
ENGG 2440A: Discrete Mathematics for Engineers Monday 23 October
The Chinese University of Hong Kong, Fall 2017 Midterm Exam Solutions

1. Underline and explain the mistake in the following “proof.”

Theorem. Every graph has a vertex of even degree.

Proof. By induction on the number of vertices n. When n = 1 the graph has a vertex of degree
zero, which is even. Now assume it is true for graphs with n vertices. Let G be a graph with
n + 1 vertices. Remove any vertex from G. By inductive hypothesis the remaining graph G′ has
a vertex v of even degree. Since v is also a vertex of G, G has a vertex of even degree.

Solution: If v has even degree in G′ we cannot conclude that v has even degree in G. The degrees
of v in G and G′ may be of different parity. For example, if G has two vertices and one edge then
v has degree 1 in G but it has degree 0 in G′.

2. Prove that for every integer n there exists an integer k such that |n2 − 5k| ≤ 1.

Solution: First we check that for all n, n2 mod 5 equals 0, 1 or 4:

n mod 5 0 1 2 3 4
n2 mod 5 0 1 4 4 1

Since 4 ≡ −1 (mod 5) it follows that for every n, n2 is congruent to 0, 1, or −1 modulo 5.
Therefore n2 is of the form 5k or 5k − 1 or 5k + 1 for some integer k. In all cases |n2 − 5k| ≤ 1.

3. Alice has infinitely many $6, $10, and $15 stamps. Can she make all integer postages above $30?

Solution: Alice can make all integer postages from $30 to $35 as follows:

$30 = 5× $6
$31 = $6 + $10 + $15
$32 = 2× $6 + 2× $10
$33 = 3× $6 + $15
$34 = 4× $6 + $10
$35 = 2× $10 + $15

Now we show that she can make any amount n above 30 by strong induction on n. We already
covered the cases 30 ≤ n ≤ 35. Now assume that n > 35 and she can make all amounts between
$30 and $n. Then n− 6 ≥ 30 and by inductive assumption she can make n− 6 dollars. By adding
one $6 stamp she obtains n dollars.

4. Bob has 32 blue, 33 red, and 34 green balls. At every turn he takes out two balls and replaces
them with two different balls by the rule below. Can he obtain 99 balls all of the same color?

replacement rule: bg → rr gr → bb rb→ gg rr → bg bb→ gr gg → rb
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2 Solution: We can represent this process by a state machine with states (B,R,G) indicating
the number of balls of each color, start state (32, 33, 34), and transitions from (B,R,G) to the
states (B − 1, R − 1, G + 2), (B + 2, R − 1, G − 1), (B − 1, R − 1, G + 2), (B + 1, R − 2, G + 1),
(B − 2, R + 1, G + 1), (B + 1, R + 1, G − 2) as long as all numbers remain non-negative. The
predicate R−B ≡ 1 (mod 3) is an invariant: It holds in the start state and it is preserved by all
transitions as R − B can only change by −3, 0, or 3. If all 99 balls are of the same color then
R−B ≡ 0 (mod 3), so such a state cannot be reached.

5. A summer camp has children from Hong Kong, Mumbai, and Tokyo. The table
entry in row i and column j gives the average number of friends from city j
that children from city i report to have. Prove that not all reports are accurate.

H M T
H 2 3 3
M 3 5 1
T 4 2 3

Solution: Suppose for contradiction that all reports are accurate and let H, M , and T be the
sets of Hong Kong, Mumbai, and Tokyo children in the camp. If we look at the bipartite graph
of friendships between sets H and T , by the handshaking lemma from Lecture 5 we get that
3|H| = 4|T | (both are equal to the total number of edges between H and T ). By the same
reasoning applied to the other two pairs we get that 3|M | = 3|H| and 2|T | = |M |. Multiplying
both sides of these equations we obtain that 3|H| · 3|M | · 2|T | = 4|T | · 3|H| · |M |, from where
18 = 12. Contradiction.

6. Find a stable matching for these preferences and show that there is no other stable matching.

Alex Bob Carl

Diane Eve Faye

1 2 3 2 3 1 3 2 1

2 1 3 2 1 3 3 2 1

Solution: Consider the marked matching {Alex,Eve}, {Bob,Diane}, {Carl,Faye}. We show that
no other matching is stable. As a stable matching always exists, this one must be stable.

In any stable matching, Carl must be matched to Faye because they are each other’s first choice (so
they would be a rogue couple if not matched). For the rest, the matching {Alex,Diane}, {Bob,Eve}
can be ruled out because Bob and Diane would be a rogue couple. This leaves the above matching
as the only stable possibility.

Alternative solution: If we run the Gale-Shapley algorithm, on day 1 Alex proposes to Diane
and Bob and Carl propose to Faye. Faye picks Carl, so on day 2 both Alex and Bob propose
to Diane. Diane picks Bob, so the final matching is {Alex,Eve}, {Bob,Diane}, {Carl,Faye}. We
proved in Lecture 5 that this is stable.

Let us now run the Gale-Shapley algorithm again, but with the girls doing the proposing this time
around. On day 1 Diane and Eve propose to Bob and Faye proposes to Carl. Carl picks Faye
and Bob picks Diane over Eve. On day 2 Eve proposes to Alex resulting in the same final stable
matching.

By Theorem 6 in lecture 5, the first matching is the best possible for the boys (every boy gets his
best possible choice among all stable matchings), while the second one is the worst possible for
the boys (every boy gets his worst possible choice). Since they are the same there can be only one
stable matching.


