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Important metrics for an I/O system
• Performance

• Expandability

• Dependability

• Cost, size, weight

• Security

Review: Major Components of a Computer
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A Typical I/O System
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I/O devices are incredibly diverse with respect to
• Behavior – input, output or storage

• Partner – human or machine

• Data rate – the peak rate at which data can be transferred

Device Behavior Partner Data Rate (Mb/s)
Keyboard Input Human 0.0001

Mouse Input Human 0.0038
Laser printer Output Human 3.2000

Flash memory Storage Machine 32.0000–200.0000
Magnetic disk Storage Machine 800.0000–3000.0000

Graphics display Output Human 800.0000–8000.0000
Network/LAN Input/output Machine 100.0000–10000.0000

Input and Output Devices

6/27



I/O bandwidth (throughput)
• Amount of information that can be input (output) and communicated per unit time

• How much data can we move through the system in a certain time?

• How many I/O operations can we do per unit time?

I/O response time (latency)
• Total elapsed time to accomplish an input or output operation

• An especially important performance metric in real-time systems

I/O Performance Measures
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A shared communication link (a single set of wires used to connect multiple subsystems)
that needs to support a range of devices with widely varying latencies and data transfer
rates

Advantages
• Versatile – new devices can be added easily and can be moved between computer

systems that use the same bus standard

• Low cost – a single set of wires is shared in multiple ways

Disadvantages
• Creates a communication bottleneck – bus bandwidth limits the maximum I/O

throughput

The maximum bus speed is largely limited by
• The length of the bus

• The number of devices on the bus

Bus
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Processor-Memory Bus (“Front Side Bus”, proprietary)
• Short and high speed

• Matched to the memory system to maximize the memory-processor bandwidth

• Optimized for cache block transfers

I/O Bus (industry standard, e.g., SCSI, USB, Firewire)
• Usually is lengthy and slower

• Needs to accommodate a wide range of I/O devices

• Use either the processor-memory bus or a backplane bus to connect to memory

Backplane Bus (industry standard, e.g., ATA, PCIexpress)
• Allow processor, memory and I/O devices to coexist on a single bus

• Used as an intermediary bus connecting I/O busses to the processor-memory bus

Types of Buses
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• An I/O transaction is a sequence of operations over the interconnect that includes a
request and may include a response either of which may carry data.

• A transaction is initiated by a single request and may take many individual bus
operations.

• An I/O transaction typically includes two parts

1 Sending the address
2 Receiving or sending the data

I/O Transactions
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Synchronous Bus (e.g., processor-memory buses)
• Includes a clock in the control lines and has a fixed protocol for communication that

is relative to the clock

•

•

•

Asynchronous Bus (e.g., I/O buses)
• It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)

•

•

•

•

Synchronous and Asynchronous Buses
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• Backplane bus

• Connects hard drives, CD-ROM drives, and other drives

• [Old] Parallel ATA (PATA): synchronous

• [New] Serial ATA (SATA), much thinner, asynchronous

• Reason: Skew Problem

Advanced Technology Attachment (ATA) Cable
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ReadReq

Data

Ack

DataRdy

addr data

Example: data from Memory to I/O devices

1 I/O device requests by raising ReadReq & putting addr on the data lines

2

3

4

5

6

7

Asynchronous Bus Handshaking Protocol
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Firewire USB  2.0 PCIe Serial  ATA SA  SCSI
Use External External Internal Internal External
Devices  
per  
channel

63 127 1 1 4

Max  length 4.5  meters 5  meters 0.5  meters 1  meter 8  meters
Data  Width 4 2 2  per  lane 4 4
Peak  
Bandwidth

50MB/sec  
(400)
100MB/sec  
(800)

0.2MB/sec  
(low)
1.5MB/sec  
(full)
60MB/sec  
(high)

250MB/sec  
per  lane  
(1x)
Come  as  
1x,  2x,  4x,  
8x,  16x,  
32x

300MB/sec 300MB/sec

Hot  
pluggable?

Yes Yes Depends Yes Yes

Hot plugging: a device does not require a restart of the system

Key Characteristics of I/O Standards
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A Typical I/O System
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Interrupt I/O



The operating system (OS) acts as the interface between the I/O hardware and the
program requesting I/O since

• Multiple programs using the processor share the I/O system

• I/O systems usually use interrupts which are handled by the OS

• Low-level control of an I/O device is complex and detailed

OS must be able to
• give commands to the I/O devices

• be notified the status of I/O device

• transfer data between the memory and the I/O device

• protect I/O devices to which a user program doesn’t have access

• schedule I/O requests to enhance system throughput

Interfacing I/O Devices to Processor / Memory
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Port-mapped I/O (PMIO)
• special class of CPU instructions for performing I/O

• EX:

Memory-mapped I/O (MMIO)
• Portions of the high-order memory address space are assigned to each I/O device

• Read and writes to those memory addresses are interpreted as commands to the I/O
devices

• Load/stores to the I/O address space can only be done by the OS

• EX:

How Processor Detects I/O Devices
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Port-mapped I/O (PMIO)
• special class of CPU instructions for performing I/O

• EX: in and out instructions in x86 architecture

Memory-mapped I/O (MMIO)
• Portions of the high-order memory address space are assigned to each I/O device

• Read and writes to those memory addresses are interpreted as commands to the I/O
devices

• Load/stores to the I/O address space can only be done by the OS

• EX: MIPS, LC-3b

How Processor Detects I/O Devices
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Polling
• Processor periodically checks the status of an I/O device (through the OS) to

determine its need for service

• Processor is totally in control – but does all the work

• Can waste a lot of processor time due to speed differences

Interrupt-driven I/O
• I/O device issues an interrupt to indicate that it needs attention

How I/O Devices Communicate with Processor
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Asynchronous
• does NOT prevent any instruction from completing

• Need a way to identify the device generating the interrupt

• Can have different urgencies (so need a way to prioritize them)

Advantages
• Relieves the processor from having to continuously polling

• user program progress is only suspended during the actual transfer of I/O data
to/from user memory space

Disadvantage
• need special hardware support

Interrupt Driven I/O
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Direct Memory Access (DMA)



• For high-bandwidth devices (like disks) interrupt-driven I/O would consume a lot of
processor cycles

• With DMA, the DMA controller has the ability to transfer large blocks of data directly
to/from the memory without involving the processor

• The processor initiates the DMA transfer by supplying the I/O device address, the
operation to be performed, the memory address destination/source, the number of
bytes to transfer

• The DMA controller manages the entire transfer (possibly thousand of bytes in
length), arbitrating for the bus

• When the DMA transfer is complete, the DMA controller interrupts the processor to
let it know that the transfer is complete

• There may be multiple DMA devices in one system

• Processor and DMA controllers contend for bus cycles and for memory

Direct Memory Access (DMA)
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DMA Example
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Should the DMA work with virtual addresses or physical addresses?

If with Physical Address:
• Must constrain all of the DMA transfers to stay within one page because if it crosses a

page boundary, then it won’t necessarily be contiguous in memory

• If the transfer won’t fit in a single page, it can be broken into a series of transfers
(each of which fit in a page) which are handled individually and chained together

If with virtual Address:
• The DMA controller will have to translate the virtual address to a physical address

(i.e., will need a TLB structure)

DMA & Virtual Memory Considerations
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Whichever is used, the OS must cooperate by not remapping pages while a DMA transfer
involving that page is in progress. Otherwise, may cause Coherency problem

DMA & Virtual Memory Considerations
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• In systems with caches, there can be two copies of a data item, one in the cache and
one in the main memory

• For a DMA input (from disk to memory) – the processor will be using stale data if
that location is also in the cache

• For a DMA output (from memory to disk) and a write-back cache – the I/O device
will receive stale data if the data is in the cache and has not yet been written back to
the memory

Coherency Problem

26/27



The coherency problem can be solved by

• Routing all I/O activity through the cache – expensive and a large negative
performance impact

• Having the OS invalidate all the entries in the cache for an I/O input or force
write-backs for an I/O output (called a cache flush)

• Providing hardware to selectively invalidate cache entries – i.e., need a snooping
cache controller

Coherency Problem
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