.

(c) Suppose you were allowed to add a single edge to the given network, connecting

one of nodes c or d to any one node that it is not currently connected to. Could you

do this in such a way that now behavior A, starting from S and spreading with a

threshold of 2
5 , would reach all nodes? Give a brief explanation for your answer.

3. Consider the model from Chapter 19 for the diffusion of a new behavior through a

social network. Recall that for this we have a network, a behavior B that everyone

starts with, and a threshold q for switching to a new behavior A — that is, any node

will switch to A if at least a q fraction of its neighbors have adopted A.

Consider the network depicted in Figure 19.29; suppose that each node starts with the

behavior B, and each node has a threshold of q = 2
5 for switching to behavior A.

Now, let e and f form a two-node set S of initial adopters of behavior A. If other nodes

follow the threshold rule for choosing behaviors, which nodes will eventually switch to

A?

(b) Find a cluster of density 1−q = 3
5 in in the part of the graph outside S that blocks

behavior A from spreading to all nodes, starting from S, at threshold q.

(c) Suppose you’re allowed to add one node to the set S of initial adopters, which

currently consists of e and f . Can you do this in such a way that the new 3-node set

causes a cascade at threshold q = 2
5?
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Figure 19.28: Starting from nodes c and d, the new behavior A fails to spread to the entire
graph.

Provide an explanation for your answer, either by giving the name of a third node that

can be added, together with an explanation for what will happen, or by explaining

why there is no choice for a third node that will work to cause a cascade.

4. Consider the model from Chapter 19 for the diffusion of a new behavior through a

social network.

Suppose that initially everyone is using behavior B in the social network in Fig-

ure 19.30, and then a new behavior A is introduced. This behavior has a threshold of

q = 1/2: any node will switch to A if at least 1/2 of its neighbors are using it.

(a) Find a set of three nodes in the network with the property that if they act as the

three initial adopters of A, then it will spread to all nodes. (In other words, three

nodes who are capable of causing a cascade of adoptions of A.)

(b) Is the set of three nodes you found in (a) the only set of three initial adopters

capable of causing a cascade of A, or can you find a different set of three initial

adopters who could also cause a cascade of A?

(c) Find three clusters in the network, each of density greater than 1/2, with the

property that no node belongs to more than one of these clusters.

(d) How does your answer to (c) help explain why there is no set consisting of only

two nodes in the network that would be capable of causing a cascade of adoptions of

A? (I.e., only two nodes that could cause the entire network to adopt A.)
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Figure 19.29: A social network in which a new behavior is spreading.

5. Continuing with the diffusion model from Chapter 19, recall that the threshold q was

derived from a coordination game that each node plays with each of its neighbors.

Specifically, if nodes v and w are each trying to decide whether to choose behaviors A

and B, then:

• if v and w both adopt behavior A, they each get a payoff of a > 0;

• if they both adopt B, they each get a payoff of b > 0; and

• if they adopt opposite behaviors, they each get a payoff of 0.

The total payoff for any one node is determined by adding up the payoffs it gets from

the coordination game with each neighbor.

Let’s now consider a slightly more general version of the model, in which the payoff for

choosing opposite behaviors is not 0, but some small positive number x. Specifically,

suppose we replace the third point above with:

• if they adopt opposite behaviors, they each get a payoff of x, where x is a positive

number that is less than both a and b.

Here’s the question: in this variant of the model with these more general payoffs, is

each node’s decision still based on a threshold rule? Specifically, is it possible to write

down a formula for a threshold q, in terms of the three quantities a, b, and x, so that

each node v will adopt behavior A if at least a q fraction of its neighbors are adopting

A, and it will adopt B otherwise?
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Figure 19.30: A social network on which a new behavior diffuses.

In your answer, either provide a formula for a threshold q in terms of a, b, and x; or

else explain why in this more general model, a node’s decision can’t be expressed as a

threshold in this way.

6. A group of 20 students living on the third and fourth floors of a college dorm like to

play on-line games. When a new game appears on campus, each of these students

needs to decide whether to join, by registering, creating a player account, and taking

a few other steps necessary in order to start playing.

When a student evaluates whether to join a new on-line game, she bases her decision

on how many of her friends in this group are involved in the game as well. (Not all

pairs of people in this 20-person group are friends, and it is more important whether

your friends are playing than whether many people in the group overall are playing.)

To make the story concrete, let’s suppose that each game goes through the following

“life cycle” within this group of students:

(a) The game has some initial players in the group, who have discovered it and are

already involved in it.

(b) Each other student outside this set of initial players is willing to join the game if

at least half of her friends in the group are playing it.
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(c) Rule (b) is applied repeatedly over time, as in our model from Chapter 19 for the

diffusion of a new behavior through a social network.

Suppose that in this group of 20 students, 10 live on the third floor of the dorm and

10 live on the fourth floor. Suppose that each student in this group has two friends on

their own floor, and one friend on the other floor. Now, a new game appears, and five

students all living on the fourth floor each begin playing it.

The question is: if the other students use the rule above to evaluate whether to join

the game, will this new game eventually be adopted by all 20 students in the group?

There are three possible answers to this question: yes, no, or there is not information

in the set-up of the question to be able to tell. Say which answer you think is correct,

and explain.

7. Some friends of yours have gone to work at a large on-line game company, and they’re

hoping to draw on your understanding of networks to help them better understand the

user population in one of their games.

Each character in the game chooses a series of quests to go on, generally as part of a

group of characters who work together on them; there are many options for quests to

choose from, but once a character goes on a quest with a group, it can generally last

for a couple of weeks.

Your friends working at the game company have also mapped the social network of the

game, and they’ve invented what they find is a useful way of classifying each player’s

friends: a reinforced friend is one with whom the player has at least one other friend in

common, and an unreinforced friend is one with whom the player has no other friends

in common. For example, the figure below shows the friends of a player A: players B,

C, and D would count as reinforced friends, while player E would be an unreinforced

friend.

Now, your friends are particularly interested in what causes players to choose partic-

ular quests instead of others; and they are also interested in how players learn about

particular methods of cheating along the way — general tricks outside the rules of the

game that make it easier to accumulate points, usually regardless of which particular

quest they’re on. To do some market research on this, they’ve anonymously surveyed

players of the game, asking them two questions:

(a) How did you first learn about the current quest that you’re taking part in?

(b) How have you learned about ways of cheating in the game?

To their surprise, the answers to these questions were quite different. For (a), 80%

of respondents said that they first found out about the current quest they’re on from
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Figure 19.31: A small portion of the social network in an online game.

a reinforced friend, while for (b), 60% of respondents said that they found out about

ways of cheating from an unreinforced friend.

Your friends thought you might be able to shed some light on these findings. Why did

the answers to these two questions turn out differently? Is the difference specific to this

particular game, or could it be predicted from general principles of social networks?

In 1-2 paragraphs, describe how particular ideas from the book can shed light on why

the answers to these questions turned out the way they did.


