
CENG 3420
Computer Organization & Design

Lecture 21: I/O Systems

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Not on Textbook)

Spring 2022



1 Introduction

2 Bus

3 Interrupt I/O

4 Direct Memory Access (DMA)

Overview

2/27



Introduction



Processor

Control

Datapath

Memory

Devices

Input

Output

Important metrics for an I/O system
• Performance

• Expandability

• Dependability

• Cost, size, weight

• Security

Review: Major Components of a Computer

4/27



Processor

Cache

Memory  - I/O  Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

A Typical I/O System

5/27



I/O devices are incredibly diverse with respect to
• Behavior – input, output or storage

• Partner – human or machine

• Data rate – the peak rate at which data can be transferred

Device Behavior Partner Data Rate (Mb/s)
Keyboard Input Human 0.0001

Mouse Input Human 0.0038
Laser printer Output Human 3.2000

Flash memory Storage Machine 32.0000–200.0000
Magnetic disk Storage Machine 800.0000–3000.0000

Graphics display Output Human 800.0000–8000.0000
Network/LAN Input/output Machine 100.0000–10000.0000

Input and Output Devices

6/27



I/O bandwidth (throughput)
• Amount of information that can be input (output) and communicated per unit time

• How much data can we move through the system in a certain time?

• How many I/O operations can we do per unit time?

I/O response time (latency)
• Total elapsed time to accomplish an input or output operation

• An especially important performance metric in real-time systems

I/O Performance Measures

7/27



A shared communication link (a single set of wires used to connect multiple subsystems)
that needs to support a range of devices with widely varying latencies and data transfer
rates

Advantages
• Versatile – new devices can be added easily and can be moved between computer

systems that use the same bus standard

• Low cost – a single set of wires is shared in multiple ways

Disadvantages
• Creates a communication bottleneck – bus bandwidth limits the maximum I/O

throughput

The maximum bus speed is largely limited by
• The length of the bus

• The number of devices on the bus

Bus

8/27



A shared communication link (a single set of wires used to connect multiple subsystems)
that needs to support a range of devices with widely varying latencies and data transfer
rates

Advantages
• Versatile – new devices can be added easily and can be moved between computer

systems that use the same bus standard

• Low cost – a single set of wires is shared in multiple ways

Disadvantages
• Creates a communication bottleneck – bus bandwidth limits the maximum I/O

throughput

The maximum bus speed is largely limited by
• The length of the bus

• The number of devices on the bus

Bus

8/27



Processor-Memory Bus (“Front Side Bus”, proprietary)
• Short and high speed

• Matched to the memory system to maximize the memory-processor bandwidth

• Optimized for cache block transfers

I/O Bus (industry standard, e.g., SCSI, USB, Firewire)
• Usually is lengthy and slower

• Needs to accommodate a wide range of I/O devices

• Use either the processor-memory bus or a backplane bus to connect to memory

Backplane Bus (industry standard, e.g., ATA, PCIexpress)
• Allow processor, memory and I/O devices to coexist on a single bus

• Used as an intermediary bus connecting I/O busses to the processor-memory bus

Types of Buses

9/27



• An I/O transaction is a sequence of operations over the interconnect that includes a
request and may include a response either of which may carry data.

• A transaction is initiated by a single request and may take many individual bus
operations.

• An I/O transaction typically includes two parts

1 Sending the address
2 Receiving or sending the data

I/O Transactions

10/27



Synchronous Bus (e.g., processor-memory buses)
• Includes a clock in the control lines and has a fixed protocol for communication that

is relative to the clock

•

•

•

Asynchronous Bus (e.g., I/O buses)
• It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)

•

•

•

•

Synchronous and Asynchronous Buses

11/27



• Backplane bus

• Connects hard drives, CD-ROM drives, and other drives

• [Old] Parallel ATA (PATA): synchronous

• [New] Serial ATA (SATA), much thinner, asynchronous

• Reason: Skew Problem

Advanced Technology Attachment (ATA) Cable

12/27



ReadReq

Data

Ack

DataRdy

addr data

Example: data from Memory to I/O devices

1 I/O device requests by raising ReadReq & putting addr on the data lines

2

3

4

5

6

7

Asynchronous Bus Handshaking Protocol

13/27



Firewire USB  2.0 PCIe Serial  ATA SA  SCSI
Use External External Internal Internal External
Devices  
per  
channel

63 127 1 1 4

Max  length 4.5  meters 5  meters 0.5  meters 1  meter 8  meters
Data  Width 4 2 2  per  lane 4 4
Peak  
Bandwidth

50MB/sec  
(400)
100MB/sec  
(800)

0.2MB/sec  
(low)
1.5MB/sec  
(full)
60MB/sec  
(high)

250MB/sec  
per  lane  
(1x)
Come  as  
1x,  2x,  4x,  
8x,  16x,  
32x

300MB/sec 300MB/sec

Hot  
pluggable?

Yes Yes Depends Yes Yes

Hot plugging: a device does not require a restart of the system

Key Characteristics of I/O Standards

14/27



Memory
Controller
Hub

(north  bridge)
5000P  

Intel  Xeon  5300
processor

Intel  Xeon  5300
processor

Main
memory
DIMMs

Front  Side  Bus  
(1333MHz,  10.5GB/sec)FB  DDR2  667

(5.3GB/sec)

PCIe 8x  (2GB/sec)ESI  (2GB/sec)

I/O
Controller  
Hub

(south  bridge)
Entreprise
South
Bridge  2

CD/DVD

Disk

Disk Serial  ATA
(300MB/sec)

Keyboard,
Mouse,  …

LPC
(1MB/sec)

USB  ports USB  2.0
(60MB/sec)

PCIe 4x
(1GB/sec)
PCIe 4x
(1GB/sec)
PCI-X  bus
(1GB/sec)
PCI-X  bus
(1GB/sec)

Parallel  ATA
(100MB/sec)

A Typical I/O System

15/27



Interrupt I/O



The operating system (OS) acts as the interface between the I/O hardware and the
program requesting I/O since

• Multiple programs using the processor share the I/O system

• I/O systems usually use interrupts which are handled by the OS

• Low-level control of an I/O device is complex and detailed

OS must be able to
• give commands to the I/O devices

• be notified the status of I/O device

• transfer data between the memory and the I/O device

• protect I/O devices to which a user program doesn’t have access

• schedule I/O requests to enhance system throughput

Interfacing I/O Devices to Processor / Memory

17/27



Port-mapped I/O (PMIO)
• special class of CPU instructions for performing I/O

• EX:

Memory-mapped I/O (MMIO)
• Portions of the high-order memory address space are assigned to each I/O device

• Read and writes to those memory addresses are interpreted as commands to the I/O
devices

• Load/stores to the I/O address space can only be done by the OS

• EX:

How Processor Detects I/O Devices

18/27



Port-mapped I/O (PMIO)
• special class of CPU instructions for performing I/O

• EX: in and out instructions in x86 architecture

Memory-mapped I/O (MMIO)
• Portions of the high-order memory address space are assigned to each I/O device

• Read and writes to those memory addresses are interpreted as commands to the I/O
devices

• Load/stores to the I/O address space can only be done by the OS

• EX: MIPS, LC-3b

How Processor Detects I/O Devices

18/27



Polling
• Processor periodically checks the status of an I/O device (through the OS) to

determine its need for service

• Processor is totally in control – but does all the work

• Can waste a lot of processor time due to speed differences

Interrupt-driven I/O
• I/O device issues an interrupt to indicate that it needs attention

How I/O Devices Communicate with Processor

19/27



Asynchronous
• does NOT prevent any instruction from completing

• Need a way to identify the device generating the interrupt

• Can have different urgencies (so need a way to prioritize them)

Advantages
• Relieves the processor from having to continuously polling

• user program progress is only suspended during the actual transfer of I/O data
to/from user memory space

Disadvantage
• need special hardware support

Interrupt Driven I/O

20/27



Direct Memory Access (DMA)



• For high-bandwidth devices (like disks) interrupt-driven I/O would consume a lot of
processor cycles

• With DMA, the DMA controller has the ability to transfer large blocks of data directly
to/from the memory without involving the processor

• The processor initiates the DMA transfer by supplying the I/O device address, the
operation to be performed, the memory address destination/source, the number of
bytes to transfer

• The DMA controller manages the entire transfer (possibly thousand of bytes in
length), arbitrating for the bus

• When the DMA transfer is complete, the DMA controller interrupts the processor to
let it know that the transfer is complete

• There may be multiple DMA devices in one system

• Processor and DMA controllers contend for bus cycles and for memory

Direct Memory Access (DMA)

22/27



DMA Example

23/27



Should the DMA work with virtual addresses or physical addresses?

If with Physical Address:
• Must constrain all of the DMA transfers to stay within one page because if it crosses a

page boundary, then it won’t necessarily be contiguous in memory

• If the transfer won’t fit in a single page, it can be broken into a series of transfers
(each of which fit in a page) which are handled individually and chained together

If with virtual Address:
• The DMA controller will have to translate the virtual address to a physical address

(i.e., will need a TLB structure)

DMA & Virtual Memory Considerations

24/27



Whichever is used, the OS must cooperate by not remapping pages while a DMA transfer
involving that page is in progress. Otherwise, may cause Coherency problem

DMA & Virtual Memory Considerations

25/27



• In systems with caches, there can be two copies of a data item, one in the cache and
one in the main memory

• For a DMA input (from disk to memory) – the processor will be using stale data if
that location is also in the cache

• For a DMA output (from memory to disk) and a write-back cache – the I/O device
will receive stale data if the data is in the cache and has not yet been written back to
the memory

Coherency Problem

26/27



The coherency problem can be solved by

• Routing all I/O activity through the cache – expensive and a large negative
performance impact

• Having the OS invalidate all the entries in the cache for an I/O input or force
write-backs for an I/O output (called a cache flush)

• Providing hardware to selectively invalidate cache entries – i.e., need a snooping
cache controller

Coherency Problem

27/27


	Main Talk
	Introduction
	Bus
	Interrupt I/O
	Direct Memory Access (DMA)


