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Abstract 
 
It is a shared belief that Thomas Schelling’ model of segregation is only weakly affected by 
the underlying spatial structure, whatever its complexity. Such a conclusion is important from 
an urban planning perspective as it suggests that only a very restricted range of possible 
actions, if any, would be able to contribute limiting social segregation, unless individual 
preferences are significantly modified.   
Our own simulations show that, using appropriate graph-based spatial structures, one can 
reveal significant spatial effects and thus provide alternative planning insights. Cliques in 
networks indeed play a significant role, reinforcing segregation effects in Schelling’s model. 
Introducing a small amount of noise in the model permits us to reveal more precisely this 
effect, without modifying the global behavior of the initial model. Furthermore, we show how 
a logistic model describes in a concise but precise way this global behavior. 
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Introduction 
 
Thomas Schelling’ model of social segregation (1, 2) is certainly one of the most debated 
models in the social sciences. Imagine two colored groups of individuals, living on a 
chessboard city, and having the capacity to change their place of living according to the color 
of their neighbors. Schelling demonstrated that if individuals have a mild preference for living 
near people of their own color, and if they move to satisfy their preference1, complete 
segregation at the city scale may occur. 
Its capacity to demonstrate, in a simple and elegant way, how interdependent but non-
coordinated local residential decisions may lead to unexpected social segregation surely 
explains the large success of this model. While scientists from various disciplines, ranging 
from social sciences (3, 4, 5) and economics (6, 7) to physics (8, 9, 10, 11) and mathematics 
(12, 13) handled this model, trying to find links with their own concepts and models, their 
conclusions all converged to Schelling initial finding: segregation may occur at the city level 
even if every single agent is tolerant enough (mild preference) to accept an integrated pattern.  

                                                 
1 Schelling’s model is very limited in its scope at it is only based on individual preferences 
and thus does not take into account two other mechanisms at stake in social segregation, as 
identified for long by sociologists: discriminative processes (occurring at the institutional 
and/or individual level) and socio-economic factors.  
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According to two recent studies (6, 4), Schelling’s model of segregation is so robust that it is 
only weakly affected by the underlying urban structure: whatever the size and shape of city, 
this undesired emerging phenomenon will happen. According to other authors (3), individual 
preferences are evolving so slowly that no real improvement can be expected in a near future. 
Such conclusions may have important public policy and urban planning implications as they 
suggest that only a very restricted range of possible actions, if any, would be able to 
contribute limiting social segregation. However, the situation seems even worse than 
expected. Indeed, we can draw two complementary conclusions from our own simulations: 
actual and planned geometries of cities not only accelerate and reinforce Schelling’ 
segregation processes but they also favor intolerant behaviors. Therefore, fatalism should be 
banned: public policy and urban planning have their role to play in the more than ever urgent 
quest for sustainable cities. 
 
Graph-based cities 
 
The shape of an urban area and the way it is fed by the road network are two major ways that 
differences occur at the intra-urban level. There are also generally very marked differences in 
accessibility between the centre and the different suburbs. Moreover, certain areas or 
neighborhoods can be told apart by their relative impermeability: gated communities and 
ghettos can thus be defined as cliques, which in the network theory jargon describe subsets 
made up of nodes adjacent to one another. What can be demonstrated is that network shape in 
general and cliques in particular may play a significant role in the dynamic of Schelling’ 
model, cliques acting as local attractors, or segregation “traps”.  
Let us illustrate this point with four urban networks increasingly hierarchised, defined as: a) 
regular (grid), b) random, c) scale-free2, and d) fractal (Sierpinski tree). These last two 
networks may appear a bit “exotic” to the non-specialist but in fact they share more 
similarities with real cities than regular or random networks. For example, Bin Jiang (14) 
demonstrated on a large sample of 40 US cities of different sizes that urban street networks 
based on street–street intersection display a scale-free property. Furthermore, fractal patterns 
are often presented as relevant for urban systems, when it comes to imagining more livable 
and sustainable cities (15, 16). 
These four networks could have been compared directly (5), but we believe this would have 
introduced a severe bias linked to the varying degree distribution. Indeed, as evaluation of 
preferences by each agent is based on the proportion of his n occupied neighbors having a 
given color, the de facto weight of each neighbor is 1/n and therefore small neighborhoods are 
more sensitive to changes than larger ones. To avoid this problem, we arbitrarily fix the 
number of neighbors: each node is connected to its n closest nodes, as defined by a Floyd 
routing algorithm (17). The resulting neighboring graphs obtained then present an interesting 
effect: they are more or less marked by the existence of cliques.  
 

 

                                                 
2 Generated following preferential attachment rules as proposed in (1). See (18) for evidence 
on the non fractal topology of such networks. 
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Figure 1. Regular, random, scale-free and fractal (Sierpinski) networks (up) and their 
corresponding neighboring graphs (bottom) for a fixed degree (d = 10; neighborhood 
defined using shortest path algorithm)  

 
 

As the number of neighbors n is constant, each resulting network can be characterized by a 
clustering coefficient3 (19):  
 

Ci =
2Ei

ki(ki −1)
, 0 ≤ Ci ≤1 

 
where Ei is the number of connected pairs among neighbors of node i and ki is the degree of 
node i. 
This indicator varies between 0 (no connected pairs among neighbors of node i) and 1 (fully 
connected neighbors). Averaging these local values provides a global indicator very useful 
when comparing different network structures: 

C =
1
n

Ci
i=1

n

∑  

  
The four networks defined, characterized by a fixed degree (10 neighbors), present different 
clustering values, as expected from their neighboring graphs (table 1).  
 

 
 
 
 
 
 

                                                 
3 See (20) for a discussion on the limitation of this indicator when the degree varies and their 
proposal for a more robust indicator. 
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 Grid Random Scale-Free Sierpinski 

#Nodes 361 361 361 363 

#Edges (structural graph) 1332 1448 360 364 

#Edges (neighboring graph) 2039 1749 1960 2134 

Clustering (neighboring graph) 0.55 0.65 0.99 0.95 

 
Table 1. Properties of the four networks and their neighboring graphs (degree = 10) 

 
 
Schelling’s agents 
 
According to Schelling’s model, each node of these graphs may be seen as a possible living 
place, occupied (or not) by an agent belonging to a given category. It is well known, however, 
that density of agents needs to be nor too low nor too high for the system to get self-organised 
(9, 11). Too many vacant nodes would limit the contacts between agents, keeping their spatial 
distribution random whatever their individual preference level, while too few free nodes 
would just “freeze the system”. For each generated network, a fixed proportion (80%) of 
nodes is then randomly populated with a corresponding number m of agents, half of them 
being of color x and the remaining part being of color y. Each agent is able to identify his 
neighborhood composition, i.e. the proportion Pij of his occupied neighbors being unlike him. 
At each time step, each randomly selected agent Ai computes his utility, defined as a step 
function: 
 

Ui =
0 if Pij >  λ
1 if Pij  ≤  λ

⎧ 
⎨ 
⎩ 

 

 
with λ a tolerance threshold value, embedding agent’s preference. Agent Ai then moves if he 
feels unsatisfied with his current location (Ui = 0) and if there is at least one vacant node – 
randomly chosen if more than one – allowing him increasing his utility (Ui = 0  Ui = 1).  
For various possible values of the tolerance parameter4 λ={0, 10, 20, 30, 40, 50, 60, 70, 80, 
90, 100}, 1000 simulations were achieved and a social mixity index calculated. Following 
Schelling himself, this index is simply the mean proportion of contacts between unlike 
neighbors (omitting empty nodes): 

M =
1
A

Pij
i=1

A

∑  

where A  is the number of agents (cardinal). This index then varies between 0 (complete 
segregation) and approximately 50% (mixity). It may be noticed that a 50% mixity can be 
obtained either from a random distribution of agents (most probable and stable issue) or from 
a more integrated “chessboard” like pattern (highly improbable and unstable issue). 
A simulation ends up if one of the two conditions is respected: either because the system 
converges towards equilibrium or because the simulation time exceeds a given threshold 
value (here 50). Equilibrium is obtained when each agent is satisfied with his current location, 
that is: 

                                                 
4 λ is a proportion, expressed in percents, as it refers to a threshold value of Pij, defined for 
each agent Ai as the proportion of occupied neighbors being unlike him. 

ha
l-0

04
69

72
7,

 v
er

si
on

 1
 - 

2 
Ap

r 2
01

0



5/14 

Ui
i=1

m

∑ = A  

It may be noticed that static patterns (i.e. no agent moves anymore) can be obtained while no 
equilibrium is reached: 

Ui
i=1

m

∑ < A  

Following (9), we call such state a “frozen state”. 
Results (Figure 2) confirm the robustness of Schelling’s model but also stress significant 
discrepancies between the various networks, thus suggesting the possible role of network 
hierarchy and cliques in Schelling’ segregation process. 
 

 
Figure 2. Average mixity index and its standard-deviation (1000 simulations), for each 
of the four networks 
 
Robustness of Schelling’s model and cliques effect 
 
The typical three phases (8, 9) of Schelling’s model are clearly identified, whatever the 
network structure, demonstrating the robustness of this model. For high tolerance values 
(λ > 70), the system rapidly converges (i.e. reaches equilibrium) towards a mixed state. Then, 
a rapid change occurs for a slight decrease in tolerance (λ = 70): while being still tolerant at 
an individual level (preferences), agents make by their moves the global system converge 
towards a segregated state. As tolerance decreases (30 < λ < 70), highly segregated states are 
obtained. For a mild preference value (λ = 50), every simulation converges from an initial 
random distribution to a highly segregated pattern, for each of the four generated networks 
(figure 3). 
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Figure 3. Examples of equilibriums attained for mild preferences (λ = 50, 
Density = 80%, Degree = 10, empty squares = vacant nodes) 
 
 
While having a mild preference, each agent ends up in a highly segregated community, with 
few or no contacts with unlike agents. Patterns are clearly related to the neighboring graphs 
(figure 1), underlying the importance of cliques as “segregation traps”. Observing the model’s 
dynamics confirms this role played by cliques, but also the locking-in role of “entry” nodes 
(figure 4). Rapidly, cliques are filled up by an agent population of one or another color. As 
their connection with the rest of the network is limited to a reduced number of nodes (we call 
them “entry” nodes), we can assume surface tension to be concentrated over this limited 
subset of nodes, thus reinforcing local anchorage of growing clusters. Network topology in 
general and cliques in particular seems to play an important role in the dynamic of the whole 
model, by channeling agents towards local attractors. Once these pockets of local order 
become filled in enough, agents are then “protected” from exogenous perturbations: no unlike 
agent will settle down anymore. This process may be compared to the one described by (21) 
for epidemics, who showed how cliques reduce the initial spread of an epidemic, but also the 
final proportion of the population that the epidemic reaches. 
 

 
Figure 4. Cliques as segregation traps and the locking-in role played by “entry” nodes  
(Degree = 10; neighboring links not represented here) 
 
Decreasing tolerance (λ = 30) then leads to a second phase transition: agents find less and less 
vacant nodes corresponding to their preference and therefore wait for a better place to get 
vacant, while being unsatisfied with their current location. This transition area (λ = 30) is 
highly unstable and, depending on the initial configuration and the course of the simulation, 
“frozen states” (9) can be reached. In such situation, the model does not converge towards 
equilibrium: while no agent can move anymore, a varying proportion of them are not satisfied 
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with their current location. Table 2 shows the proportion of convergences towards equilibrium 
over 1000 runs, for this specific tolerance value (λ = 30). Proportions vary from 30% of the 
runs for grid and scale-free network, to 48% for the random network and 56% for the 
Sierpinski tree. 
 

Table 2. Proportion of convergence towards equilibrium (each agent is satisfied with his 
current location) over 1000 simulations, for the 30% tolerance value  

 
For very low tolerance values (λ < 30), no equilibrium can be found, as agents are trapped in 
a global frozen state, waiting forever for better places (i.e. increasing their utility) to become 
available. 
While each of the four networks follows this global trend, significant differences occur at the 
two transition areas (λ = 70 and λ = 30), and within the segregated state (30 < λ < 70). The 
two hierarchised and highly clustered networks (scale-free and Sierpinski) apparently 
contribute reinforcing the segregation process, letting the system converge towards 
significantly5 higher segregation states. 
Moreover, the frozen states reached for low tolerance values suggest that adding some 
“flexibility” in the system may be interesting.  
 
 
Varying “temperature” in Schelling’s model 
 
One could think of a physical analogy: by “heating up” this system, we would be able to 
increase its entropy and therefore increase the range of possibilities for agents, as well as the 
range of possible states the system could reach.  
Adding some noise in the agents’ decision rule allows reaching such objective. We introduce 
a new parameter N (for “Noise”), ranging from 0 to 1 and interfering with the decision 
process in the following way.  
For each unsatisfied agent Ai,Ui=0, we generate a random number n from a uniform distribution 
[0; 1] and use the following rule: if n < N, then agent Ai will move to a randomly chosen 
vacant node, whatever its expected utility value on that destination node (Ui = 0 → Ui = 1 OR 
Ui = 0). Introducing even a small amount of noise (N = 0.1) considerably “fluidifies” the 
system, in a very striking way (figure 5). 
 

                                                 
5 Using Student’t-test for comparison of sample means. 

Grid Random Scale-Free Sierpinski

% convergences for λ = 30 
(1000 runs)

31 47.8 32 55.6
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Figure 5. Average mixity index and its standard-deviation (1000 simulations) for each of 
the four networks, with noise in the system (N = 0.1) 
 
One sees immediately two interesting phenomena. First, introducing a small amount of noise 
in the model improves its capacity to reach equilibrium for low tolerance values (λ < 40). For 
scale-free and Sierpinski networks, convergence is systematic even when tolerance is null 
(λ = 0). Therefore, adding a small amount of noise transforms Schelling’s model in an 
optimization algorithm, able to find spatial patterns respecting heavy constraints on parameter 
λ. The underlying topology reinforces this capacity, especially when networks are highly 
interconnected (presence of cliques). Furthermore, this capacity is extraordinarily targeted: 
the course of the model doesn’t seem to be affected by this small amount of noise, unless the 
second phase transition is reached (λ = 30). Figure 6 underlines clearly this property for the 
Sierpinski network: whatever the level of noise added, results are not significantly affected, 
until λ > 30. Then, for λ = 30  and λ = 20, any amount of noise allows reaching equilibrium 
while the standard Schelling’s model doesn’t.  As λ decreases further on (λ < 20 ), a new state 
appears for N = 1 (i.e. 100% of unsatisfied agents move to any vacant node whatever their 
expected utility there), characterized by never ending movements of unsatisfied agents. It may 
be noticed that this chaotic state appears only when N = 1, i.e. when the system is populated 
with “knee-jerk” agents, moving to any vacant node as soon as they feel unsatisfied. 
Therefore, preserving an even small amount of “opportunist” Schelling like agents is 
sufficient to let the system converge towards equilibrium. 
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Figure 6. Mixity values reached for various noise levels, for the Sierpinski Network 
[density of occupied nodes 80%] 
 
 
 
 
Sensitivity to initial conditions and network effects 
 
In this “tipping” model, segregation is then characterized as a stochastically stable state that 
tends to emerge and persist in the long run regardless of the initial state (13). However, 
depending on the initial configuration of agents, their random selection and the succession of 
events (path dependency), very different equilibrium can be reached. In that sense, despite its 
global robustness, Schelling’s model is also sensitive to initial conditions: different initial 
random patterns of agents may lead to very different final patterns. However, this sensitivity 
depends also on the value of the tolerance threshold used and its proximity to a stable or 
unstable zone of the parameters’ space. Indeed, as illustrated by Figure 2, variability of final 
Mixity index varies with tolerance value λ and reaches the highest values for λ = 30 and to a 
lesser extend for λ = 70 (phase transitions). Between these two values, final configurations 
obtained differ essentially in their details, as global state – measured by Mixity index – is 
quite stable. However, the situation is completely different when λ = 30. Indeed, as figure 2 
and table 2 suggest, this zone of the parameters’ space is highly unstable and initial random 
distributions of agents can lead to very different configurations, depending on the capacity of 
the system to converge towards an equilibrium or to remain in a “frozen state”. Figure 7 
illustrates this phenomenon, which can be seen as a bifurcation: from given random initial 
distributions of agents and without added noise, system may converge towards a completely 
segregated configuration (Mixity < 2% for both networks) or remain in a frozen state 
characterized by a high Mixity index (Mixity > 40% for both networks).  
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Figure 7. Example of bifurcation at work when λ = 30 [Noise = 0; Density = 80%] 

 
 
Therefore, when λ = 30 Schelling’s model is very sensitive to initial conditions and is 
consequently highly unstable, whatever the underlying network used. It may be noticed that 
adding a small amount of noise allows mastering this issue, as figure 5 and previous 
developments show. However, in addition to these global characteristics and adding just a 
limited amount of noise, one can also reveal a specific behavior of the model on Sierpinski 
network, characterized by a well-defined hierarchy of nodes. Indeed, as simulations point out 
(figure 8), the final state of major central nodes after convergence depends closely on the 
tolerance value.  

 
Figure 8. Influence of nodes’ centrality on their final state  [Noise = 0.1; Density = 80%; 

λ varies from 0 (upper left corner) to 50] 
 
At any time during the simulation, nodes are characterized by one of the three possible states 
(vacant; occupied by an agent of color x; occupied by an agent of color y). On a completely 
homogeneous network, it is hardly possible to predict the final value of a given node. 
However, for Sierpinski network and for low tolerance values  (λ < 30), this is not true 
anymore: whatever their initial state, central nodes almost systematically converge towards 
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the same final state (vacant), separating cliques of homogeneously colored agents. Therefore, 
for highly hierarchised networks such as Sierpinski network, some nodes display very specific 
behavior depending on their topological situation. Space does make a difference, both at 
global and local levels. 
 
 
A global model 
 
As figure 5 suggests, mixity can be defined as a step function of tolerance (λ), each 
underlying network having its own signature. Therefore, given the existence of two 
asymptotes (mixity = 0 and mixity = 50) and of an acceleration and deceleration phases 
between them, a three parameters logistic model may characterize this relation in a synthetic 
form: 

y =

50                if Ui
i=1

m

∑ < A

γ

1+ e−α−βx    if Ui
i=1

m

∑ = A

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

 

 
with y = Mixity and x = Tolerance (λ). Estimating parameters {α, β, γ} for each of the four 
networks leads to very tight fits (R2 > 0.99). Figure 9 shows the various S-curves obtained. 

 

 
Figure 9. Logistic models fitted, for converging tolerance values [Noise = 0.1; in the 
legend “O” is for observed (from simulation) and “P” for predicted (model fitting)] 
 
The parameters obtained (table 3) - and especially {α, β} as γ is a scale parameter – allow 
comparing in a very synthetic manner Schelling’s model behavior on various underlying 
structures. The surface between the two families of curves (grid and random VS scale-free 
and Sierpinski), coupled with the step-like structure of the logistic fits, give a precise idea of 
the capacity of the latter networks to accelerate and amplify Schelling like segregation. 
 
 

Parameter Grid Network Random Network Scale-Free Network Sierpinski Network
α -6.064 -6.763 -11.319 -14.299
β 0.092 0.101 0.166 0.205
γ 54.019 53.632 50.076 49.406

R2
0.991 0.992 0.999 0.999
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Table 3. Parameters estimates and goodness-of-fit statistics (R2) for each network 
 
These results suggest that for a given underlying topology (network) and by introducing a 
small amount of noise (with its conservative properties suggested), we should be able to 
characterize and even anticipate Schelling’s model behavior. On large networks, 
characterizing real cities, this could make a difference as the computation burden involved by 
simulation may exceed our capacities. Combined with further knowledge on local segregation 
dynamics related with cliques, these results might contribute assessing urban planning 
policies. 
 
Conclusion 
So far, several conclusions can be drawn from our simulations. Firstly, and confirming 
previous works, Schelling’s segregation process is robust and happens on very different 
underlying structures, even far away from the homogeneous grid Thomas Schelling initialy 
used. Secondly, this model is also very robust to random fluctuations. Indeed, introducing a 
small amount of noise in the model dynamic under the form of “knee-jerk” agents, moving to 
any vacant node as soon as they feel unsatisfied whatever their expected utility, has very 
limited impact on its global behavior. However, for specific tolerance values, such add-on 
allows reaching equilibrium solutions that were not attainable with the standard version. 
Under this slight modification, we show that the global behavior of Schelling’s model can be 
formalized in a simple thus precise way, with a three parameters logistic model. 
These fundamental properties of Schelling’s model then allowed us showing by simulation 
that, contrarily to previous conclusions (6, 4), space does matter in this model. More 
precisely, network topology interferes with its dynamics, by accelerating and reinforcing its 
effects. Segregation occurs more rapidly on hierarchised networks characterized by cliques 
than on random and regular ones. Furthermore, such interconnected structures also authorize 
intolerant behaviors: equilibrium can indeed be reached with highly segregationists agents 
(tolerance weak or null), as soon as a small proportion of non opportunist agents is introduced 
in the system.  
These results may have important public policy and urban planning implications as they 
suggest that actual and planned geometries of cities may not only accelerate and reinforce 
Schelling’ segregation processes but may also favor segregationist behaviors. Therefore, 
fatalism should be banned and laissez-faire should be fought: public policy and urban 
planning have their role to play. Limiting undesirable self-reinforcement processes may be 
possible and should be part of any ambitious urban politics.  
Moreover, as Frankhauser shows (16), hierarchical and interconnected urban architectures 
prove useful on some aspects. Especially fractal geometries, which may benefit to cities and 
citizens, as they allow maintaining “a social mix by means of a higher local variability of 
densely and less densely populated zones and, on the other hand, to preserve huge empty 
zones in the neighborhood of urbanized areas, which may be imagined as natural reserves, 
agricultural zones or simply leisure areas offering rural amenities” [pp. 239]. Our 
simulations show evidence that such gains may be compensated by losses in terms of social 
mixity and integration. Based on these results, it seems obvious that more integrated 
approaches of urban complex systems should be encouraged and privileged in our more than 
ever urgent quest for sustainable cities. Among the challenges put at the forefront by this 
classical model, one finds news echoes here: can we imagine cities’ shapes and forms able to 
limit Schelling’s segregation process? Obviously, one cannot focus only on individual 
preferences, as suggested by Clark and Fossett (3). Economic constraints, socio-economic 
context and precise survey-based knowledge of the precise mechanisms at work should be 
incorporated incrementally in the model, in order to gain new insights on its behavior in more 
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complex situations, not limited to positive feedbacks and self-reinforcement processes. 
Carefully introducing heterogeneity in agent-based models, both at the level of agents’ 
attributes and behaviors but also in the way we define agents’ environment is therefore a key 
issue the community should handle more vigorously, in order to improve our understanding of 
the “real-world dynamics of the city” (3). 
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