
CENG3420

Lab 1-2: RISC-V Assembly Language Programing II

Chen BAI
Department of Computer Science & Engineering
Chinese University of Hong Kong
cbai@cse.cuhk.edu.hk

Spring 2022



1 Recap

2 Function Call Procedure

3 Array Partitioning

4 Lab 1-2 Assignment

Outline

2/31



Recap



Categories

• Load and Store Instructions

• Bitwise Instructions

• Arithmetic Instructions

• Control Transfer Instructions

Recap
RV32I Assembly Language Programing

4/31



Load and Store Instructions

• Load and store instructions: lb lbu lh lhu lw sb sh sw

• Immediate instructions: lui auipc

• Pseudo instructions: mv li la

Recap
Load and store instructions

5/31



Bitwise Instructions

• Register to register instructions: sll srl sra and or xor not slt sltu

• Immediate instructions: slli srli srai andi ori xori slti sltiu

Recap
Bitwise Instructions

6/31



Arithmetic Instructions

• Register to register instructions: add sub mul mulh mulhu mulhsu
div divu rem

• Immediate instructions: addi

Recap
Arithmetic Instructions

7/31



Control Transfer Instructions

• Branch instructions: beq bne blt bltu bge bgeu

• Unconditional jump instructions: jal jalr ret j jr

• Pseudo instructions: beqz bnez blez bgez bltz bgtz bgt ble bgtu bleu

Recap
Control Transfer Instructions

8/31



RISC-V Assembler Directives

• Object file section: .text .data .rodata .bss .comm .common .section

• Misc. functions: .option .file .ident .size .type

• Definition and exporting of symbols: .globl .local .equ

• Alignment control: .align .balign .p2align

• Emitting data: .byte .2byte .4byte .8byte .half .word .dword
.asciz .string .incbin .zero

Recap
RISC-V Assembler Directives

9/31



Declaration
.data
a: .word 1 2 3 4 5

Remark

• Similar to the definition of array in C++, “a” denotes the address of the first element
of the array.

• We can access through rest of the elements with .word offset (i.e., 4 bytes).
(What should be the offset for the 2nd element in the array above?)

Examples
Dealing with an Array

10/31



Example 1

_start:
addi t0, t0, 0
addi t1, t1, 0
andi t2, t2, 0
li t0, 0xFF # Load a 8-bit number
li t1, 0xFFFF # Load a 32-bit number
li t2, 0xFFFFFFFF # Load a 64-bit number

Examples I

11/31



Example 2

_start:
addi t0, t0, 0
addi t1, t1, 0
andi t2, t2, 0
li t0, 0x1A352A9C # t0 = 0x1A352A9C
li t1, 0x1B2D4C6A # t1 = 0x1B2D4C6A
addi t2, t0, t1 # t2 = t1 + t0

Examples II

12/31



Example 3

Examples III

13/31



_start:
addi t0, t0, 0
addi t1, t1, 0
andi t2, t2, 0
andi t3, t3, 0
andi t4, t4, 0
andi t5, t5, 0
li t0, 2 # t0 = 2
li t3, -2 # t3 = -2
slt t1, t0, zero # t1 = 1 if t0 < 0
beq t1, zero, else_if
j end_if

else_if:
sgt t4, t3, zero # t4 = 1 if t3 > 0
beq t4, zero, else
j end_if

else:
seqz t5, t4, zero # t5 = 1 if t4 = 0

end_if:
j end_if

Examples IV

14/31



Function Call Procedure



JAL

• The JAL instruction is used to call a subroutine (i.e., function).

• The return address (i.e., the PC, which is the address of the instruction following the
JAL) is saved in the destination register.

• The target address is given as a PC-relative offset (the offset is sign-extended,
multiplied by 2, and added to the value of the PC).

Function Call Procedure

16/31



Syntax

jal rd, offset

Usage

loop: addi x5, x4, 1 # assign x4 + 1 to x5
jal x1, loop # assign ‘PC + 4‘ to x1 and jump to loop

Function Call Procedure I

17/31



JALR

• The JALR instruction is used to call a subroutine (i.e., function).

• The return address (i.e., the PC, which is the address of the instruction following the
JALR) is saved in the destination register.

• The target address is given as a PC-relative offset (the offset is sign-extended and
added to the value of the destination register).

Function Call Procedure

18/31



Syntax

jal rd, offset

Usage

addi x1, x0, 3 # assign x0 + 3 to x1
loop: addi x5, x0, 1 # assign x0 + 1 to x5
jalr x0, 64(x1) # assign ‘PC + 4‘ to x1 and jump to address x1

+ 64

Function Call Procedure I

19/31



Function Call Procedure
Difference between JAL & JALR

20/31



J
A pseudo instruction for JAL

Syntax

j label

Usage

loop: addi x5, x4, 1 # assign x4 + 1 to x5
jal loop # assign ‘PC + 4‘ to x0 and jump to loop (

discard the return address)

More Examples of Function Call Procedure I

21/31



JR
A pseudo instruction for JALR

Syntax

jr rs1

Usage

label: li x28, 100 # assign 100 to x28
li x5, 200 # assign 200 to x5
li x6, 50 # assign 50 to x6
jal ra, loop # jump to loop
li x2, 10 # assign 10 to x2
loop: add x4, x28, x5 # assign x28 + x5 to x4
sub x7, x6, x4 # assign x6 + x4 to x7
jr ra # jump to ‘ra + 0‘

More Examples of Function Call Procedure II

22/31



BEQ
If the values stored in rs1 and rs2 are equal, jump to label.

Syntax

beq rs1, rs2, label

Usage

beq x1, x0, loop # jump to loop when x1 equals to 0

Remark
It is similar to bne, blt, bltu, bge, bgeu...

More Examples of Function Call Procedure III

23/31



Array Partitioning



• Pick an element, called a pivot, from the array.

• Reorder the array so that all elements with values less than the pivot come before the
pivot, while all elements with values greater than the pivot come after it (equal
values can go either way).

1: function PARTITION(A, lo, hi)
2: pivot← A[hi]
3: i← lo-1;
4: for j = lo; j ≤ hi-1; j← j+1 do
5: if A[j] ≤ pivot then
6: i← i+1;
7: swap A[i] with A[j];
8: end if
9: end for

10: swap A[i+1] with A[hi];
11: return i+1;
12: end function

Partitioning

25/31



1
1In this example, p = lo and r = hi.

Example of Partition

26/31



Lab 1-2 Assignment



An array array1 contains the sequence -1 22 8 35 5 4 11 2 1 78, each
element of which is .word. Rearrange the element order in this array such that,

1 All the elements smaller than the 3rd element (i.e. 8) are on the left of it,

2 All the elements bigger than the 3rd element (i.e. 8) are on the right of it.

Submission Method:
Submit the source code and report after the whole lectures of Lab1 into Blackboard.

• The report includes your thinking, illustration of implementations, and results of the
source code.

Lab Assignment

28/31



Swap v[k] and v[k+1]

Assume a0 stores the address of the first element and a1 stores k.

swap: sll t1, a1, 2 # get the offset of v[k] relative
to v[0]

add t1, a0, t1 # get the address of v[k]
lw t0, 0(t1) # load the v[k] to t0
lw t2, 4(t1) # load the v[k + 1] to t2
sw t2, 0(t1) # store t2 to the v[k]
sw t0, 4(t1) # store t0 to the v[k + 1]

Appendix-A Simple Sort Example

29/31



C style sort:

void sort(int v[], int n)
{

int i, j;
for(i = 0; i < n; i += 1)
{

for(j = i - 1; j >= 0 && v[j] > v[j + 1]; j -= 1)
{

swap(j + 1, j);
}

}
}

Appendix-B Simple Sort Example

30/31



Exit and restoring registers

exit1:
lw ra, 16(sp)
lw s3, 12(sp)
lw s2, 8(sp)
lw s1, 4(sp)
lw s0, 0(sp)
addi sp, sp, 20

Appendix-C Save and Exit

31/31


	Recap
	Function Call Procedure
	Array Partitioning
	Lab 1-2 Assignment

