
CENG 3420
Computer Organization & Design

Lecture 12: Pipeline – Advanced

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 4.7–4.9 & A.7–A.8)

Spring 2022

Data Hazards

• Dependencies backward in time cause hazards

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

• Write After Read (WAR) data hazard

Data Hazards: Register Usage

3/50

• Dependencies backward in time cause hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

• Load-use data hazard

Data Hazards: Load Memory

4/50

nop

nop

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Can fix data
hazard by

waiting – stall –
but impacts CPI

Resolve Data Hazards 1: Insert nop / stall

5/50

Fix data hazards by forwarding results as soon as they are available to where they
are needed.

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

Resolve Data Hazards 2: Forwarding

6/50

Forward Unit Output Signals

7/50

PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Datapath with Forwarding Hardware

8/50

1. EX Forward Unit:
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRs))

ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRt))

ForwardB = 10

Forwards the
result from the
previous instr.
to either input
of the ALU

Forwards the
result from the
second
previous instr.
to either input
of the ALU

2. MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01

Data Forwarding Control Conditions

9/50

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

EX forwarding MEM forwarding

Forwarding Illustration

10/50

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

EX forwarding MEM forwarding

Forwarding Illustration

10/50

• Another potential data hazard can occur when there is a conflict between the result of
the WB stage instruction and the MEM stage instruction – which should be
forwarded?

I
n
s
t
r.

O
r
d
e
r

add $1,$1,$2

A
LUIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4
A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Yet Another Complication!

11/50

q MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01

EX: Corrected MEM Forward Unit

12/50

q MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01

EX: Corrected MEM Forward Unit

12/50

• For loads immediately followed by stores (memory-to-memory copies) can avoid a
stall by adding forwarding hardware from the MEM/WB register to the data
memory input.

• Would need to add a Forward Unit and a mux to the MEM stage

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
LUIM Reg DM Reg

sw $1,4($3)
A
LUIM Reg DM Reg

Memory-to-Memory Copies

13/50

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

sub $4,$1,$5

Will still need one stall cycle even with forwarding

Forwarding with Load-use Data Hazards

14/50

stall

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Will still need one stall cycle even with forwarding

Forwarding with Load-use Data Hazards

14/50

Control Hazards

• When the flow of instruction addresses is not sequential (i.e., PC = PC + 4); incurred
by change of flow instructions

• Unconditional branches (jal, jalr)
• Conditional branches (beq, bne)
• Exceptions

• Possible approaches:

• Stall (impacts CPI)
• Move decision point as early in the pipeline as possible, thereby reducing the

number of stall cycles
• Delay decision (requires compiler support)
• Predict and hope for the best !

Control hazards occur less frequently than data hazards, but there is nothing as effective
against control hazards as forwarding is for data hazards

Control Hazards

16/50

• Jumps not decoded until ID, so one flush is needed

• To flush, set IF.Flush to zero the instruction field of the IF/ID pipeline register
(turning it into a nop)

Fortunately, jumps are very infrequent – only 3% of the SPECint instruction mix

Control Hazards 1: Jumps Incur One Stall

17/50

Datapath Branch and Jump Hardware

18/50

Supporting ID Stage Jumps

19/50

Dependencies backward in time cause hazards

Control Hazards 2: Branch Instr

20/50

One Way to Fix a Branch Control Hazard

21/50

Move branch decision hardware back to as early in the pipeline as possible – i.e.,
during the decode cycle

Another Way to Fix a Branch Control Hazard

22/50

• Nop instruction (or bubble) inserted between two instructions in the pipeline (as
done for load-use situations)

• Keep the instructions earlier in the pipeline (later in the code) from progressing
down the pipeline for a cycle (bounce them in place with write control signals)

• Insert nop by zeroing control bits in the pipeline register at the appropriate stage
• Let the instructions later in the pipeline (earlier in the code) progress normally

down the pipeline

• Flushes (or instruction squashing) were an instruction in the pipeline is replaced with
a nop instruction (as done for instructions located sequentially after j instructions)

• Zero the control bits for the instruction to be flushed

Two Types of Stalls

23/50

Move the branch decision hardware back to the EX stage:
• Reduces the number of stall (flush) cycles to two

• Adds an and gate and a 2x1 mux to the EX timing path

Add hardware to compute the branch target address and evaluate the branch
decision to the ID stage:

• Reduces the number of stall (flush) cycles to one (like with jumps).

• But now need to add forwarding hardware in ID stage

• Computing branch target address can be done in parallel with RegFile read (done for
all instructions – only used when needed)

• Comparing the registers can not be done until after RegFile read, so comparing and
updating the PC adds a mux, a comparator, and an and gate to the ID timing path

For deeper pipelines, branch decision points can be even later in the pipeline, incurring
more stalls

Reducing the Delay of Branches

24/50

ID Branch Forwarding Issues

25/50

• If the instruction immediately before the branch produces one of the branch source
operands, then a stall needs to be inserted (between the beq and add) since the EX
stage ALU operation is occurring at the same time as the ID stage branch compare
operation

• Bounce the beq (in ID) and next_seq_instr (in IF) in place
• Insert a stall between the add in the EX stage and the beq in the ID stage by

zeroing the control bits going into the ID/EX pipeline register (done by the ID
Hazard Unit)

• If the branch is found to be taken, then flush the instruction currently in IF (IF.Flush)

ID Branch Forwarding Issues

26/50

• If the branch hardware has been moved to the ID stage, then we can eliminate all
branch stalls with delayed branches which are defined as always executing the next
sequential instruction after the branch instruction – the branch takes effect after that
next instruction

• Compiler moves an instruction to immediately after the branch that is not
affected by the branch (a safe instruction) thereby hiding the branch delay

• With deeper pipelines, the branch delay grows requiring more than one delay slot

• Delayed branches have lost popularity compared to more expensive but more
flexible (dynamic) hardware branch prediction

• Growth in available transistors has made hardware branch prediction relatively
cheaper

Delayed Branches

27/50

• A is the best choice, fills delay slot and reduces IC

• In B and C, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

Scheduling Branch Delay Slots

28/50

Resolve branch hazards by assuming a given outcome and proceeding without
waiting to see the actual branch outcome

Predict not taken
Always predict branches will not be taken, continue to fetch from the sequential
instruction stream, only when branch is taken does the pipeline stall

• If taken, flush instructions after the branch (earlier in the pipeline)

• in IF, ID, and EX stages if branch logic in MEM – three stalls
• In IF and ID stages if branch logic in EX – two stalls
• in IF stage if branch logic in ID – one stall

• Ensure that those flushed instructions have not changed the machine state: automatic
in the pipeline since machine state changing operations are at the tail end of the
pipeline (e.g. MemWrite in MEM or RegWrite in WB)

• Restart the pipeline at the branch destination

Static Branch Prediction

29/50

To flush the IF stage instruction, assert IF.Flush to zero the instruction field of the
IF/ID pipeline register (transforming it into a nop)

Flushing with Misprediction (Not Taken)

30/50

• Predict not taken works well for “top of the loop” branching structures

• But such loops have jumps at the bottom of the loop to return to the top of the loop
and incur the jump stall overhead

• Predict not taken doesn’t work well for “bottom of the loop” branching structures

Top of the loop

while (condition) {
func();

}

Bottom of the loop

do{
func();

} while(condition);

Branching Structures

31/50

Resolve branch hazards by assuming a given outcome and proceeding

Predict taken
predict branches will always be taken

• Predict taken always incurs one stall cycle (if branch destination hardware has been
moved to the ID stage)

• Is there a way to “cache” the address of the branch target instruction

As the branch penalty increases (for deeper pipelines), a simple static prediction
scheme will hurt performance. With more hardware, it is possible to try to predict
branch behavior dynamically during program execution

Static Branch Prediction

32/50

Dynamic branch prediction

Predict branches at run-time using run-time information

• A branch prediction buffer (aka branch history table (BHT)) in the IF stage addressed
by the lower bits of the PC, contains bit(s) passed to the ID stage through the IF/ID
pipeline register that tells whether the branch was taken the last time it was execute

• Prediction bit may predict incorrectly (may be a wrong prediction for this branch this
iteration or may be from a different branch with the same low order PC bits) but this
doesn’t affect correctness, just performance

• Branch decision occurs in the ID stage after determining that the fetched
instruction is a branch and checking the prediction bit(s)

• If the prediction is wrong, flush the incorrect instruction(s) in pipeline, restart the
pipeline with the right instruction, and invert the prediction bit(s)

• A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) to 18% (eqntott)

Dynamic Branch Prediction

33/50

The BHT predicts when a branch is taken, but does not tell where its taken to!
• A branch target buffer (BTB) in the IF stage caches the branch target address, but we

also need to fetch the next sequential instruction.

• The prediction bit in IF/ID selects which “next” instruction will be loaded into IF/ID
at the next clock edge

• Or the BTB can cache the branch taken instruction while the instruction memory is
fetching the next sequential instruction

If the prediction is correct, stalls can be avoided no matter which direction they go

Branch Target Buffer

34/50

• A 1-bit predictor will be incorrect twice when not taken

• Assume predictbit = 0 to start (indicating branch not taken) and loop control is at
the bottom of the loop code

• First time through the loop, the predictor mispredicts the branch since the
branch is taken back to the top of the loop; invert prediction bit (predictbit = 1)

• As long as branch is taken (looping), prediction is correct
• Exiting the loop, the predictor again mispredicts the branch since this time the

branch is not taken falling out of the loop; invert prediction bit (predictbit = 0)

• For 10 times through the loop we have a 80% prediction accuracy for a branch that is
taken 90% of the time

1-bit Prediction Accuracy

35/50

A 2-bit scheme can give 90% accuracy since a prediction must be wrong twice
before the prediction bit is changed

2-bit Predictors

36/50

A 2-bit scheme can give 90% accuracy since a prediction must be wrong twice
before the prediction bit is changed

2-bit Predictors

37/50

Exceptions

• Exceptions (aka interrupts) are just another form of control hazard. Exceptions arise
from

• R-type arithmetic overflow
• Trying to execute an undefined instruction
• An I/O device request
• An OS service request (e.g., a page fault, TLB exception)
• A hardware malfunction

• The pipeline has to stop executing the offending instruction in midstream, let all
prior instructions complete, flush all following instructions, set a register to show the
cause of the exception, save the address of the offending instruction, and then jump
to a prearranged address (the address of the exception handler code)

• The software (OS) looks at the cause of the exception and deals with it

Dealing with Exceptions

39/50

• Interrupts – asynchronous to program execution

• caused by external events
• may be handled between instructions, so can let the instructions currently active

in the pipeline complete before passing control to the OS interrupt handler
• simply suspend and resume user program

• Traps (Exception) – synchronous to program execution

• caused by internal events
• condition must be remedied by the trap handler for that instruction, so much

stop the offending instruction midstream in the pipeline and pass control to the
OS trap handler

• the offending instruction may be retried (or simulated by the OS) and the
program may continue or it may be aborted

Two Types of Exceptions

40/50

Where in the Pipeline Exceptions Occur

41/50

Hardware sorts the exceptions so that the earliest instruction is the one
interrupted first

Multiple Simultaneous Exceptions

42/50

• All modern day processors use pipelining for performance (a CPI of 1 and a fast CC)

• Pipeline clock rate limited by slowest pipeline stage – so designing a balanced
pipeline is important

• Must detect and resolve hazards

• Structural hazards – resolved by designing the pipeline correctly
• Data hazards

• Stall (impacts CPI)
• Forward (requires hardware support)

• Control hazards – put the branch decision hardware in as early a stage in the
pipeline as possible

• Stall (impacts CPI)
• Delay decision (requires compiler support)
• Static and dynamic prediction (requires hardware support)

• Pipelining complicates exception handling

Summary

43/50

Background

• Clocking methodology defines when signals can be read and when they can be
written

• State element design choices
• level sensitive latch
• master-slave and edge-triggered flipflops

Clocking Methodologies

45/50

• Output is equal to the stored value inside the element

• Change of state (value) is based on the clock
• Latches: output changes whenever the inputs change and the clock is asserted

(level sensitive methodology)
• Two-sided timing constraint

• Flip-flop: output changes only on a clock edge (edge-triggered methodology)
• One-sided timing constraint

A clocking methodology defines when signals can be read and written – would
NOT want to read a signal at the same time it was being written

Review: Latches vs Flipflops

46/50

Review: Design A Latch

47/50

• Based on Gated Latch

• Master-slave positive-edge-triggered D flip-flop

Review: Design A Flip-Flop

48/50

• Latch is level-sensitive
• Flip-flop is edge triggered

Review: Latch and Flip-Flop

49/50

• An edge-triggered methodology
• Typical execution

• read contents of some state elements
• send values through some combinational logic
• write results to one or more state elements

• Assumes state elements are written on every clock cycle; if not, need explicit write
control signal

• write occurs only when both the write control is asserted and the clock edge
occurs

Our Implementation

50/50

	Data Hazards
	Control Hazards
	Exceptions
	Background: Flip-Flop Control Signals

