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Practice Final 1

1. Write the proposition “There is at most one ball in every urn” using logical connectives and
quantifiers. Use the symbols b1, b2 for balls, u1, u2 for urns and IN(b, u) for “ball b is in urn u”.

Solution: ∀u, b1, b2 : IN(b1, u) and IN(b2, u) −→ b1 = b2. Any two balls in any given urn must
in fact be the same ball.

2. A cut-edge in a connected graph is an edge e such that if e was removed, the graph would no
longer be connected. Show that any connected graph in which all vertices have even degree does
not have a cut-edge.

Solution: We prove this is impossible by contradiction. Suppose there exists a connected graph
G with exactly one cut-edge e = {u, v} in which all vertices have even degree. Let G′ be the
graph obtained by removing the edge e from G. Then u and v must belong to different connected
components C and C ′ of G′ (for otherwise removing e from G would not disconnect it.) All the
vertices of C except for u have even degree, so C has exactly one vertex of odd degree. Therefore
the sum of the degrees of the vertices in C is odd. This is impossible: In lecture 5 we showed that
the sum of the degrees of all vertices in a graph (and therefore in all of its connected components)
must be even.

3. The graph G1 consists of a single vertex. For n ≥ 1, the graph Gn+1 consists of two disjoint copies
of Gn and a matching between the vertices of the two copies. How many edges does Gn have?

Solution: The graph Gn+1 has twice as many vertices as Gn for all n, so Gn must have 2n−1

vertices. Let f(n) be the number of edges of Gn. Since Gn+1 contains twice the edges of Gn plus
2n−1 edges from the matching, f satisfies the recurrence

f(n + 1) = 2f(n) + 2n−1

with base case f(1) = 0. We guess a solution for f(n) by iterating this formula:

f(n) = 2f(n− 1) + 2n−2

= 2(2f(n− 2) + 2n−3) + 2n−2 = 22 · f(n− 2) + 2 · 2n−2

= 22 · (2f(n− 3) + 2n−4) + 2 · 2n−2 = 23 · f(n− 3) + 3 · 2n−2.

This suggests the guess f(n) = 2n−1 · f(1) + (n− 1) · 2n−2 = (n− 1) · 2n−2.

We now prove that f(n) = (n − 1) · 2n−2 by induction on n. When n = 1, f(1) = 0 and
(n− 1) · 2n−2 = 0. Now assume f(n) = (n− 1) · 2n−2 for some n ≥ 1. Then

f(n + 1) = 2f(n) + 2n−1 = 2 · (n− 1) · 2n−2 + 2n−1 = n · 2n−1

so the formula must be correct for all n.
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2 4. Let f(n) = 1 + 1/3 + 1/5 + · · ·+ 1/(2n− 1). Show that f is Θ(log n).

Solution: On the one hand, f(n) ≤ 1 + 1/2 + 1/3 + · · · + 1/(2n) = H(2n), where H(n) is the
n-th harmonic number from Lecture 7. There we showed that H(n) is O(log n), so H(2n) and
therefore f(n) is also O(log n).

On the other hand, f(n) ≥ 1/2 + 1/4 + 1/6 + · · ·+ 1/(2n) = 1
2
H(n). In Lecture 7 we also showed

that H(n) is Ω(log n), so f(n) is also Ω(log n).

5. You drop 30 balls into 7 urns. Some of the balls are red and some are blue. Show that at least
three balls of the same colour land in the same urn.

Solution: Let f : {1, . . . , 30} → {1, . . . 7}×{red, blue} be the function that assigns each ball to its
urn and its colour. The domain of f has size 30 and its range has size 7 · 2 = 14. Since 30 > 2 · 14,
by the generalized pigeonhole principle there exist 3 balls that are assigned to the same urn and
have the same colour.

6. You are dealt 5 random cards from a 52-card deck. What is the probability that the largest face
value is a 9? (The face values from smallest to largest are 2 3 4 5 6 7 8 9 10 J Q K A.)

Solution: Let A be the set of hands in which the largest face value is a 9. Let B be the set of
hands in which all face vales are at most 9 and C be the set of hands in which all face values are
at most 8, respectively. Then B is the disjoint union of A and C, so |B| = |A|+ |C|.
The set B consists of all 5-card hands out of the 8 · 4 = 32 cards with face values 2 up to
9 in all four suits, so |B| =

(
32
5

)
. Similarly, |C| =

(
28
5

)
and so |A| =

(
32
5

)
−
(
28
5

)
. Assuming

equally likely outcomes, the probability of getting a hand in the set A is then
((

32
5

)
−
(
28
5

))
/
(
52
5

)
=

(201, 376− 98, 280)/2, 598, 960 ≈ 0.0397. (You may omit the calculation.)

7. You have overhang blocks 10, 11, up to n units long, one of each kind. They are stacked
over the table from smallest to largest so that their left edges align. (See diagram for
n = 13). Show that the configuration is not stable when n is sufficiently large.

10
11
12
13

Solution: We assume all blocks have the same weight. If instead a block’s weight is proportional
its length the calculation is a bit more complicated but the conclusion is similar.

The center of mass of all the blocks, measured from the left edge of the blocks, is at position

P (n) =
1

2n
· (10+11+ · · ·+n) =

1

2n

(
(1+ · · ·+n)− (1+ · · ·+9)

)
=

1

2n

(n(n + 1)

2
− 9 · 10

2

)
= Ω(n)

so when n is sufficiently large, P (n) > 10, the center of mass falls to the right of the edge of the
table, and the configuration is not stable.

Practice Final 2

1. Show that for every integer n, if n3 + n is divisible by 3 then 2n3 + 1 is not divisible by 3.

Solution: We can prove this proposition by cases depending on the residue of n3 + n modulo 3.
If n ≡ 0 mod 3 then n3 + n is divisible by 3, while 2n3 + 1 ≡ 1 mod 3, so 2n3 + 1 is not divisible
by 3, so the proposition holds. If n ≡ 1 mod 3 then n3 + n ≡ 2 mod 3, so n3 + n is not divisible
by 3 and the proposition holds again. If n ≡ 2 mod 3, then n3 + n ≡ 2 mod 3 and n3 + n is not
divisible by 3 again.



32. The vertices of graph G are the integers from 1 to 20. The edges of G are the pairs {x, y} such
that gcd(x, y) > 1. How many connected components does G have?

Solution: Six. The vertex 1 clearly forms a connected components. So does each of the vertices
11, 13, 17, and 19: These are all prime numbers that are greater than 10, so their gcd with any
number between 1 and 20 equals one. We now argue that all the remaining vertices are in a single
connected component. These vertices are the multiples of 2, 3, 5, and 7, so each remaining vertex
is connected to 2, 3, 5, or 7. It remains to show that 2, 3, 5, and 7 are in the same connected
component. This is true because G contains the paths (2, 6, 3), (2, 10, 5), and (2, 14, 7).

3. What is 1 + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ 1000)?

Solution: The sum of the first k integers is k(k + 1)/2 = 1
2
k2 + 1

2
k, so

1 + (1 + 2) + · · ·+ (1 + 2 + 3 + · · ·+ n) = 1
2
(12 + 22 + · · ·+ n2) + 1

2
(1 + 2 + · · ·+ n)

= 1
2
(1
3
n3 + 1

2
n2 + 1

6
n) + 1

2
(1
2
n2 + 1

2
n)

= 1
6
n3 + 1

2
n2 + 1

3
n

using the formulas for the sum of the first n squares of integers and the sum of the first n integers,
respectively. (Notice that this expression gives the correct answer for n = 0, 1, and 2.) Plugging
in n = 1000 we obtain the answer 1

6
· 109 + 1

2
· 106 + 1

3
· 103 = 167, 167, 100.

4. An n× n plot of land (n is a power of two) is split in two equal parts by a North-South
fence. The Western half is sold and the Eastern half is split in two equal parts by an
West-East fence. The same procedure is applied to the remaining (n/2) × (n/2) plots
until 1× 1 plots are obtained (see n = 4 example). How many units of fence are used?

S
O
L
D

S
O
L
D

S
O
L
D

Solution: The amount T (n) of fence used satisfies the recurrence T (n) = 2T (n/2) + 3n/2 for
n > 1, with T (1) = 0. We can unwind the recurrence as follows:

T (n) = 2T (n/2) + 3/2 · n
= 2(2T (n/22) + 3/2 · n/2) + 3/2 · n = 22T (n/22) + 3/2 · 2n
= 22(2T (n/23) + 3/2 · n/22) + 3/2 · 2n = 23T (n/23) + 3/2 · 3n

After log n steps we expect to obtain T (n) = n · T (1) + 3
2
n log n = 3

2
n log n. We confirm the

correctness of this guess by induction. For the base case n = 1, T (1) = 0 as desired. For the
inductive step we assume T (k) = 3

2
k log k for all k < n that are powers of two. Then

T (n) = 2T (n/2) + 3n/2 = 2 · 3

2
· n

2
log(n/2) +

3n

2
=

3n

2
· (log n− 1) +

3n

2
=

3

2
· n log n

when n is a power of two, concluding the inductive step.

5. A department has 10 men and 15 women. How many ways are there to form a committee with
six members if it must have the same number of men and women?

Solution: There are
(
10
3

)
ways to choose the three men in the committee and

(
15
3

)
ways to choose

the three women in it, so the number of possible committees is
(
10
3

)
·
(
15
3

)
= 54, 600.



4 6. A password is made of the digits 0, 1, . . . , 9 and the special symbols * and #. The password must
be 4-6 symbols long and contain at least one special symbol. How many passwords are there?

Solution: Let P be the set of possible passwords. Then P is the disjoint union of P4, P5, and P6,
where P` is the set of possible passwords of length `. The set of all `-symbol strings is the disjoint
union of P` and the set N` of `-symbol strings that contain no special symbol, so P` has 12` − 10`

elements. By the sum rule,

|P | = |P4|+ |P5|+ |P6| = (124 − 104) + (125 − 105) + (126 − 106) = 2, 145, 552.

7. Show that every set of 10 integers, each of them between 0 and 25, contains two distinct subsets
S, T of the same size such that the sum of the numbers in S equals the sum of the numbers in T .

Solution: Let X be the set of all possible 5-element subsets of the 10-integer set and f : X →
{0, 1, . . . , 125} be the function f({a, b, c, d, e}) = a + b + c + d + e. Since X has size

(
10
5

)
= 252,

which is greater than 126, by the pigeonhole principle there must exist two subsets S and T such
that f(S) = f(T ).

Practice Final 3

1. Show that if x is irrational and y is any real number then at least one of x + y and x− y must be
irrational.

Solution: We prove the contrapositive. Assume x + y and x − y are both rational. Then so is
1
2
(x + y)− 1

2
(x− y) = x.

2. A box contains 100 black balls and 99 white balls. In each step Alice takes out two balls of the
same colour and puts in one ball of the opposite colour. Can Alice empty the box be left with
exactly one ball of each colour in the box?

Solution: No. We show that the predicate “3 divides b−w− 1” is an invariant of the underlying
state machine, where b and w is the number of black and white balls respectively. The invariant
holds initially. We now argue that it is preserved by the transitions, so assume 3 divides b−w + 1
before a given transition. There are two possibilities after the transition: Either the box contains
b−2 black and w+1 white balls, in which case (b−2)−(w+1)−1 = (b−w−1)−3 is a multiple of 3,
or the box contains b+1 black and w−2 white balls, in which case (b+1)−(w−2)−1 = (b−w−1)+3
is also a multiple of 3. Since 3 does not divide 1− 1− 1 = −1, the state in which there is exactly
one ball of each colour cannot be reached.

3. In a group of 15 people, is it possible for each person to have exactly 3 friends? (If Alice is a friend
of Bob we assume Bob is also a friend of Alice.)

Solution: No. Suppose for contradiction this was possible. Then the sum of degrees in the
friendship graph would have been 15 · 3 = 45. But the sum of the degrees equals twice the number
of edges, which is an even number, contradicting the fact that 45 is odd.

4. Sort these three functions in increasing order of growth:
√
n · log n, n/

√
log n,

√
n · log n. For your

sorted list f, g, h show that f is o(g) and g is o(h).



5Solution:
√
n log n is o(

√
n log n) because the ratio

√
n log n/

√
n log n equals 1/

√
log n, which

eventually becomes and stays smaller than any given constant.
√
n log n is o(n/

√
log n) because

the ratio
√
n log n/(n/

√
log n) equals (log n)3/2/n1/2. In Lecture 7 we showed that (log n)a is o(nb)

for any constants a, b > 0, so this ratio becomes and stays smaller than any constant when n is
sufficiently large.

5. The vertices of graph H are the 20 integers from −10 to 10 except 0. The edges of H are the pairs
{x, y} such that x = −y or |y − x| = 1. How many perfect matchings does H have?

Solution: Let f(n) denote the number of matching of the analogous graph Hn with 2n vertices
in which the integers −10 and 10 are replaced by −n and n. There are two possible ways in which
vertex n can be matched: Either it is matched to −n, in which case the remaining vertices to
be matched induce the graph Hn−1, or it is matched to n − 1, in which case −n must also be
matched to −(n+ 1) and the remaining vertices to be matched induce the graph Hn−2. Therefore
the number of matchings f(n) satisfies the recurrence f(n) = f(n − 1) + f(n − 2) for all n ≥ 2.
By inspection we have that f(0) = 1 and f(1) = 1. This is exactly the same recurrence we had in
Lecture 7 and we can calculate the following values for f(n) when n ≤ 10:

n 0 1 2 3 4 5 6 7 8 9 10
f(n) 1 1 2 3 5 8 13 21 34 55 89

so f(10) = 89.

6. How many length 5 passwords are there that contain at least one digit (0, 1, . . . , 9), at least one
*, and at least one #? No other symbols are allowed.

Solution: Let A, B, and C denote the sets of length 5 strings (with the given symbols) that
contain no digits, no *, and no #, respectively. The set of passwords is the complement of the set
A ∪B ∪ C, so there is a total of 125 − |A ∪B ∪ C| passwords. By inclusion-exclusion,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
= 25 + 115 + 115 − 15 − 15 − 105 + 0

because the set A is the product set {∗,#}5, the set B ∩ C is the product set {0, 1, . . . , 9}5, and
so on. So the number of passwords is

125 − 25 − 2 · 115 + 2 + 105 = 26, 700.

7. Prove that every tree can have at most one perfect matching.

Solution: The proof is by strong induction on the number of vertices. If a tree has one vertex
then it has no perfect matching so the proposition holds. Now assume it is true for all trees with
fewer than n vertices and consider any tree T with n vertices. T must have a vertex v of degree
one. This vertex v can be matched in at most one way to its unique neighbor w. We now argue
that there exists at most one matching that covers all remaining vertices. The graph G obtained
by removing v and w from T with all their incident edges is a forest. By the inductive assumption,
each connected component of G can have at most one perfect matching, so G itself, and therefore
T also, can have at most one perfect matching.



6 An alternative proof is to argue the contrapositive: A union of any two distinct perfect matchings
Ξ0 and Ξ1 on the same set of vertices must contain a cycle, so Ξ0 and Ξ1 cannot both be perfect
matchings of a tree. (Distinct does not mean disjoint: Ξ1 and Ξ2 may share some edges.) To
prove this, let v1 be any vertex that is matched differently in Ξ0 and Ξ1 and v0 be its match in Ξ0.
Consider the sequence of vertices v0, v1, v2, v3, · · · where v2 is v1’s match in Ξ0, v3 is v2’s match in
Ξ1, v4 is v3’s match in Ξ0, and so on; the matchings alternate as vertices are added. At some point
a repeated vertex vj = vi with j > i must appear in the sequence. We now argue that j 6= i + 2,
so vi, vi+1, . . . , vj−1 is the desired cycle. In fact, for every i ≥ 0, vi and vi+2 must be distinct. We
can prove this by induction on i: this is true when i = 0 by the assumption on v1, and given that
vi and vi+2 are distinct, their matches vi+1 and vi+3 must also be distinct.

Practice Final 4

1. Let G be a graph with 10 vertices and 9 edges. Is it true that G must be a tree? Justify your
answer.

Solution: No. For example, the graph G that consists of one cycle on 9 vertices and one isolated
vertex (two connected components) has 10 vertices and 9 edges but is not a tree.

2. Alice places two pebbles at the opposite corners of an 8 by 8 chessboard. At each step, she can

• put a new pebble in an empty square, if exactly one of its neighbors contains a pebble, or

• remove a pebble from a square, if at least one of its neighbors contains a pebble.

Neighbors are squares that share a common side. Can the board ever have a single pebble on it?

Solution: No. Let G be the graph whose vertices are the pebbles and edges are pebbles that are
neighbors. The predicate “G has at least two connected components” is an invariant of this state
machine. Initially G has two connected components so the invariant holds. We show that the
number of connected components cannot decrease after a transition. For the first type of move
it remains the same because the new pebble extends an existing component without affecting the
others. For the second type of move, the component that the removed pebble belongs to breaks
up into one or more components, while the other components are unaffected, so the number of
components cannot decrease. A board with a single pebble has one connected component so this
state can never be reached.

3. The set Sn consists of all length-n strings with symbols {A, B, C} in which every B is immediately
followed by a C (e.g., BCAC is in S4 but ACAB is not). Find the value of a for which |Sn| is Θ(an).

Solution: Let f(n) = |Sn|. The set Sn is the disjoint union of {A} × Sn−1, {C} × Sn−1 and
{BC} × Sn−2, so f satisfies the recurrence f(n) = 2f(n − 1) + f(n − 2) for all n ≥ 2. Solutions
of the form f(n) = an must therefore satisfy a2 − 2a − 1 = 0. There are two such solutions:
a1 = 1 +

√
2 and a2 = 1 −

√
2. The solution of the recurrence must then be of the form f(n) =

c1(1 +
√

2)n + c2(1 −
√

2)n, where c1 and c2 should be chosen to satisfy the initial conditions.
Regardless of the values of c1 and c2, f(n) is Θ((1 +

√
2)n), so a = 1 +

√
2.

4. What is the largest integer n for which

n ≤ 1 +
1√
2

+
1√
3

+ · · ·+ 1√
9999

?



7Solution: Let S denote the sum on the right. The area under the first 9999 rectangles is at least
as large as the area under the curve, so

S ≥
∫ 10000

1

dx√
x

= 2
√
x
∣∣10000
1

= 200− 2 = 198.

1 2 3 4 5
x

1/
√
x

If the area L under the light rectangles is removed from S then the dark rectangles fit under the
curve, so S−L ≤ 198. The light rectangles stack up to a rectangle of width 1 and height less than
1, so L < 1. Therefore 198 ≤ S < 199 and n = 198.

5. At a party, seven people check in their hats. In how many ways can they be returned so that
exactly one person receives their own hat? Show your calculations.

Solution: Let Ai be the set of permutations of hats in which person i receives their own hat and
none of the others do. We are interested in the size of A = A1 ∪ A2 ∪ · · · ∪ A7. Since the sets Ai

are disjoint, the size of this set is |A1|+ |A2|+ · · ·+ |A7|.
To calculate the size of Ai, ignore person i and their hat; what remains are permutations of the
others’ six hats in which no person gets their own hat back. By the sum rule, this number is 6!
minus the number of permutations in which at least one of six people gets their hat back. By the
calculation in Lecture 10,

|Ai| = 6!− 6!

(
1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!

)
=

6!

2!
− 6!

3!
+

6!

4!
− 6!

5!
+

6!

6!
= 265

so |A| = 7 · 265 = 1, 855.

6. Show that no matter how you place 17 pieces on an 8 by 8 chessboard, at least two pieces must
occupy squares that share a common side or a common corner.

Solution: Divide up the chessboard evenly into sixteen 2 × 2 blocks. Any two squares within
a block share a common side or a common corner. By the pigeonhole principle, some two pieces
must be placed in the same block, so they will share a common side or a common corner.

7. Suppose that all arrangements of n plus signs and n minus signs in a row are equally likely. Give
a formula for the probability that no two minus signs are adjacent to each other. Specify the
relevant sample space and event. Show your calculations.

Solution: The sample space S consists of all arrangements of n plus and n minus signs in a
line. We model signs of the same type as indistinguishable, so |S| =

(
2n
n

)
. The event E of interest

consists of those arrangements in which no minus signs are consecutive. The n minus signs must fall
in the n+ 1 gaps between plus signs (including the leading and final gap), so |E| =

(
n+1
n

)
= n+ 1.

By the formula for equally likely outcomes, Pr[E] = |E|/|S| = (n + 1)/
(
2n
n

)
.


