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In mathematics, the truth of propositions is established by means of a proof. If there is no proof,
then we do not regard the proposition as true, no matter how “obvious” it may look. Today we
will talk about what a proof is and how you may go about finding one.

The good news is that there are very clear and stringent rules about what qualifies as a mathematical
proof. Two economists may debate vigorously about economic truth: One could make a case that
raising taxes would improve the economy, while the other one might argue that lowering them
would have that effect. A prosecution lawyer might try to convince a jury that the accused broke
the law, while a defence lawyer would argue that he didn’t. In contrast, mathematicians do not
have unsettled debates about the truth of propositions. (Mathematicians do argue about all sorts
of things, it is just that the truth of propositions is not one of them.) If a proposition is claimed
to be true, it better come with a proof. Any mathematician with sufficient training in his or her
specialty ought to be able to verify the correctness of the claimed proof.

While verifying the correctness of a proof is a skill you can master with some effort and self-
discipline, creating proofs is a completely different story. Mathematics is full of propositions that
nobody knows how to prove. For some, like Goldbach’s conjecture, the search for a proof has been
going on for hundreds of years. In 1998 the Clay Mathematics Institute collected seven famous
propositions and offered a 1 million US Dollar prize for each proof. So far only one has been proven.
(The prize money was refused.)

Coming up with proofs is not completely dark magic. There are general guidelines for what kind of
strategy might help with what type of proposition. However, it is important to remember that —
unlike, say, the recipe you learn in school for calculating square roots — these are not guaranteed
to succeed.

1 What is a proof?

A proof of a proposition is a sequence of logical deductions from axioms and previously proved
propositions that concludes with the proposition in question.

Instead of trying to explain, in general, what axioms and logical deductions are, let us see an
example of a proof. Do not worry how someone came up with this proof. For now, let’s just
contemplate it.

First we need to state the proposition that we intend to prove. A proposition for which a (correct)
proof is given is called a theorem. Before we state our theorem, we need to define a few concepts
that will show up in it.

The theorem I have in mind is about friendships. Let’s call two people strangers if they are not
friends. A group of friends is a collection of people in which every two of them are friends, and a
group of strangers is a collection of people in which every two are strangers.

Theorem 1. Any group of 6 people includes a group of 3 friends or a group of 3
strangers.

Proof. Let a denote one of the six people. The proof is by case analysis. We consider
two cases:

1
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• Case 1: a is friends with at least 3 other people.

• Case 2: a is a stranger to at least 3 other people.

One of these two cases must hold: There are 5 people besides a, and these are divided
into friends of a and strangers to a. The bigger group has at least 3 people.

Now let’s discuss Case 1. Let’s give the group of people who are friends with a a name
– call it F . We consider two subcases:

• Subcase 1.1: At least two people within F are friends. Let’s call them b and c.
Then a, b, and c form a group of 3 friends.

• Subcase 1.2: No two people within F are friends. Take any three people in F .
They form a group of 3 strangers.

We conclude that the Theorem holds in Case 1.

We are left with Case 2. Let’s give the group of people who are strangers to a a name
– call it S. We consider two subcases:

• Subcase 2.1: At least two people within S are strangers. Let’s call them b and
c. Then a, b, and c form a group of 3 strangers.

• Subcase 2.2: No two people within S are strangers. Take any three people in S.
They form a group of 3 friends.

The theorem also holds in Case 2, and so it holds in all the cases.

Theorem 1 talks about collections of people and friendships among people. The axioms are true
propositions about collections and friendships that we view as self evident. For example, one axiom
about friendships is

Axiom 1. For any two people x and y, if x and y are friends, then y and x are also friends.

Axioms about groups of people might say things like

Axiom 2. For all groups X and Y , if Y has more people then X, then there exists a person in Y
that is not in X.

Axiom 3. For all groups X and Y ,

(number of people in X or Y ) ≤ (number of people in X) + (number of people in Y ).

Let us now look at the proof. The first sentence says “Let a denote one of these six people”. Who
is this a? it is some fixed person – could be Alice, could be Bob – someone among the six people
under consideration. How do we know that this a exists? Well, clearly we have six people so we
can take one of them. Indeed, this follows from one of our axioms. Can you tell which one?

The second sentence says “The proof is by case analysis.” Case analysis is a logical deduction rule.
It says that we can prove a proposition P like this: Split all logical possiblities into two cases C1

and C2, prove that C1 and C2 cover all possibilities, prove that C1 implies P , and prove that C2

implies P .

C1 or C2 C1 −→ P C2 −→ P

P
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It should be clear that this deduction rule is sound – it only proves true statements – but if in
doubt you can always write out a truth table. Let’s do it just this once. Here, ? is shorthand for
(C1 or C2) and (C1 −→ P ) and (C2 −→ P ).

P C1 C2 ? ? −→ P

T T T T T
T T F T T
T F T T T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Next, the proof has to tell us what the two cases (C1 and C2) are. Here, C1 is the predicate “a is
friends with at least 3 people” and C2 is the predicate “a is strangers to at least 3 people.”

Now, we expect to be given proofs of the predicates C1 or C2 (the cases cover all possibilities),
C1 −→ P (the theorem holds in case 1) and C2 −→ P (the theorem holds in case 2). By the case
analysis deduction rule, once we validate these proofs we’ll be sure that Theorem 1 is true.

Let’s start with C1 or C2. This says “a is friends with 3 people, or a is strangers with 3 people”.
The next sentence explains why this must be true: Among the friends of a and the strangers of a
there are at least 5 people, so the bigger of the two groups must contain at least 5/2 = 2.5 people.
As 2.5 is not an integer, there must be at least 3 people in this group.

This appears like a sensible argument – but how does it, exactly, follow from our axioms? We will
see so shortly. For now let us “package” this proposition C1 or C2 as a lemma and give its proof
later, which we must:

Lemma 2. In every group of six people, and every person a within that group, a is
friends with at least three people or a is strangers to at least three people.

A lemma is just like a theorem – a proposition with a proof. Usually, the theorems are the ones
we are really interested in, and lemmas are intermediate propositions that are used in the proofs
of theorems or of other lemmas.

Chugging along, now comes the proof of the theorem in Case 1. For this part, we can assume C1:
a is friends of at least 3 people. You can think of it as another axiom, but just for this part of
the proof. We divide C1 into two subcases: Those 3 contain a pair of friends (C11), or they are all
strangers to one another (C12). Clearly, C11 or C12 always holds. Next, we see that C11 implies
the theorem (analysis of Subcase 2.1) and C12 implies the theorem (anaysis of Subcase 2.2). So the
theorem holds in all subcases of Case 1.

The last part of the proof is structurally similar: By the same type of reasoning, the theorem is
shown to hold in all subcases of Case 2. A mathematics book may omit this part altogether and
say “Case 2 is proved analogously to Case 1”. Before you become practiced at proofs, I suggest
that you refrain from doing this and work out all the cases in detail.

Before we embark on the challenging task of discovering proofs, let us have one final word about
axioms. What, exactly, are we allowed to assume as an axiom or as a previously proved proposition
when we prove a theorem? For us, this will consist of the “common sense” facts you have learned in
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school, as well as propositions we have previously proved in class. For example, if you are asked to
prove a theorem in your homework, it is okay to use Theorem 1 as a previously proved statement.

In the beginning of the 20th century logicians spent considerable effort trying to agree on a small
collection of axioms that ought to be enough to prove all known mathematics. One of the proposals
are the so-called ZFC axioms of set theory; you can read about them in the textbook. In principle,
you can define any mathematical object as a set of some kind and then write any proof relying on
just these nine axioms. In practice, deriving a proposition as simple as ∀n : n+ n = 2× n from the
ZFC axioms may take many pages of proof and explanation, so we won’t be doing that.

2 How to prove it

Let’s start by proving a simple theorem:

Theorem 3. The sum of two even integers is even.

How do we go about proving such a theorem? First, let us unwind this statement in terms of
quantifiers:

For all integers m and n, if m is even and n is even, then m + n is even.

This is a universally quantified proposition about two integers, which we call m and n. We need
to show that following implication:

(m is even) and (n is even) −→ (m + n is even).

Let’s assume that m is even and n is even. This means there exist integers a and b such that
m = 2a and n = 2b. But then m + n = 2a + 2b = 2(a + b), so m + n is also twice an integer, and
therefore even.

This is a common method for proving a statement of the form “If P then Q”. We assume P , do a
bit of reasoning, see what consequences we get, and eventually hope to end up with Q.

Once you figured out the reasoning, here is how you may write this proof:

Proof of Theorem 3. Let us call the two integers m and n. Assume m is even and n is even. Then
there exist integers a and b such that m = 2a and n = 2b. It follows that m + n = 2a + 2b =
2(a + b) = 2c, where c = a + b. Therefore m is also even.

Let’s do another one:

Theorem 4. The product of two odd integers is odd.

We follow the same pattern.

Proof. Call the integers m and n. Since m and n are both odd, we can write m = 2a + 1 and
n = 2b + 1 for some integers a and b. Then

mn = (2a + 1)(2b + 1) = (2a)(2b) + 2a + 2b + 1 = 2(2ab + a + b) + 1 = 2c + 1

where c = 2ab + a + b. It follows that mn is also odd.
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In these examples, the path to the proof was clear; we just need to move along (and avoid making
mistakes in the process). Other times we need to do some “scratch work,” that is reasoning which
won’t make it into the proof but helps us figure things out. Here is one such example:

Theorem 5. The square of an odd number is of the form 8k + 1 for some integer k.

Let’s call our number n. Since n is odd, we can write n = 2t + 1 for some integer t. Then

n2 = (2t + 1)2 = 4t2 + 4t + 1.

Why should this be of the form 8k + 1? We want to show that given t, we can always find a k such
that

4t2 + 4t + 1 = 8k + 1

which we can simplify to t2 + t = 2k. Namely, we are now left to show that t2 + t is always even.
To make sure we are on the right track, we can try some examples: 12 + 1 = 2, 22 + 2 = 4 + 2 = 6,
32 + 3 = 9 + 3 = 12, all even.

It seems there are two cases: t is even, in which case so is t2 and also t2 + t, or t is odd, in which
case so is t2, and so t2 + t is also even. This covers all possibilities. We now need to summarize
them nicely into a proof.

Before we do so, let’s revisit the last step and see if there is an easier way to explain why t2 + t is
always even. If we factor this expression, we get t2 + t = t(t + 1). Now if t is even, so is t(t + 1),
and if t is odd, then t + 1 is even and so is t(t + 1). This simplifies our case analysis a bit.

Proof of Theorem 5. Assume n is odd, so we can write n = 2t + 1 for some integer t. Then

n2 = (2t + 1)2 = 4t2 + 4t + 1 = 4t(t + 1) + 1

We now prove the theorem by case analysis.

• Case 1: t is even. Then we can write t = 2r for some r and 4t(t+1)+1 = 8r(t+1)+1 = 8k+1
for k = r(t + 1).

• Case 2: t is odd. Then t+ 1 = 2r for some r and 4t(t+ 1) + 1 = 8tr + 1 = 8k + 1 for k = tr.

The two cases cover all possibilities and the claim holds in each case.

Here is another one where some scratch work of a different sort is helpful:

Theorem 6. If x is a real number with 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0.

This is a universally quantified proposition and there are infinitely many x to consider, so we need
to be a bit clever here. Fortunately, we live in an age of computers so we start by plotting the
graph of f(x) = −x3 + 4x + 1:

x

f(x)
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This picture is not a proof; we must derive the theorem by logical deduction. So where do we start?

From the picture we can see that in the range of interest 0 ≤ x ≤ 2, f(x) is not only greater than
zero, but always exceeds 1, namely

If 0 ≤ x ≤ 2, then −x3 + 4x + 1 ≥ 1.

The predicate −x3 + 4x+ 1 ≥ 1 is the same as −x3 + 4x ≥ 0. But now we can factor the left hand
side as

−x3 + 4x = x(4− x2) = x(2− x)(2 + x).

When x is between 0 and 2, all of the terms x, 2− x, 2 + x are nonnegative, and so must be their
product. There!

We are not finished yet – we must now summarize our conclusions neatly into a proof with clear
logical deductions.

Proof of Theorem 6. Assume x is a real number such that 0 ≤ x ≤ 2. Then all of the numbers x,
2− x, and 2 + x must be nonnegative. It follows that x(2− x)(2 + x) ≥ 0. Multiplying out the left
hand side, we obtain −x3 + 4x ≥ 0. Therefore −x3 + 4x + 1 ≥ 1 > 0, as claimed.

3 Some proof patterns

The contrapositive

The contrapositive of a proposition of the form P −→ Q is the proposition (not Q) −→ (not P ).
The two are logically equivalent. You can draw your own truth table to verify this.

A number r is rational if we can write r = n/d where both n and d are integers, e.g. 1/2, 3/2,
5/17, 8/16. A number is irrational if it is not rational.

Theorem 7. Assume r ≥ 0. If r is irrational, then
√
r is irrational.

Let us try to prove this theorem. We assume r is irrational. So r cannot be written as a fraction
n/d for any integers n and d. Where do we go from here? An assumption like this doesn’t tell us
much about

√
r, so it is not clear how to reach any conclusion about it. Instead, let us try the

contrapositive:

Assume r ≥ 0. If
√
r is rational, then r is rational.

This is now much easier to prove.

Proof of Theorem 7. We prove the contrapositive. Assume r ≥ 0 and
√
r is rational. Then we can

write
√
r = n/d for some integers n and d. It follows that r = n2/d2, and so r is also rational.

Proving equivalences

A common way to prove a proposition of the form P iff Q, that is, an equivalence, is to prove
separately that P implies Q and that Q implies P :
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P −→ Q Q −→ P

P iff Q

Here is an example.

Theorem 8. For every integer n, n2 is even if and only if n is even.

Proof. First, we prove that if n is even then n2 is even. If n is even, we can write n = 2k for some
integer k, so n2 = 4k2 = 2(2k2), which is also even.

Now, we prove that if n2 is even then n is even. We prove the contrapositive: If n is odd, then n2

must also be odd. In Theorem 5 we showed that if n is odd then n2 is of the form 8k+1 = 2(4k)+1,
which is an odd number.

Proof by contradiction

Say you want to prove a proposition P . In a proof by contradiction, you start by assuming P is
false, and then you deduce that this assumption applies a falsehood. So P must have been true:

(not P ) −→ F

P

We will now prove Lemma 2 using this method. Recall what the lemma says:

In every group of six people, and every person a within that group, a is friends with at
least three people or a is strangers to at least three people.

In the proof, we will assume the negation of this proposition holds, and then show by logical
deduction that a falsehood must follow.

Proof of Lemma 2. Assume, for contradiction, that there exists a group of six people and a person
a within that group such that a is friends with at most two people and a is strangers with at most
two people. Then the number of people in the group that are friends with a or strangers to a is
at most four (by Axiom 3). These comprise all people in the group apart from a. Therefore the
group has at most five people. This contradicts our assumption that the group has six people.

Here is a famous example:

Theorem 9.
√

2 is irrational.

This is a universally quantified statement: For all n and d, we cannot write
√

2 as n/d. You could
try different choices of n and d and see for yourself that they don’t work. Where to go from here?

Proof. Assume, for contradiction, that
√

2 is rational. Then we can write
√

2 = n/d where n and
d are integers. Furthermore, let’s take n and d so that they have no common factor greater than
1, so the fraction is written in lowest terms.

Squaring both sides, we obtain 2 = n2/d2 and so n2 = 2d2. So n2 is even. Then n must also be
even (by Theorem 8), and so n2 is a multiple of 4. Because 2d2 = n2, d2 must be even, so d is also
even.

We conclude that both n and d are even. But we assumed that they have no common factor greater
than 1. This contradicts our assumption that

√
2 is rational.
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Proofs by contradiction can be confusing because you begin by assuming a statement that is, in
fact, false. So some of the claims you will be making inside the proof will also be false. You need
to keep in mind at all times that you are operating under a false assumption, and intermediate
claims, like “d is even”, are only true within that context. Because of this confusion, I generally
recommend proofs by contradiction only as a last resort, when all your other attempts at a proof
have failed.

In some cases, a proof by contradiction can be rewritten as a proof by contrapositive. Lemma 2 is
one such example. Can you prove this lemma using the contrapositive?

Experiment and don’t give up easily!

When you start out trying to prove a theorem, you rarely know what is the right method ahead
of time. So play around, experiment, backtrack, and don’t be afraid. The “correct” approach will
often reveal itself after a few trials and errors.

Theorem 10. There exist irrational numbers a and b such that ab is rational.

Where do we start? Let’s try some examples. Well, the only number we know for sure is irrational

is
√

2, so let’s try setting a =
√

2 and b =
√

2. Is
√

2
√
2

rational or irrational? It looks pretty
irrational to me, so it doesn’t seem that this should work out.1

Ah, but if
√

2
√
2

is irrational, then we have one more irrational number to play with. So why don’t

we try a =
√

2
√
2

and b =
√

2
√
2
. Then

ab =
(√

2

√
2
)√2√2

=
√

2

√
2·(
√
2)

√
2

=
√

2

√
2
√
2+1

What a mess! Let’s backtrack and try instead a =
√

2
√
2

and b =
√

2. Then

ab =
(√

2

√
2
)√2

=
√

2
(
√
2)2

=
√

2
2

= 2

which is a rational number! Let’s summarize this reasoning into a proof.

Proof. The proof is by case analysis.

Case 1:
√

2
√
2

is rational. In this case, the theorem is true for a =
√

2 and b =
√

2.

Case 2:
√

2
√
2

is irrational. In this case, the theorem is true for a =
√

2
√
2

and b =
√

2 because
ab = 2.

This type of proof is sometimes called a win-win argument. It doesn’t matter if
√

2
√
2

is rational
or not. In either case you win. You may not always get this lucky, but it doesn’t hurt to try.

4 How to write and present a proof

For this class, it is not enough that you know how to come up with proofs. You must also write
and present them properly. Writing a proof is not easy. On the one hand the proof must be clear

1This part of the argument is not conclusive: “It looks pretty irrational” doesn’t make a number irrational.
Perhaps we’ll come back to it later, but we might as well try something easier first.
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and precise. On the other hand, it should be easy to read and understand (by humans, not by
machines). For general advice on how to write proofs, see Section 1.9 in your textbook.

Presenting a proof to others is also challenging. Your listeners may not be familiar with the
notation. Steps in the proof that are obvious to you may take longer for others to grasp. So start
from the beginning and go slowly; do not introduce too many new concepts at once; give examples
along the way; and encourage questions from your audience.

5 Truth and proof*

Mathematical proofs are guaranteed to be sound: If you start with a set of axioms and rigorously
follow the deduction rules, any proposition you derive must be true. In other words, everything
that is provable is true. How about the converse: Do all true propositions have proofs?

This sounds like a trick question so let’s try to unwrap its meaning. What it says is that for every
proposition P , if P is true than P has a proof. The meaning of “P has a proof” should be clear:
This means we can derive P from our axioms after some sequence of deductions. But what does
“P is true” really mean?

Before we answer this question let’s do an exercise. Suppose we want to figure out things about
integers and we start with the following axioms:

∀x : x + 0 = x (A1)

∀x∃y : x + y = 0 (A2)

∀x, y : x + y = y + x (A3)

∀x, y, z : (x + y) + z = x + (y + z) (A4)

Clearly these axioms hold true for the integers. Now I want to prove that

∀x : x + x = 0 −→ x = 0. (P)

Although proposition (P) is true, it can never be proved from axioms (A1-A4). The reason is that
there is a world (logicians call this a model) in which axioms (A1-A4) are true, but proposition (P)
is false. This is the world Z2 consisting of the elements 0 and 1 in which addition is specified by
the formulas

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0.

Any proposition we prove from axioms (A1-A4) must be true not only for the integers, but also for
Z2, so in particular proposition (P) cannot be proved from axioms (A1-A4).

In this case, it is easy to explain what went wrong: Although axioms (A1-A4) are certainly true
about the integers, they do not specify the integers completely – because they also describe, for
instance, Z2. The issue here is not the logic, but the axioms: We need more of them in order to
“pin down” the integers.

More generally, suppose we start with some collection of axioms A. When can we hope to prove a
given proposition P? At a minimum, we should ensure that P is true in every world in which the
axioms A are all satisfied. Let’s take, for example, the proposition

∀x, z, w : z + x = w + x −→ z = w.

This one is true for both the integers and Z2, so (based on our experience so far) we may hope that
it can be proved from axioms (A1-A4). Indeed, here is the proof: Starting with the assumption

z + x = w + x
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we get that for every y
(z + x) + y = (w + x) + y

which, applying (A4) on both sides, can be rewritten as

z + (x + y) = w + (x + y).

Now choosing y as in axiom (A2) we get that x + y = 0 and so

z + 0 = w + 0

from where, after applying axiom (A1) on both sides we obtain the desired conclusion

z = w.

This example illustrates a general phenomenon called completeness: If a proposition P is true in
every world in which the axioms A are also true, then P is provable from A.

To be precise, completeness says that P is provable from A together with a fixed collection of self-
evident logical axioms by applying one of a few specific deduction rules. One collection of logical
axioms and deduction rules for which completeness holds is the Hilbert System. This system
includes infinitely many logical axioms, but has only one deduction rule called Modus Ponens:

P P −→ Q

Q
. (1)

Writing proofs in Hilbert System format is not particularly natural for humans, but can always be
done in principle.

This sounds like very good news: As long as we start with a collection of axioms that accurately
describe the world we have in mind, we can in principle prove everything from them (as long as it is
true). For example, if we want to determine the truth of propositions about numbers (non-negative
integers) that involve the symbols 0, 1, and +, then the axioms of Presburger arithmetic suffice.

Automated theorem proving To a student of mathematics like you, proving theorems is a
creative, challenging, and (I hope) enjoyable activity. In principle, however, theorem proving can
be done in a purely methodical way that requires no creativity whatsoever. Suppose you want to
know if some proposition X about numbers is true or not. Take all pairs of axioms (the Presburger
arithmetic axioms plus the Hilbert System logical axioms) of the form P and P −→ Q and apply
the deduction rule (1) to derive some theorems Q. Now take all pairs of axioms and theorems
you have obtained so far and repeat the process. By completeness, every true proposition will
eventually show up among your list of theorems. In particular, one of the propositions X (if it
happens to be true) or not X (otherwise) will show up at some point.2

So if you want to prove theorems, all you have to do is write a computer program that takes as its
input the axioms and the proposition under investigation and performs all of the above calculations.
Why do we bother with all the wishy-washy proof strategies like the ones in these lecture notes
and not simply prove all theorems in this automated manner? Not only would automation save us
a huge amount of effort, but it would also eliminate the pesky mistakes that, every once in a while,
make us come up with incorrect proofs.

You may guess that automated theorem proving of the type I described doesn’t work so well in
practice because it is way too slow. Suppose I wanted to prove a theorem (about numbers) like

∃x, y : x = y + 1 and x + x = y + y + y + 1.

2The method I described is not quite correct because the number of axioms is infinite, so the first round of
theorem-proving will take forever. It can be modified to eliminate this “bug”. Can you figure out how?

https://en.wikipedia.org/wiki/Hilbert_system
https://en.wikipedia.org/wiki/Presburger_arithmetic
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This one is pretty easy for a human to figure out. The computer, on the other hand, will keep
spitting out theorems until, eventually, this particular one appears on the list. There is no way
to know how long this is going to take, and for “random” theorems like this one you should be
prepared to wait for a very very long time.

The theorem prover I described is particularly stupid in the sense that it doesn’t try to mimic
human reasoning at all, so theorems that may be of interest to humans will be lost in a sea of
computer-generated junk. This has partly to do with the choice of axioms, the choice of deduction
rules, and the order in which they are applied. The field of automated theorem proving is concerned
with the design, implementation, and application of such systems. Some of these are completely
automated, while others are interactive; when they get stuck, they ask the user to provide a hint.

Incompleteness There is another, much more surprising (although maybe less relevant in prac-
tice) obstacle to automated theorem proving that has nothing to do with the efficiency of such
procedures. To explain the notion of incompleteness, we first need to broaden our horizons a bit.

Talking about addition of integers gets pretty boring pretty fast. Once multiplication enters the
picture the propositions become much more exciting. Multiplication allows us to talk about things
like prime numbers and formulate very difficult problems like Goldbach’s conjecture.

But what is the big deal about multiplication? In second grade you learned that multiplying m
and n is the same as adding n to itself m times:

m× n = n + n + · · ·+ n︸ ︷︷ ︸
m times

What about a proposition like “A number is even only if its square is even”? Well, this says

∀m : (∃n : m + m + · · ·+ m︸ ︷︷ ︸
m times

= n + n) −→ (∃k : m = k + k)

The · · · look a bit fishy, and indeed they are. It turns out that it is impossible to define multipli-
cation using only the symbols 0, 1, and + and the notation of quantifier logic.

In order to prove theorems about numbers that involve addition and multiplication, we need more
axioms. One collection of axioms that was proposed after some careful thought are the axioms of
Peano arithmetic. You can rewrite proofs of propositions like “If n2 is even then n is even” into
Peano arithmetic without terrible effort.

In 1931 Kurt Gödel produced a proposition about numbers (with 0, 1, +, and ×) that is true, but
cannot be proved from the axioms of Peano arithmetic. Knowing what we know, it seems reasonable
to conclude that the problem should lie with the axioms, as they probably do not describe numbers
sufficiently accurately, but maybe also some other unintended structure like Z2. This is not the
case. Gödel actually proved something much more surprising that has nothing to do with the
specific content of the Peano axioms:

Gödel’s Incompleteness Theorem. For every collection of reasonable3 axioms A about numbers
(with 0, 1, +, and ×) that are true there exists a proposition P about numbers that is true, but is
not provable from A.

So an automatic search for a proof of, say, Goldbach’s conjecture may well be doomed from the
start: We can never be sure that the Peano axioms, or any other “self-evident” set of axioms we

3“Reasonable” is a technical term that prevents cheating by say, taking all propositions that are true about
numbers as axioms. It means there exists a computer program that prints a possibly infinite list of all the axioms.

https://en.wikipedia.org/wiki/Automated_theorem_proving
https://en.wikipedia.org/wiki/Peano_axioms
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start with, is sufficient to prove it. (Most working mathematicians believe that, in this particular
case, the Peano axioms should be sufficient.)

Gödel’s incompleteness theorem is one of the most surprising theorems in all of mathematics.
What is even more surprising is that even though this theorem talks about propositions concerning
integers, it is fundamentally related to computer programs. Let me explain how. Take a good look
at the following java program:

public class X {public static void main(String[] args){int[][] t = new int[][]{{2

02,1026,1100,396,324,1080,192,609,555,888,72,432},{3,9,8,5},{2,2,5,9},{4,6,1,9,2,

11},{4,6,1,9,3,2,11,7,0,5,10},{2,1,5,9},{1,9,2,5},{0,2,10,5,1,6,3,11,8,4},{10,4,2

,6},{1,10,2,3,5,9,7,4,11,6},{7,0,3,6},{2,9,10,1},{7,1,10,6},{12,0,-0}};do{while(t

[13][1]+1<t[t[13][0]].length){t[13][2]=t[0][t[t[13][0]][t[13][1]]];t[0][t[t[13][0

]][t[13][1]]]=t[0][t[t[13][0]][++t[13][1]]];t[0][t[t[13][0]][t[13][1]++]]=t[13][2

];}}while(!(--t[13][0]<=(int)Math.sin(Math.PI))&&((t[13][1]=0)<1));while(t[4][2]<

=t[9][5]+3)System.out.print((char)(t[0][t[4][2]-1]/t[4][2]++));}}

What does program X do? It is very difficult to tell just by looking at the code. You could try to
type it up in your machine and run it. You run it for 1 hour, 2 hours, 10 days, it does nothing...
will it eventually output something and terminate or is it stuck in an infinite loop? So maybe
you write some computer code that tries do some automated program analysis and determine if
program X will eventually terminate. In the most famous paper in computer science ever written,
Alan Turing showed that your analysis tool will, in general, not be of much help:

Turing’s Theorem. There does not exist a computer program T such that (1) T terminates on
every input and (2) when given the code of a computer program X as input, T outputs “yes” if X
eventually terminates and “no” otherwise.

Gödel’s Incompleteness Theorem is, in fact, a special case of Turing’s Theorem. How so? Well,
for every computer program X, the proposition “X eventually terminates” is either true or false.
So our automated theorem prover should eventually tell us which is the case. But which axioms
should we feed to it to get its reasoning started? It looks like we need some axioms that describe
the logic of computer programs. What are they?

This is a trick question. We already saw the axioms of computer programs. They are the same
as the axioms of Peano arithmetic. But how can this be? The Peano axioms are about numbers,
not about programs. It turns out that a computer program is a number in disguise. After all, a
computer’s memory is nothing more than a long string of bits, and what a computer program does
is merely some fancy copy-paste operations on such strings. So any proposition about computer
programs is essentially a proposition about strings with operations like bit lookup, copying, and
pasting. In Question 6 of Homework 1 you saw how propositions about strings can be formulated as
propositions about numbers.4 In fact, every proposition about computer programs can be expressed
as a proposition about numbers.

Now consider the following implementation of Turing’s program T : On input X, translate the
statement “X eventually terminates” into a proposition PX about numbers and run the automatic
theorem prover on this proposition, starting with your favorite axioms about numbers. If the prover
finds a proof of PX output “yes”. If it finds a proof of not PX output “no”.

There are two possibilities. If a proof of PX or a proof of not PX exists for every program X, then
the automatic theorem prover will eventually find this proof and T will correctly determine if X

4In that exercise, besides 0, 1, + and × we also used the exponentiation symbol E, but it turns out the last one
is not really needed.
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terminates or not. But this is not allowed by Turing’s theorem. Therefore the second possibility
must hold: There must exist a program X for which neither of the propositions PX and not PX

has a proof. One of these two must be true but not provable from the axioms, confirming Gödel’s
Incompleteness Theorem.
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