“mecs” — 2016/6/16 — 11:14 — page i — #1

Mathematics for Computer Science
revised Thursday 16" June, 2016, 11:14

Eric Lehman
Google Inc.

F Thomson Leighton
Department of Mathematics
and the Computer Science and Al Laboratory,
Massachussetts Institute of Technology;
Akamai Technologies

Albert R Meyer

Department of Electrical Engineering and Computer Science
and the Computer Science and Al Laboratory,
Massachussetts Institute of Technology

2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the

terms of the Creative Commons Attribution-ShareAlike 3.0 license.

http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/

“mecs” — 2016/6/16 — 11:14 — page ii — #2

“mecs” — 2016/6/16 — 11:14 — page iii — #3

Contents

I Proofs

Introduction 3
0.1 References 4
1 Whatis a Proof? 5

1.1 Propositions 5

1.2 Predicates 8

1.3 The Axiomatic Method 8

1.4 Our Axioms 9

1.5 Proving an Implication 11

1.6 Proving an “If and Only If” 13
1.7 Proof by Cases 15

1.8 Proof by Contradiction 16

1.9 Good Proofs in Practice 17
1.10 References 19

2 The Well Ordering Principle 29

2.1 Well Ordering Proofs 29

2.2 Template for Well Ordering Proofs 30
2.3 Factoring into Primes 32

24 Well Ordered Sets 33

3 Logical Formulas 47

3.1 Propositions from Propositions 48
3.2 Propositional Logic in Computer Programs 51
3.3 Equivalence and Validity = 54
3.4 The Algebra of Propositions 56
3.5 The SAT Problem 61
3.6 Predicate Formulas 62
3.7 References 67
4 Mathematical Data Types 93
4.1 Sets 93
42 Sequences 98
4.3 Functions 99
4.4 Binary Relations 101
4.5 Finite Cardinality 105

“mcs” — 2016/6/16 — 11:14 — page iv — #4

v Contents

Induction 125

5.1 Ordinary Induction 125
5.2 Strong Induction 134
5.3 Strong Induction vs. Induction vs. Well Ordering 139

State Machines 157

6.1 States and Transitions 157

6.2 The Invariant Principle 158

6.3 Partial Correctness & Termination 166
6.4 The Stable Marriage Problem 171

Recursive Data Types 199

7.1 Recursive Definitions and Structural Induction 199
7.2 Strings of Matched Brackets 203

7.3 Recursive Functions on Nonnegative Integers 207
7.4 Arithmetic Expressions 210

7.5 Induction in Computer Science 215

Infinite Sets 243

8.1 Infinite Cardinality 244

8.2 The Halting Problem 253

8.3 The Logic of Sets 257

8.4 Does All This Really Work? 260

Il Structures

Introduction 285

9

Number Theory 287

9.1 Divisibility 287

9.2 The Greatest Common Divisor 292

9.3 Prime Mysteries 298

9.4 The Fundamental Theorem of Arithmetic 300
9.5 Alan Turing 304

9.6 Modular Arithmetic 308

9.7 Remainder Arithmetic 310

9.8 Turing’s Code (Version 2.0) 313

9.9 Multiplicative Inverses and Cancelling 315
9.10 Euler’s Theorem 319

9.11 RSA Public Key Encryption 324

9.12 What has SAT got to do with it? 326

“mecs” — 2016/6/16 — 11:14 — page v — #5

Contents

9.13 References 327
10 Directed graphs & Partial Orders 365

10.1 Vertex Degrees 367

10.2 Walks and Paths 368

10.3 Adjacency Matrices 371

10.4 Walk Relations 374

10.5 Directed Acyclic Graphs & Scheduling 375
10.6 Partial Orders 383

10.7 Representing Partial Orders by Set Containment 387
10.8 Linear Orders 388

10.9 Product Orders 388

10.10 Equivalence Relations 389

10.11 Summary of Relational Properties 391

11 Communication Networks 425

11.1 Complete Binary Tree 425
11.2 Routing Problems 425
11.3 Network Diameter 426
11.4 Switch Count 427

11.5 Network Latency 428

11.6 Congestion 428

11.7 2-D Array 429

11.8 Butterfly 431

11.9 BeneS§ Network 433

12 Simple Graphs 445

12.1 Vertex Adjacency and Degrees 445
12.2 Sexual Demographics in America 447
12.3 Some Common Graphs 449

12.4 Isomorphism 451

12.5 Bipartite Graphs & Matchings 453
12.6 Coloring 458

12.7 Simple Walks 463

12.8 Connectivity 465

12.9 Forests & Trees 470

12.10 References 478

13 Planar Graphs 517

13.1 Drawing Graphs in the Plane 517
13.2 Definitions of Planar Graphs 517
13.3 Euler’s Formula 528

“mecs” — 2016/6/16 — 11:14 — page vi — #6

Vi Contents

13.4 Bounding the Number of Edges in a Planar Graph 529
13.5 Returning to K5 and K33 530

13.6 Coloring Planar Graphs 531

13.7 Classifying Polyhedra 533

13.8 Another Characterization for Planar Graphs 536

IIT Counting
Introduction 3545

14 Sums and Asymptotics 547

14.1 The Value of an Annuity 548
14.2 Sums of Powers 554

14.3 Approximating Sums 556

14.4 Hanging Out Over the Edge 560
14.5 Products 566

14.6 Double Trouble 569

14.7 Asymptotic Notation 572

15 Cardinality Rules 597

15.1 Counting One Thing by Counting Another 597
15.2 Counting Sequences 598
15.3 The Generalized Product Rule 601
15.4 The Division Rule 605
15.5 Counting Subsets 608
15.6 Sequences with Repetitions 610
15.7 Counting Practice: Poker Hands 613
15.8 The Pigeonhole Principle 618
15.9 Inclusion-Exclusion 627
15.10 Combinatorial Proofs 633
15.11 References 637
16 Generating Functions 675
16.1 Infinite Series 675
16.2 Counting with Generating Functions 677
16.3 Partial Fractions 683
16.4 Solving Linear Recurrences 686
16.5 Formal Power Series 691
16.6 References 694

“mecs” — 2016/6/16 — 11:14 — page vii — #7

vii Contents

IV Probability
Introduction 711

17 Events and Probability Spaces 713

17.1 Let’s Make a Deal 713

17.2 The Four Step Method 714
17.3 Strange Dice 723

17.4 The Birthday Principle 730
17.5 Set Theory and Probability 732
17.6 References 736

18 Conditional Probability 743

18.1 Monty Hall Confusion 743

18.2 Definition and Notation 744

18.3 The Four-Step Method for Conditional Probability 746
18.4 Why Tree Diagrams Work 748

18.5 The Law of Total Probability 756

18.6 Simpson’s Paradox 758

18.7 Independence 760

18.8 Mutual Independence 762

18.9 Probability versus Confidence 766

19 Random Variables 795

19.1 Random Variable Examples 795
19.2 Independence 797

19.3 Distribution Functions 798

19.4 Great Expectations 807

19.5 Linearity of Expectation 818

20 Deviation from the Mean 849

20.1 Markov’s Theorem 849

20.2 Chebyshev’s Theorem 852

20.3 Properties of Variance 856

20.4 Estimation by Random Sampling 862
20.5 Confidence in an Estimation 865
20.6 Sums of Random Variables 867

20.7 Really Great Expectations 876

21 Random Walks 903
21.1 Gambler’s Ruin 903

“mecs” — 2016/6/16 — 11:14 — page viii — #8

viii Contents

21.2 Random Walks on Graphs 913

V Recurrences
Introduction 931

22 Recurrences 933

22.1 The Towers of Hanoi 933

22.2 Merge Sort 936

22.3 Linear Recurrences 940

22.4 Divide-and-Conquer Recurrences 947
22.5 A Feel for Recurrences 954

Bibliography 961
Bibliography 961
Glossary of Symbols 965
Index 968

“mecs” — 2016/6/16 — 11:14 — page 1 — #9

I Proofs

“mecs” — 2016/6/16 — 11:14 — page 2 — #10

“mecs” — 2016/6/16 — 11:14 — page 3 — #11

Introduction

This text explains how to use mathematical models and methods to analyze prob-
lems that arise in computer science. Proofs play a central role in this work because
the authors share a belief with most mathematicians that proofs are essential for
genuine understanding. Proofs also play a growing role in computer science; they
are used to certify that software and hardware will always behave correctly, some-
thing that no amount of testing can do.

Simply put, a proof is a method of establishing truth. Like beauty, “truth” some-
times depends on the eye of the beholder, and it should not be surprising that what
constitutes a proof differs among fields. For example, in the judicial system, legal
truth is decided by a jury based on the allowable evidence presented at trial. In the
business world, authoritative truth is specified by a trusted person or organization,
or maybe just your boss. In fields such as physics or biology, scientific truth is
confirmed by experiment.' In statistics, probable truth is established by statistical
analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based
on a series of small, plausible arguments. The best example begins with “Cogito
ergo sum,” a Latin sentence that translates as “I think, therefore I am.” This phrase
comes from the beginning of a 17th century essay by the mathematician/philosopher,
René Descartes, and it is one of the most famous quotes in the world: do a web
search for it, and you will be flooded with hits.

Deducing your existence from the fact that you’re thinking about your existence
is a pretty cool and persuasive-sounding idea. However, with just a few more lines

! Actually, only scientific falsehood can be demonstrated by an experiment—when the experiment
fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t
fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past,
and anticipated future, experiments.

“mecs” — 2016/6/16 — 11:14 — page 4 — #12

0.1. References

of argument in this vein, Descartes goes on to conclude that there is an infinitely

beneficent God. Whether or not you believe in an infinitely beneficent God, you’ll

probably agree that any very short “proof” of God’s infinite beneficence is bound

to be far-fetched. So even in masterful hands, this approach is not reliable.
Mathematics has its own specific notion of “proof.”

Definition. A mathematical proof of a proposition is a chain of logical deductions
leading to the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical deduc-
tion, and axiom. Chapter 1 examines these three ideas along with some basic ways
of organizing proofs. Chapter 2 introduces the Well Ordering Principle, a basic
method of proof; later, Chapter 5 introduces the closely related proof method of
induction.

If you’re going to prove a proposition, you’d better have a precise understand-
ing of what the proposition means. To avoid ambiguity and uncertain definitions
in ordinary language, mathematicians use language very precisely, and they often
express propositions using logical formulas; these are the subject of Chapter 3.

The first three Chapters assume the reader is familiar with a few mathematical
concepts like sets and functions. Chapters 4 and 8 offer a more careful look at
such mathematical data types, examining in particular properties and methods for
proving things about infinite sets. Chapter 7 goes on to examine recursively defined
data types.

0.1 References

[11], [45], [1]

http://www.btinternet.com/~glynhughes/squashed/descartes.htm

“mecs” — 2016/6/16 — 11:14 — page 5 — #13

1 What is a Proof?

1.1 Propositions

Definition. A proposition is a statement (communication) that is either true or
false.

For example, both of the following statements are propositions. The first is true,
and the second is false.

Proposition 1.1.1. 2 + 3 = 5.
Proposition 1.1.2. 7/ + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude
statements such as “Wherefore art thou Romeo?” and “Give me an A!” It also ex-
cludes statements whose truth varies with circumstance such as, “It’s five o’clock,”
or “the stock market will rise tomorrow.”

Unfortunately it is not always easy to decide if a claimed proposition is true or
false:

Claim 1.1.3. For every nonnegative integer, n, the value of n> + n + 41 is prime.

(A prime is an integer greater than 1 that is not divisible by any other integer
greater than 1. For example, 2, 3, 5, 7, 11, are the first five primes.) Let’s try some
numerical experimentation to check this proposition. Let

p(n) z=n?+n+41." (1.1)
We begin with p(0) = 41, which is prime; then

p(1) = 43, p(2) = 47, p(3) = 53, ..., p(20) = 461

are each prime. Hmmm, starts to look like a plausible claim. In fact we can keep
checking through » = 39 and confirm that p(39) = 1601 is prime.

But p(40) = 402 4+ 40 4+ 41 = 41 - 41, which is not prime. So Claim 1.1.3
is false since it’s not true that p(n) is prime for all nonnegative integers n. In
fact, it’s not hard to show that no polynomial with integer coefficients can map all

“_2

I'The symbol ::= means “equal by definition.” It’s always ok simply to write “=" instead of ::=,
but reminding the reader that an equality holds by definition can be helpful.

“mecs” — 2016/6/16 — 11:14 — page 6 — #14

Chapter 1 What is a Proof?

nonnegative numbers into prime numbers, unless it’s a constant (see Problem 1.18).
But this example highlights the point that, in general, you can’t check a claim about
an infinite set by checking a finite sample of its elements, no matter how large the
sample.

By the way, propositions like this about all numbers or all items of some kind are
so common that there is a special notation for them. With this notation, Claim 1.1.3
would be

Vn € N. p(n) is prime. (1.2)

Here the symbol V is read “for all.” The symbol N stands for the set of nonnegative
integers: 0, 1, 2, 3, ... (ask your instructor for the complete list). The symbol “€”
is read as “is a member of,” or “belongs to,” or simply as “is in.” The period after
the N is just a separator between phrases.

Here are two even more extreme examples:

Conjecture. [Euler] The equation
a* + bt 4+t =d*
has no solution when a, b, ¢, d are positive integers.

Euler (pronounced “oiler”) conjectured this in 1769. But the conjecture was
proved false 218 years later by Noam Elkies at a liberal arts school up Mass Ave.
The solution he found was a = 95800, = 217519, ¢ = 414560, d = 42248]1.

In logical notation, Euler’s Conjecture could be written,

YaeZtVbeZt Ve e ZTVd e ZT. a* + b* + ¢* # d*.

Here, Z™ is a symbol for the positive integers. Strings of V’s like this are usually
abbreviated for easier reading:

VYa,b,c,d € Z'. a* + b* + ¢* # d*.

Here’s another claim which would be hard to falsify by sampling: the smallest
possible x, y, z that satisfy the equality each have more than 1000 digits!

False Claim. 313(x> + y3) = z3 has no solution when x,y,z € 7.V,

It’s worth mentioning a couple of further famous propositions whose proofs were
sought for centuries before finally being discovered:

Proposition 1.1.4 (Four Color Theorem). Every map can be colored with 4 colors
so that adjacent® regions have different colors.

2Two regions are adjacent only when they share a boundary segment of positive length. They are
not considered to be adjacent if their boundaries meet only at a few points.

“mecs” — 2016/6/16 — 11:14 — page 7 — #15

1.1. Propositions 7

Several incorrect proofs of this theorem have been published, including one that
stood for 10 years in the late 19th century before its mistake was found. A laborious
proof was finally found in 1976 by mathematicians Appel and Haken, who used a
complex computer program to categorize the four-colorable maps. The program
left a few thousand maps uncategorized, which were checked by hand by Haken
and his assistants—among them his 15-year-old daughter.

There was reason to doubt whether this was a legitimate proof: the proof was
too big to be checked without a computer. No one could guarantee that the com-
puter calculated correctly, nor was anyone enthusiastic about exerting the effort
to recheck the four-colorings of thousands of maps that were done by hand. Two
decades later a mostly intelligible proof of the Four Color Theorem was found,
though a computer is still needed to check four-colorability of several hundred spe-
cial maps.?

Proposition 1.1.5 (Fermat’s Last Theorem). There are no positive integers x, y,
and z such that

for some integer n > 2.

In a book he was reading around 1630, Fermat claimed to have a proof for this
proposition, but not enough space in the margin to write it down. Over the years,
the Theorem was proved to hold for all n up to 4,000,000, but we’ve seen that this
shouldn’t necessarily inspire confidence that it holds for all n. There is, after all,
a clear resemblance between Fermat’s Last Theorem and Euler’s false Conjecture.
Finally, in 1994, British mathematician Andrew Wiles gave a proof, after seven
years of working in secrecy and isolation in his attic. His proof did not fit in any
margin.*

Finally, let’s mention another simply stated proposition whose truth remains un-
known.

Conjecture 1.1.6 (Goldbach). Every even integer greater than 2 is the sum of two
primes.

Goldbach’s Conjecture dates back to 1742. It is known to hold for all numbers
up to 102, but to this day, no one knows whether it’s true or false.

3The story of the proof of the Four Color Theorem is told in a well-reviewed popular (non-
technical) book: “Four Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton
Univ. Press, 2003, 276pp. ISBN 0-691-11533-8.

“In fact, Wiles’ original proof was wrong, but he and several collaborators used his ideas to arrive
at a correct proof a year later. This story is the subject of the popular book, Fermat’s Enigma by
Simon Singh, Walker & Company, November, 1997.

http://www.math.gatech.edu/~thomas/FC/fourcolor.html

“mecs” — 2016/6/16 — 11:14 — page 8 — #16

8 Chapter 1 What is a Proof?

For a computer scientist, some of the most important things to prove are the
correctness of programs and systems—whether a program or system does what it’s
supposed to. Programs are notoriously buggy, and there’s a growing community
of researchers and practitioners trying to find ways to prove program correctness.
These efforts have been successful enough in the case of CPU chips that they are
now routinely used by leading chip manufacturers to prove chip correctness and
avoid mistakes like the notorious Intel division bug in the 1990’s.

Developing mathematical methods to verify programs and systems remains an
active research area. We’ll illustrate some of these methods in Chapter 5.

1.2 Predicates

A predicate can be understood as a proposition whose truth depends on the value
of one or more variables. So “n is a perfect square” describes a predicate, since you
can’t say if it’s true or false until you know what the value of the variable n happens
to be. Once you know, for example, that n equals 4, the predicate becomes the true
proposition “4 is a perfect square”. Remember, nothing says that the proposition
has to be true: if the value of n were 5, you would get the false proposition “5 is a
perfect square.”

Like other propositions, predicates are often named with a letter. Furthermore, a
function-like notation is used to denote a predicate supplied with specific variable
values. For example, we might use the name “P” for predicate above:

P(n) ::=“n is a perfect square”,

and repeat the remarks above by asserting that P (4) is true, and P(5) is false.

This notation for predicates is confusingly similar to ordinary function notation.
If P is a predicate, then P(n) is either true or false, depending on the value of n.
On the other hand, if p is an ordinary function, like n2 + 1, then p(n) is a numerical
quantity. Don’t confuse these two!

1.3 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based on
direct experience. (For example, “There is a straight line segment between every

“mecs” — 2016/6/16 — 11:14 — page 9 — #17

1.4. Our Axioms 9

pair of points”.) Propositions like these that are simply accepted as true are called
axioms.

Starting from these axioms, Euclid established the truth of many additional propo-
sitions by providing “proofs.” A proof is a sequence of logical deductions from
axioms and previously proved statements that concludes with the proposition in
question. You probably wrote many proofs in high school geometry class, and
you’ll see a lot more in this text.

There are several common terms for a proposition that has been proved. The
different terms hint at the role of the proposition within a larger body of work.

e Important true propositions are called theorems.
o A lemma is a preliminary proposition useful for proving later propositions.

e A corollary is a proposition that follows in just a few logical steps from a
theorem.

These definitions are not precise. In fact, sometimes a good lemma turns out to be
far more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, remains
the foundation for mathematics today. In fact, just a handful of axioms, called the
Zermelo-Fraenkel with Choice axioms (ZFC), together with a few logical deduction
rules, appear to be sufficient to derive essentially all of mathematics. We’ll examine
these in Chapter 8.

1.4 Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-
ematics, but for practical purposes, they are much too primitive. Proving theorems
in ZFC is a little like writing programs in byte code instead of a full-fledged pro-
gramming language—by one reckoning, a formal proof in ZFC that 2 + 2 = 4
requires more than 20,000 steps! So instead of starting with ZFC, we’re going to
take a huge set of axioms as our foundation: we’ll accept all familiar facts from
high school math.

This will give us a quick launch, but you may find this imprecise specification
of the axioms troubling at times. For example, in the midst of a proof, you may
start to wonder, “Must I prove this little fact or can I take it as an axiom?” There
really is no absolute answer, since what’s reasonable to assume and what requires
proof depends on the circumstances and the audience. A good general guideline is
simply to be up front about what you’re assuming.

“mecs” — 2016/6/16 — 11:14 — page 10 — #18

10

Chapter 1 What is a Proof?

1.4.1 Logical Deductions

Logical deductions, or inference rules, are used to prove new propositions using
previously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P
together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus
ponens is written:

Rule.
P, P IMPLIES Q

0

When the statements above the line, called the antecedents, are proved, then we
can consider the statement below the line, called the conclusion or consequent, to
also be proved.

A key requirement of an inference rule is that it must be sound: an assignment
of truth values to the letters, P, Q, ..., that makes all the antecedents true must
also make the consequent true. So if we start off with true axioms and apply sound
inference rules, everything we prove will also be true.

There are many other natural, sound inference rules, for example:

Rule.
P IMPLIES Q, QO IMPLIES R

P IMPLIES R

Rule.

NOT(P) IMPLIES NOT(Q)
Q IMPLIES P
On the other hand,
Non-Rule.

NOT(P) IMPLIES NOT(Q)
P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true
and the consequent is not.

As with axioms, we will not be too formal about the set of legal inference rules.
Each step in a proof should be clear and “logical”; in particular, you should state
what previously proved facts are used to derive each new conclusion.

“mecs” — 2016/6/16 — 11:14 — page 11 — #19

1.5. Proving an Implication 11

1.4.2 Patterns of Proof

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question. This
freedom in constructing a proof can seem overwhelming at first. How do you even
start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. We’ll go through several of these standard patterns,
pointing out the basic idea and common pitfalls and giving some examples. Many
of these templates fit together; one may give you a top-level outline while others
help you at the next level of detail. And we’ll show you other, more sophisticated
proof techniques later on.

The recipes below are very specific at times, telling you exactly which words to
write down on your piece of paper. You’'re certainly free to say things your own
way instead; we’re just giving you something you could say so that you’re never at
a complete loss.

Proving an Implication

Propositions of the form “If P, then Q are called implications. This implication
is often rephrased as “P IMPLIES Q.”
Here are some examples:

e (Quadratic Formula) If ax? + bx 4+ ¢ = 0 and a # 0, then
X = (—b + Vb2 —4ac) /2a.
e (Goldbach’s Conjecture 1.1.6 rephrased) If n is an even integer greater than
2, then n is a sum of two primes.
e If0 < x <2 then —x3 +4x + 1 > 0.

There are a couple of standard methods for proving an implication.

1.5.1 Method #1
In order to prove that P IMPLIES Q:

1. Write, “Assume P .’

2. Show that Q logically follows.

“mecs” — 2016/6/16 — 11:14 — page 12 — #20

12

Chapter 1 What is a Proof?

Example

Theorem 1.5.1. If0 < x < 2, then —x3 + 4x + 1 > 0.

Before we write a proof of this theorem, we have to do some scratchwork to
figure out why it is true.

The inequality certainly holds for x = 0; then the left side is equal to 1 and
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater
magnitude than —x3 (which is negative). For example, when x = 1, we have
4x = 4, but —x3 = —1 only. In fact, it looks like —x3 doesn’t begin to dominate
until x > 2. So it seems the —x> + 4x part should be nonnegative for all x between
0 and 2, which would imply that —x3 + 4x + 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with
solid, logical arguments. We can get a better handle on the critical —x3 + 4x part
by factoring it, which is not too hard:

X3 +4x =x2—-x)2 + x)

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of
observations into a clean proof.

Proof. Assume 0 < x < 2. Then x, 2—x, and 2+ x are all nonnegative. Therefore,
the product of these terms is also nonnegative. Adding 1 to this product gives a
positive number, so:

x2—-x)24+x)+1>0

Multiplying out on the left side proves that
—x34+4x+1>0
as claimed. |

There are a couple points here that apply to all proofs:

e You'll often need to do some scratchwork while you’re trying to figure out
the logical steps of a proof. Your scratchwork can be as disorganized as you
like—full of dead-ends, strange diagrams, obscene words, whatever. But
keep your scratchwork separate from your final proof, which should be clear
and concise.

e Proofs typically begin with the word “Proof” and end with some sort of de-
limiter like OJ or “QED.” The only purpose for these conventions is to clarify
where proofs begin and end.

“mecs” — 2016/6/16 — 11:14 — page 13 — #21

1.6. Proving an “If and Only If” 13

1.5.2 Method #2 - Prove the Contrapositive
An implication (“P IMPLIES Q) is logically equivalent to its contrapositive
NOT(Q) IMPLIES NOT(P).

Proving one is as good as proving the other, and proving the contrapositive is some-
times easier than proving the original statement. If so, then you can proceed as
follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

Example
Theorem 1.5.2. If r is irrational, then ﬁ is also irrational.

A number is rational when it equals a quotient of integers —that is, if it equals
m/n for some integers m and n. If it’s not rational, then it’s called irrational. So
we must show that if 7 is not a ratio of integers, then /r is also not a ratio of
integers. That’s pretty convoluted! We can eliminate both not’s and simplify the
proof by using the contrapositive instead.

Proof. We prove the contrapositive: if /7 is rational, then r is rational.
Assume that /7 is rational. Then there exist integers m and n such that:

Jr="

n
Squaring both sides gives:
m2
T
Since m? and n? are integers, r is also rational. |

1.6 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been
known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths
and the angle between those sides are the same.

The phrase “if and only if”” comes up so often that it is often abbreviated “iff.”

“mecs” — 2016/6/16 — 11:14 — page 14 — #22

14

Chapter 1 What is a Proof?

1.6.1 Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and
“Q IMPLIES P.” So you can prove an “iff” by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in
Section 1.5.

3. Write, “Now, we show Q implies P.” Again, do this by one of the methods
in Section 1.5.
1.6.2 Method #2: Construct a Chain of Iffs
In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third
statement and so forth until you reach Q.

This method sometimes requires more ingenuity than the first, but the result can be
a short, elegant proof.
Example

The standard deviation of a sequence of values x1, X2, ..., X, is defined to be:

\/(xl—M)2+(X2—,Uv)2+---+(xn—u)2

(1.3)
n
where p is the average or mean of the values:
L X1t X2+t Xp
W=
n
Theorem 1.6.1. The standard deviation of a sequence of values x1, . .., X, is zero

iff all the values are equal to the mean.

For example, the standard deviation of test scores is zero if and only if everyone
scored exactly the class average.

Proof. We construct a chain of “iff” implications, starting with the statement that
the standard deviation (1.3) is zero:

\/(Xl—M)2+(X2—M)2+---+(xn—u)2 _
n

0. (1.4)

“mecs” — 2016/6/16 — 11:14 — page 15 — #23

1.7. Proof by Cases 15
Now since zero is the only number whose square root is zero, equation (1.4) holds
iff

(x1—)+ (2= >+ + (xn — > =0. (1.5)

Squares of real numbers are always nonnegative, so every term on the left hand side
of equation (1.5) is nonnegative. This means that (1.5) holds iff

Every term on the left hand side of (1.5) is zero. (1.6)
But a term (x; — ,u)2 is zero iff x; = w, so (1.6) is true iff

Every x; equals the mean.

1.7 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a com-
mon, useful proof strategy. Here’s an amusing example.

Let’s agree that given any two people, either they have met or not. If every pair
of people in a group has met, we’ll call the group a club. If every pair of people in
a group has not met, we’ll call it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3
strangers.

Proof. The proof is by case analysis>. Let x denote one of the six people. There
are two cases:

1. Among 5 other people besides x, at least 3 have met x.

2. Among the 5 other people, at least 3 have not met x.

Now, we have to be sure that at least one of these two cases must hold,® but that’s
easy: we’ve split the 5 people into two groups, those who have shaken hands with
x and those who have not, so one of the groups must have at least half the people.

Case 1: Suppose that at least 3 people did meet x.

This case splits into two subcases:

SDescribing your approach at the outset helps orient the reader.

OPart of a case analysis argument is showing that you've covered all the cases. This is often
obvious, because the two cases are of the form “P” and “not P.” However, the situation above is not
stated quite so simply.

“mecs” — 2016/6/16 — 11:14 — page 16 — #24

16 Chapter 1 What is a Proof?

Case 1.1: No pair among those people met each other. Then these
people are a group of at least 3 strangers. The theorem holds in this
subcase.

Case 1.2: Some pair among those people have met each other. Then
that pair, together with x, form a club of 3 people. So the theorem
holds in this subcase.

This implies that the theorem holds in Case 1.
Case 2: Suppose that at least 3 people did not meet x.
This case also splits into two subcases:

Case 2.1: Every pair among those people met each other. Then these
people are a club of at least 3 people. So the theorem holds in this
subcase.

Case 2.2: Some pair among those people have not met each other.
Then that pair, together with x, form a group of at least 3 strangers. So
the theorem holds in this subcase.

This implies that the theorem also holds in Case 2, and therefore holds in all cases.
|

1.8 Proof by Contradiction

In a proof by contradiction, or indirect proof, you show that if a proposition were
false, then some false fact would be true. Since a false fact by definition can’t be
true, the proposition must be true.

Proof by contradiction is always a viable approach. However, as the name sug-
gests, indirect proofs can be a little convoluted, so direct proofs are generally prefer-
able when they are available.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”
2. Write, “Suppose P is false.”
3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”

“mecs” — 2016/6/16 — 11:14 — page 17 — #25

1.9. Good Proofs in Practice 17

Example

We’ll prove by contradiction that +/2 is irrational. Remember that a number is ra-
tional if it is equal to a ratio of integers—for example, 3.5 = 7/2 and 0.1111--- =
1/9 are rational numbers.

Theorem 1.8.1. /2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false, and /2 is ratio-
nal. Then we can write +/2 as a fraction n/d in lowest terms.

Squaring both sides gives 2 = n?/d? and so 2d? = n?. This implies that 7 is a
multiple of 2 (see Problems 1.11 and 1.12). Therefore n2 must be a multiple of 4.
But since 2d? = n?, we know 2d? is a multiple of 4 and so d? is a multiple of 2.
This implies that d is a multiple of 2.

So, the numerator and denominator have 2 as a common factor, which contradicts
the fact that n/d is in lowest terms. Thus, \/5 must be irrational. [|

1.9 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-
tainty, and mechanically checkable proofs of enormous length or complexity can
accomplish this. But humanly intelligible proofs are the only ones that help some-
one understand the subject. Mathematicians generally agree that important mathe-
matical results can’t be fully understood until their proofs are understood. That is
why proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical
correctness: a good proof must also be clear. Correctness and clarity usually go
together; a well-written proof is more likely to be a correct proof, since mistakes
are harder to hide.

In practice, the notion of proof is a moving target. Proofs in a professional
research journal are generally unintelligible to all but a few experts who know all
the terminology and prior results used in the proof. Conversely, proofs in the first
weeks of a beginning course like 6.042 would be regarded as tediously long-winded
by a professional mathematician. In fact, what we accept as a good proof later in
the term will be different from what we consider good proofs in the first couple
of weeks of 6.042. But even so, we can offer some general tips on writing good
proofs:

State your game plan. A good proof begins by explaining the general line of rea-
soning, for example, “We use case analysis” or “We argue by contradiction.”

“mecs” — 2016/6/16 — 11:14 — page 18 — #26

18

Chapter 1 What is a Proof?

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is not good.
The steps of an argument should follow one another in an intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs the way
they compute integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good proof usually
looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,
but much less skilled at reading arcane mathematical symbols. Use words
where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-
fied by introducing a variable, devising a special notation, or defining a new
term. But do this sparingly, since you’re requiring the reader to remember
all that new stuff. And remember to actually define the meanings of new
variables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller
procedures. Long proofs are much the same. When your proof needed facts
that are easily stated, but not readily proved, those fact are best pulled out
as preliminary lemmas. Also, if you are repeating essentially the same argu-
ment over and over, try to capture that argument in a general lemma, which
you can cite repeatedly instead.

Be wary of the “obvious.” When familiar or truly obvious facts are needed in a
proof, it’s OK to label them as such and to not prove them. But remember
that what’s obvious to you may not be—and typically is not—obvious to
your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt
to bully the reader into accepting something you’re having trouble proving.
Also, go on the alert whenever you see one of these phrases in someone else’s
proof.

Finish. At some point in a proof, you’ll have established all the essential facts
you need. Resist the temptation to quit and leave the reader to draw the
“obvious” conclusion. Instead, tie everything together yourself and explain
why the original claim follows.

“mecs” — 2016/6/16 — 11:14 — page 19 — #27

1.10. References 19

Creating a good proof is a lot like creating a beautiful work of art. In fact,
mathematicians often refer to really good proofs as being “elegant” or “beautiful.”
It takes a practice and experience to write proofs that merit such praises, but to
get you started in the right direction, we will provide templates for the most useful
proof techniques.

Throughout the text there are also examples of bogus proofs—arguments that
look like proofs but aren’t. Sometimes a bogus proof can reach false conclusions
because of missteps or mistaken assumptions. More subtle bogus proofs reach
correct conclusions, but do so in improper ways such as circular reasoning, leaping
to unjustified conclusions, or saying that the hard part of the proof is “left to the
reader.” Learning to spot the flaws in improper proofs will hone your skills at seeing
how each proof step follows logically from prior steps. It will also enable you to
spot flaws in your own proofs.

The analogy between good proofs and good programs extends beyond structure.
The same rigorous thinking needed for proofs is essential in the design of criti-
cal computer systems. When algorithms and protocols only “mostly work™ due
to reliance on hand-waving arguments, the results can range from problematic to
catastrophic. An early example was the Therac 25, a machine that provided radia-
tion therapy to cancer victims, but occasionally killed them with massive overdoses
due to a software race condition. A more recent (August 2004) example involved a
single faulty command to a computer system used by United and American Airlines
that grounded the entire fleet of both companies—and all their passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer systems
designed by you and your classmates. So we really hope that you’ll develop the
ability to formulate rock-solid logical arguments that a system actually does what
you think it does!

1.10 References

[11], [1], [45], [15], [19]

Problems for Section 1.1

Practice Problems

Problem 1.1.
Why does the “surprise” paradox of Problem 1.6 present a philosophical problem

http://sunnyday.mit.edu/papers/therac.pdf

“mecs” — 2016/6/16 — 11:14 — page 20 — #28

20

Chapter 1 What is a Proof?

but not a mathematical one?

Class Problems

Problem 1.2.
The Pythagorean Theorem says that if a and b are the lengths of the sides of a right
triangle, and c is the length of its hypotenuse, then

a’? +b* = 2.

This theorem is so fundamental and familiar that we generally take it for granted.
But just being familiar doesn’t justify calling it “obvious”—witness the fact that
people have felt the need to devise different proofs of it for milllenia.” In this
problem we’ll examine a particularly simple “proof without words” of the theorem.

Here’s the strategy. Suppose you are given four different colored copies of a
right triangle with sides of lengths a, b, and ¢, along with a suitably sized square,
as shown in Figure 1.1.

Figure 1.1 Right triangles and square.

(a) You will first arrange the square and four triangles so they form a ¢ x ¢ square.
From this arrangement you will see that the square is (b — a) x (b — a).

(b) You will then arrange the same shapes so they form two squares, one a x a
and the other b x b.

You know that the area of an s X s square is s2. So appealing to the principle that

7Over a hundred different proofs are listed on the mathematics website http://www.cut-the-
knot.org/pythagoras/.

“mecs” — 2016/6/16 — 11:14 — page 21 — #29

1.10. References 21

Area is Preserved by Rearranging,

you can now conclude that a® + b? = ¢?, as claimed.

This really is an elegant and convincing proof of the Pythagorean Theorem, but it
has some worrisome features. One concern is that there might be something special
about the shape of these particular triangles and square that makes the rearranging
possible—for example, suppose a = b?

(¢) How would you respond to this concern?

(d) Another concern is that a number of facts about right triangles, squares and
lines are being implicitly assumed in justifying the rearrangements into squares.
Enumerate some of these assumed facts.

Problem 1.3.
What’s going on here?!

2
1=vVI= D)) = vV=1v=1 = (\/—_1) =—1.
(a) Precisely identify and explain the mistake(s) in this bogus proof.

(b) Prove (correctly) thatif 1 = —1, then 2 = 1.

(c) Every positive real number, r, has two square roots, one positive and the other
negative. The standard convention is that the expression /7 refers to the positive
square root of r. Assuming familiar properties of multiplication of real numbers,
prove that for positive real numbers 7 and s,

Problem 1.4.
Identify exactly where the bugs are in each of the following bogus proofs.

(a) Bogus Claim: 1/8 > 1/4.

8From [44], Twenty Years Before the Blackboard by Michael Stueben and Diane Sandford

“mecs” — 2016/6/16 — 11:14 — page 22 — #30

22

Chapter 1 What is a Proof?

Bogus proof.

3>2
3logy(1/2) > 2log;o(1/2)
10g10(1/2)3 > 10g1o(1/2)2
(1/2)° > (1/2),

and the claim now follows by the rules for multiplying fractions.
(b) Bogus proof: 1¢ = $0.01 = ($0.1)?> = (10¢)> = 100¢ = $1. W

(c) Bogus Claim: If ¢ and b are two equal real numbers, then a = 0.

Bogus proof.
a=>»
a’ = ab
a’> —b? =ab — b?
(a—b)a+b)=(a—Db)b
a+b=>
a=20.
Problem 1.5.

It’s a fact that the Arithmetic Mean is at least as large as the Geometric Mean,

namely,

aizkbz m

for all nonnegative real numbers a and b. But there’s something objectionable
about the following proof of this fact. What’s the objection, and how would you fix

it?

“mecs” — 2016/6/16 — 11:14 — page 23 — #31

1.10. References 23
Bogus proof.
b ?
¢ —; > «ab, o)
?
a-+b>2vab, SO
?
a® + 2ab + b?* > 4ab, o)
?
a* —2ab +b* >0, 50
(a—b)?%>0 which we know is true.

The last statement is true because a — b is a real number, and the square of a real
number is never negative. This proves the claim. |

Problem 1.6.
Albert announces to his class that he plans to surprise them with a quiz sometime
next week.

His students first wonder if the quiz could be on Friday of next week. They
reason that it can’t: if Albert didn’t give the quiz before Friday, then by midnight
Thursday, they would know the quiz had to be on Friday, and so the quiz wouldn’t
be a surprise any more.

Next the students wonder whether Albert could give the surprise quiz Thursday.
They observe that if the quiz wasn’t given before Thursday, it would have to be
given on the Thursday, since they already know it can’t be given on Friday. But
having figured that out, it wouldn’t be a surprise if the quiz was on Thursday either.
Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, or
Monday. Namely, it’s impossible for Albert to give a surprise quiz next week. All
the students now relax, having concluded that Albert must have been bluffing. And
since no one expects the quiz, that’s why, when Albert gives it on Tuesday next
week, it really is a surprise!

What, if anything, do you think is wrong with the students’ reasoning?

Problems for Section 1.5

Homework Problems

Problem 1.7.
Show that log n is either an integer or irrational, where # is a positive integer. Use

“mecs” — 2016/6/16 — 11:14 — page 24 — #32

24

Chapter 1 What is a Proof?

whatever familiar facts about integers and primes you need, but explicitly state such
facts.

Problems for Section 1.7

Class Problems

Problem 1.8.
If we raise an irrational number to an irrational power, can the result be rational?

Show that it can by considering ﬁﬁ and arguing by cases.

Problems for Section 1.8

Practice Problems

Problem 1.9.
Prove that for any n > 0, if a” is even, then a is even.
Hint: Contradiction.

Problem 1.10.
Prove that if @ - b = n, then either a or b must be < /n, where a, b, and n are
nonnegative real numbers. Hint: by contradiction, Section 1.8.

Problem 1.11.
Let n be a nonnegative integer.

(a) Explain why if n? is even—that is, a multiple of 2—then n is even.

(b) Explain why if n2 is a multiple of 3, then n must be a multiple of 3.

Problem 1.12.
Give an example of two distinct positive integers m, n such that n2 is a multiple of
m, but n is not a multiple of m. How about having m be less than n?

“mecs” — 2016/6/16 — 11:14 — page 25 — #33

1.10. References 25

Class Problems

Problem 1.13.
How far can you generalize the proof of Theorem 1.8.1 that +/2 is irrational? For
example, how about \/5?

Problem 1.14.
Prove that log, 6 is irrational.

Problem 1.15.
Here is a different proof that \/5 is irrational, taken from the American Mathemat-
ical Monthly, v.116, #1, Jan. 2009, p.69:

Proof. Suppose for the sake of contradiction that +/2 is rational, and choose the
least integer, ¢ > 0, such that («/5 — 1) g is a nonnegative integer. Let ¢’ ::=
(\/5 — 1) q. Clearly 0 < ¢’ < ¢g. But an easy computation shows that («/E - 1) q

is a nonnegative integer, contradicting the minimality of g. |

(a) This proof was written for an audience of college teachers, and at this point it
is a little more concise than desirable. Write out a more complete version which
includes an explanation of each step.

(b) Now that you have justified the steps in this proof, do you have a preference
for one of these proofs over the other? Why? Discuss these questions with your
teammates for a few minutes and summarize your team’s answers on your white-
board.

Problem 1.16.
Here is a generalization of Problem 1.13 that you may not have thought of:

Lemma. Let the coefficients of the polynomial
ag +arx +azx® + -+ ap_y x4 X"
be integers. Then any real root of the polynomial is either integral or irrational.

(a) Explain why the Lemma immediately implies that /k is irrational whenever
k is not an mth power of some integer.

“mecs” — 2016/6/16 — 11:14 — page 26 — #34

26

Chapter 1 What is a Proof?

(b) Carefully prove the Lemma.

You may find it helpful to appeal to:
Fact. If a prime, p, is a factor of some power of an integer, then it is a factor of
that integer.

You may assume this Fact without writing down its proof, but see if you can explain
why it is true.

Homework Problems

Problem 1.17.
The fact that that there are irrational numbers a,b such that a? is rational was
proved in Problem 1.8 by cases. Unfortunately, that proof was nonconstructive: it
didn’t reveal a specific pair, a, b, with this property. But in fact, it’s easy to do this:
leta = +/2and b ::= 21log, 3.

We know a = +/2 is irrational, and a® = 3 by definition. Finish the proof that
these values for a, b work, by showing that 2 log, 3 is irrational.

Problem 1.18.
For n = 40, the value of polynomial p(n) ::= n? + n + 41 is not prime, as noted
in Section 1.1. But we could have predicted based on general principles that no
nonconstant polynomial can generate only prime numbers.

In particular, let g(n) be a polynomial with integer coefficients, and let ¢ ::= g (0)
be the constant term of g.

(a) Verify that g(cm) is a multiple of ¢ for all m € Z.

(b) Show that if ¢ is nonconstant and ¢ > 1, then as n ranges over the nonnegative
integers, N, there are infinitely many ¢ (n) € Z that are not primes.
Hint: You may assume the familiar fact that the magnitude of any nonconstant

polynomial, g (n), grows unboundedly as n grows.

(c) Conclude that for every nonconstant polynomial, ¢, there must be an n € N
such that g (n) is not prime. Hint: Only one easy case remains.

Exam Problems

Problem 1.19.
Prove that logg 12 is irrational.

“mecs” — 2016/6/16 — 11:14 — page 27 — #35

1.10. References 27

Problem 1.20.
Prove that log;, 18 is irrational.

Problem 1.21.

A familiar proof that J72 is irrational depends on the fact that a certain equation
among those below is unsatisfiable by integers a, b > 0. Note that More than one
is unsatisfiable. Circle the equation that would appear in the proof,, and explain
why it is unsatisfiable. (Do not assume that J72 s irrational.)

i. a2 =7>+b2
ii. a3 =72 +03
iii. a? = 7%h?
iv. a3 =7?b3
v. a® =73h3

vi. (ab)? =72

“mecs” — 2016/6/16 — 11:14 — page 28 — #36

“mecs” — 2016/6/16 — 11:14 — page 29 — #37

The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty
set—it’s false for the empty set which has no smallest element because it has no
elements at all. And it requires a set of nonnegative integers—it’s false for the
set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures
something special about the nonnegative integers.

While the Well Ordering Principle may seem obvious, it’s hard to see offhand
why it is useful. But in fact, it provides one of the most important proof rules in
discrete mathematics. In this chapter, we’ll illustrate the power of this proof method
with a few simple examples.

2.1 Well Ordering Proofs

We actually have already taken the Well Ordering Principle for granted in proving
that +/2 is irrational. That proof assumed that for any positive integers m and n,
the fraction m/n can be written in lowest terms, that is, in the form m’/n’ where
m' and n’ are positive integers with no common prime factors. How do we know
this is always possible?

Suppose to the contrary that there are positive integers m and n such that the
fraction m/n cannot be written in lowest terms. Now let C be the set of positive
integers that are numerators of such fractions. Then m € C, so C is nonempty.
Therefore, by Well Ordering, there must be a smallest integer, mo € C. So by
definition of C, there is an integer no > 0 such that

. mo . .
the fraction — cannot be written in lowest terms.
no

This means that m and 79 must have a common prime factor, p > 1. But

mo/p _ mo
no/p no’

“mecs” — 2016/6/16 — 11:14 — page 30 — #38

30

Chapter 2 The Well Ordering Principle

so any way of expressing the left hand fraction in lowest terms would also work for
mo/ng, which implies

mo/p

no/p

the fraction cannot be in written in lowest terms either.

So by definition of C, the numerator, mq/p, is in C. But mo/p < mg, which
contradicts the fact that mg is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows that
C must be empty. That is, that there are no numerators of fractions that can’t be
written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

2.2 Template for Well Ordering Proofs

More generally, there is a standard way to use Well Ordering to prove that some
property, P(n) holds for every nonnegative integer, n. Here is a standard way to
organize such a well ordering proof:

To prove that “P(n) is true for all n € N” using the Well Ordering Principle:

e Define the set, C, of counterexamples to P being true. Specifically, define
C ::={n € N| NOT(P(n)) is true}.

(The notation {n | Q(n)} means “the set of all elements n for which Q (n)
is true.” See Section 4.1.4.)

e Assume for proof by contradiction that C is nonempty.
e By the Well Ordering Principle, there will be a smallest element, n, in C.

e Reach a contradiction somehow—often by showing that P(n) is actually
true or by showing that there is another member of C that is smaller than
n. This is the open-ended part of the proof task.

e Conclude that C must be empty, that is, no counterexamples exist. |

2.2.1 Summing the Integers

Let’s use this template to prove

“mecs” — 2016/6/16 — 11:14 — page 31 — #39

2.2. Template for Well Ordering Proofs 31

Theorem 2.2.1.
14+424+34+---+n=nn+1)/2 2.1)

for all nonnegative integers, n.

First, we’d better address a couple of ambiguous special cases before they trip us
up:

e If n = 1, then there is only one term in the summation, and so 1 + 2 + 3 +
-+-+n is just the term 1. Don’t be misled by the appearance of 2 and 3 or by
the suggestion that 1 and n are distinct terms!

e If n = 0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So, while the three dots notation, which is called an ellipsis, is convenient, you
have to watch out for these special cases where the notation is misleading. In
fact, whenever you see an ellipsis, you should be on the lookout to be sure you
understand the pattern, watching out for the beginning and the end.

We could have eliminated the need for guessing by rewriting the left side of (2.1)
with summation notation:

ii or Z i

i=1 1<i<n

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make
it clear what (2.1) means when n = 1. The second expression makes it clear that
when n = 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals O (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction. Assume that Theorem 2.2.1 is false. Then, some nonneg-
ative integers serve as counterexamples to it. Let’s collect them in a set:

nn+1)

Ci=neN|14+2+4+3+---+n# 5

}.

Assuming there are counterexamples, C is a nonempty set of nonnegative integers.
So, by the Well Ordering Principle, C has a minimum element, which we’ll call
c. That is, among the nonnegative integers, c is the smallest counterexample to
equation (2.1).

“mecs” — 2016/6/16 — 11:14 — page 32 — #40

32 Chapter 2 The Well Ordering Principle

Since c is the smallest counterexample, we know that (2.1) is false for n = ¢ but
true for all nonnegative integers n < ¢. But (2.1) is true for n = 0, so ¢ > 0. This
means ¢ — 1 is a nonnegative integer, and since it is less than ¢, equation (2.1) is
true for ¢ — 1. That is,

c—1)e
1+2+3+---+(c—1)=%.
But then, adding ¢ to both sides, we get
c—1)e c2—c+2c clc+1
1+2+3+~~-+(c—1)+c=%+c= > = (2),

which means that (2.1) does hold for ¢, after all! This is a contradiction, and we
are done. |

2.3 Factoring into Primes

We’ve previously taken for granted the Prime Factorization Theorem, also known
as the Unique Factorization Theorem and the Fundamental Theorem of Arithmetic,
which states that every integer greater than one has a unique' expression as a prod-
uct of prime numbers. This is another of those familiar mathematical facts which
are taken for granted but are not really obvious on closer inspection. We’ll prove
the uniqueness of prime factorization in a later chapter, but well ordering gives an
easy proof that every integer greater than one can be expressed as some product of
primes.

Theorem 2.3.1. Every positive integer greater than one can be factored as a prod-
uct of primes.

Proof. The proof is by well ordering.

Let C be the set of all integers greater than one that cannot be factored as a
product of primes. We assume C is not empty and derive a contradiction.

If C is not empty, there is a least element, n € C, by well ordering. The n can’t
be prime, because a prime by itself is considered a (length one) product of primes
and no such products are in C.

So n must be a product of two integers @ and b where 1 < a,b < n. Since a
and b are smaller than the smallest element in C, we know thata, b ¢ C. In other
words, a can be written as a product of primes p p, -+ pr and b as a product of

I, .. unique up to the order in which the prime factors appear

“mecs” — 2016/6/16 — 11:14 — page 33 — #41

2.4. Well Ordered Sets 33

primes g1 ---q;. Therefore, n = py--- prq1---q; can be written as a product of
primes, contradicting the claim that n € C. Our assumption that C is not empty
must therefore be false. |

2.4 Well Ordered Sets

A set of numbers is well ordered when each of its nonempty subsets has a minimum
element. The Well Ordering Principle says, of course, that the set of nonnegative
integers is well ordered, but so are lots of other sets, such as every finite set, or the
sets rN of numbers of the form rn, where r is a positive real number and n € N.

Well ordering commonly comes up in computer science as a method for proving
that computations won’t run forever. The idea is to assign a value to the successive
steps of a computation so that the values get smaller at every step. If the values are
all from a well ordered set, then the computation can’t run forever, because if it did,
the values assigned to its successive steps would define a subset with no minimum
element. You’ll see several examples of this technique applied in Chapter 6 to prove
that various state machines will eventually terminate.

Notice that a set may have a minimum element but not be well ordered. The set
of nonnegative rational numbers is an example: it has a minimum element, zero,
but it also has nonempty subsets that don’t have minimum elements—the positive
rationals, for example.

The following theorem is a tiny generalization of the Well Ordering Principle.

Theorem 2.4.1. For any nonnegative integer, n, the set of integers greater than or
equal to —n is well ordered.

This theorem is just as obvious as the Well Ordering Principle, and it would
be harmless to accept it as another axiom. But repeatedly introducing axioms gets
worrisome after a while, and it’s worth noticing when a potential axiom can actually
be proved. We can easily prove Theorem 2.4.1 using the Well Ordering Principle:

Proof. Let S be any nonempty set of integers > —n. Now add n to each of the
elements in S; let’s call this new set S + n. Now S + n is a nonempty set of
nonnegative integers, and so by the Well Ordering Principle, it has a minimum
element, m. But then it’s easy to see that m — n is the minimum element of S. W

The definition of well ordering states that every subset of a well ordered set
is well ordered, and this yields two convenient, immediate corollaries of Theo-
rem 2.4.1:

“mecs” — 2016/6/16 — 11:14 — page 34 — #42

34

Chapter 2 The Well Ordering Principle

Definition 2.4.2. A lower bound (respectively, upper bound) for a set, S, of real
numbers is a number, b, such that b < s (respectively, b > s) for every s € S.

Note that a lower or upper bound of set S is not required to be in the set.
Corollary 2.4.3. Any set of integers with a lower bound is well ordered.

Proof. A set of integers with a lower bound b € R will also have the integer n =
|b] as a lower bound, where |b], called the floor of b, is gotten by rounding down
b to the nearest integer. So Theorem 2.4.1 implies the set is well ordered. |

Corollary 2.4.4. Any nonempty set of integers with an upper bound has a maximum
element.

Proof. Suppose a set, S, of integers has an upper bound b € R. Now multiply each
element of S by -1; let’s call this new set of elements —S. Now, of course, —b is a
lower bound of —S. So —S has a minimum element —m by Corollary 2.4.3. But
then it’s easy to see that m is the maximum element of S |

2.4.1 A Different Well Ordered Set (Optional)

Another example of a well ordered set of numbers is the set I of fractions that can
be expressed in the form n/(n + 1):

0

1 n
1’2’

23
g,z,...,m,....

The minimum element of any nonempty subset of [is simply the one with the
minimum numerator when expressed in the form n/(n + 1).

Now we can define a very different well ordered set by adding nonnegative inte-
gers to numbers in [F. That is, we take all the numbers of the form n 4+ f where n is
a nonnegative integer and f is a number in F. Let’s call this set of numbers—you
guessed it—N + F. There is a simple recipe for finding the minimum number in

any nonempty subset of N 4 [, which explains why this set is well ordered:
Lemma 2.4.5. N + F is well ordered.

Proof. Given any nonempty subset, S, of N 4 [, look at all the nonnegative inte-
gers, n, such thatn + f isin S for some f € F. This is a nonempty set nonnegative
integers, so by the WOP, there is a minimum one; call it ng.

By definition of ng, there is some f € FF such that ng + f is in the set S. So
the set all fractions f such thatng + f € S is a nonempty subset of IF, and since
F is well ordered, this nonempty set contains a minimum element; call it fg. Now
it easy to verify that ng + fg is the minimum element of S (Problem 2.18). |

“mecs” — 2016/6/16 — 11:14 — page 35 — #43

2.4. Well Ordered Sets 35

The set N + [is different from the earlier examples. In all the earlier examples,
each element was greater than only a finite number of other elements. In N + F,
every element greater than or equal to 1 can be the first element in strictly decreas-
ing sequences of elements of arbitrary finite length. For example, the following
decreasing sequences of elements in N + T all start with 1:

ek
BILWINNI= D
V= O

=

T W= O

Nevertheless, since N + ' is well ordered, it is impossible to find an infinite de-
creasing sequence of elements in N + [, because the set of elements in such a
sequence would have no minimum.

Problems for Section 2.2

Practice Problems

Problem 2.1.
For practice using the Well Ordering Principle, fill in the template of an easy to
prove fact: every amount of postage that can be assembled using only 10 cent and
15 cent stamps is divisible by 5.

In particular, let the notation “j | k” indicate that integer j is a divisor of integer
k, and let S(n) mean that exactly n cents postage can be assembled using only 10
and 15 cent stamps. Then the proof shows that

S(n) IMPLIES 5| n, for all nonnegative integers 7. 2.2)
Fill in the missing portions (indicated by “...”) of the following proof of (2.2).

Let C be the set of counterexamples to (2.2), namely

Cu={n]|..}

Assume for the purpose of obtaining a contradiction that C is nonempty.
Then by the WOP, there is a smallest number, m € C. This m must be
positive because

But if S(m) holds and m is positive, then S(m — 10) or S(m — 15)
must hold, because

“mecs” — 2016/6/16 — 11:14 — page 36 — #44

36 Chapter 2 The Well Ordering Principle

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..

Butif 5 | (m — 10), then obviously 5 | m, contradicting the fact that m
is a counterexample.

Next, if S(m — 15) holds, we arrive at a contradiction in the same way.
Since we get a contradiction in both cases, we conclude that. ..

which proves that (2.2) holds.

Problem 2.2.
The Fibonacci numbers F(0), F(1), F(2),... are defined as follows:

F(0)::=0,
F(l) =1,
Fny:=Fn—-1)+Fn-2) forn > 2. (2.3)

Exactly which sentence(s) in the following bogus proof contain logical errors?
Explain.

False Claim. Every Fibonacci number is even.

Bogus proof. Let all the variables n, m, k mentioned below be nonnegative integer
valued.

1. The proof is by the WOP.
2. Let Even(n) mean that F'(n) is even.

3. Let C be the set of counterexamples to the assertion that Even(n) holds for
all n € N, namely,

C ::={n € N | NOT(Even(n))}.

4. We prove by contradiction that C is empty. So assume that C is not empty.
5. By WORP, there is a least nonnegative integer, m € C,

6. Then m > 0, since F(0) = 0 is an even number.

7. Since m is the minimum counterexample, F (k) is even for all k < m.

8. In particular, F(m — 1) and F(m — 2) are both even.

“mecs” — 2016/6/16 — 11:14 — page 37 — #45

2.4. Well Ordered Sets 37
9. But by the defining equation (2.3), F (m) equals the sum F(m—1)+ F(m—2)
of two even numbers, and so it is also even.
10. That is, Even(m) is true.

11. This contradicts the condition in the definition of m that NOT(Even(m))

holds.
12. This contradition implies that C must be empty. Hence, F(n) is even for all
neN.
|
Problem 2.3.

In Chapter 2, the Well Ordering Principle was used to show that all positive rational
numbers can be written in “lowest terms,” that is, as a ratio of positive integers with
no common factor prime factor. Below is a different proof which also arrives at this
correct conclusion, but this proof is bogus. Identify every step at which the proof
makes an unjustified inference.

Bogus proof. Suppose to the contrary that there was positive rational, g, such that
q cannot be written in lowest terms. Now let C be the set of such rational numbers
that cannot be written in lowest terms. Then g € C, so C is nonempty. So there
must be a smallest rational, go € C. So since qo/2 < qo, it must be possible to
express ¢o/2 in lowest terms, namely,

qo _m

0 _= 2.4

= (2.4)
for positive integers m,n with no common prime factor. Now we consider two
cases:

Case 1: [n is odd]. Then 2m and n also have no common prime factor, and

therefore
m 2m
n n
expresses ¢o in lowest terms, a contradiction.
Case 2: [n is even]. Any common prime factor of m and n/2 would also be a
common prime factor of m and n. Therefore m and n/2 have no common prime

factor, and so
m

/2

expresses ¢o in lowest terms, a contradiction.

q0

“mecs” — 2016/6/16 — 11:14 — page 38 — #46

38

Chapter 2 The Well Ordering Principle

Since the assumption that C is nonempty leads to a contradiction, it follows that
C is empty—that is, there are no counterexamples. |

Class Problems

Problem 2.4.
Use the Well Ordering Principle * to prove that

(2.5)

- K2 = nn+ 1)2n + 1)‘
2 :

for all nonnegative integers, 7.

Problem 2.5.
Use the Well Ordering Principle to prove that there is no solution over the positive
integers to the equation:

4a® +2b3 = 3.
Problem 2.6.
You are given a series of envelopes, respectively containing 1, 2,4, ...,2™ dollars.
Define

Property m: For any nonnegative integer less than 2 *1, there is a
selection of envelopes whose contents add up to exactly that number
of dollars.

Use the Well Ordering Principle (WOP) to prove that Property m holds for all
nonnegative integers m.

Hint: Consider two cases: first, when the target number of dollars is less than
2™ and second, when the target is at least 2.

Homework Problems

Problem 2.7.
Use the Well Ordering Principle to prove that any integer greater than or equal to 8
can be represented as the sum of nonnegative integer multiples of 3 and 5.

ZProofs by other methods such as induction or by appeal to known formulas for similar sums will
not receive full credit.

“mecs” — 2016/6/16 — 11:14 — page 39 — #47

2.4. Well Ordered Sets 39

Problem 2.8.
Euler’s Conjecture in 1769 was that there are no positive integer solutions to the
equation
a* +b* 4+t =d*.

Integer values for a, b, c,d that do satisfy this equation were first discovered in
1986. So Euler guessed wrong, but it took more than two centuries to demonstrate
his mistake.

Now let’s consider Lehman’s equation, similar to Euler’s but with some coeffi-

cients:
8a* 4 4b* + 2¢% = a* (2.6)

Prove that Lehman’s equation (2.6) really does not have any positive integer
solutions.
Hint: Consider the minimum value of ¢ among all possible solutions to (2.6).

Problem 2.9.
Use the Well Ordering Principle to prove that

n <33 @7

for every nonnegative integer, n.
Hint: Verity (2.7) for n < 4 by explicit calculation.

Exam Problems

Problem 2.10.
Except for an easily repaired omission, the following proof using the Well Ordering
Principle shows that every amount of postage that can be paid exactly using only
10 cent and 15 cent stamps, is divisible by 5.

Namely, let the notation “j | k& indicate that integer j is a divisor of integer k,
and let S'(n) mean that exactly n cents postage can be assembled using only 10 and
15 cent stamps. Then the proof shows that

S(n) IMPLIES 5 | n, for all nonnegative integers . (2.8)

Fill in the missing portions (indicated by “...”) of the following proof of (2.8), and
at the end, identify the minor mistake in the proof and how to fix it.

Let C be the set of counterexamples to (2.8), namely

C:={n| Sn)and NOT(5 | n)}

http://mathworld.wolfram.com/EulersSumofPowersConjecture.html

“mecs” — 2016/6/16 — 11:14 — page 40 — #48

Chapter 2 The Well Ordering Principle

Assume for the purpose of obtaining a contradiction that C is nonempty.
Then by the WOP, there is a smallest number, m € C. Then S(m —10)
or S(m — 15) must hold, because the m cents postage is made from 10
and 15 cent stamps, so we remove one.

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..
Butif 5 | (m — 10), then 5 | m, because. ..
contradicting the fact that m is a counterexample.

Next suppose S(m — 15) holds. Then the proof for m — 10 carries
over directly for mm — 15 to yield a contradiction in this case as well.
Since we get a contradiction in both cases, we conclude that C must
be empty. That is, there are no counterexamples to (2.8), which proves
that (2.8) holds.

The proof makes an implicit assumption about the value of m. State the assump-
tion and justify it in one sentence.

Problem 2.11. (a) Prove using the Well Ordering Principle that, using 6¢, 14¢, and
21¢ stamps, it is possible to make any amount of postage over 50¢. To save time,
you may specify assume without proof that 50¢, 51¢, ... 100¢ are all makeable, but
you should clearly indicate which of these assumptions your proof depends on.

(b) Show that 49¢ is not makeable.

Problem 2.12.
We’ll use the Well Ordering Principle to prove that for every positive integer, n, the
sum of the first n odd numbers is 72, that is,

n—1

> oQi+1) =n? (2.9)

i=0

forall n > 0.
Assume to the contrary that equation (2.9) failed for some positive integer, 7.
Let m be the least such number.

(a) Why must there be such an m?

(b) Explain why m > 2.

“mecs” — 2016/6/16 — 11:14 — page 41 — #49

2.4. Well Ordered Sets 41

(¢) Explain why part (b) implies that

m—1

dDQRE-D+1)=(m-1)> (2.10)
i=1
(d) What term should be added to the left hand side of (2.10) so the result equals
m
do@iE -1+ 1)?
i=1

(e) Conclude that equation (2.9) holds for all positive integers, 7.

Problem 2.13.
Use the Well Ordering Principle (WOP) to prove that
24+4+4+---+2n=nn+1) 2.11)
foralln > 0.
Problem 2.14.
Prove by the Well Ordering Principle that for all nonnegative integers, n:
1\ 2
03+13+23+---+n3:(@) . (2.12)
Problem 2.15.
Use the Well Ordering Principle to prove that
1 2
1242343 44 tnmnt 1y = DO+ 2.13)

3

for all integers, n > 1.

Problem 2.16.

Say a number of cents is makeable if it is the value of some set of 6 cent and 15
cent stamps. Use the Well Ordering Principle to show that every integer that is a
multiple of 3 and greater than or equal to twelve is makeable.

“mecs” — 2016/6/16 — 11:14 — page 42 — #50

42

Chapter 2 The Well Ordering Principle

Problem 2.17.
An n-bit AND-circuit has 0-1 valued inputs ag,ai,...,an—1 and one output ¢
whose value will be

¢ =ag ANDaj AND --- AND ay—1.

There are various ways to design an n-bit AND-circuit. A serial design is simply
a series of AND-gates, each with one input being a circuit input a; and the other
input being the output of the previous gate as shown in Figure 2.1.

We can also use a tree design. A 1-bit tree design is just a wire, that is ¢ ;1= aj.
Assuming for simplicity that n is a power of two, an n-input tree circuit for n > 1
simply consists of two 7 /2-input tree circuits whose outputs are AND’d to produce
output ¢, as in Figure 2.2. For example, a 4-bit tree design circut is shown in
Figure 2.3.

(a) How many AND-gates are in the n-input serial circuit?
(b) The “speed” or latency of a circuit is the largest number of gates on any path

from an input to an output. Briefly explain why the tree circuit is exponentially
faster than the serial circuit.

(c) Assume n is a power of two. Prove that the n-input tree circuit has n — 1
AND-gates.

Problems for Section 2.4

Homework Problems

Problem 2.18.
Complete the proof of Lemma 2.4.5 by showing that the number ng + fs is the
minimum element in S.

Practice Problems

Problem 2.19.

Indicate which of the following sets of numbers have a minimum element and
which are well ordered. For those that are not well ordered, give an example of
a subset with no minimum element.

(a) The integers > —/2.
(b) The rational numbers > /2.

(c) The set of rationals of the form 1/n where 7 is a positive integer.

“mecs” — 2016/6/16 — 11:14 — page 43 — #51

2.4. Well Ordered Sets

Figure 2.1 A serial AND-circuit.

AND

43

“mecs” — 2016/6/16 — 11:14 — page 44 — #52

44

Chapter 2 The Well Ordering Principle

o 1 e an/z-, w2 au/2+l = n-1

AND

Figure 2.2 An n-bit AND-tree circuit.

Figure 2.3 A 4-bit AND-tree circuit.

“mecs” — 2016/6/16 — 11:14 — page 45 — #53

2.4. Well Ordered Sets 45

(d) The set G of rationals of the form m/n where m,n > 0 and n < g where g is
a googol, 10100,

(e) The set, IF, of fractions of the form n/(n + 1):

N N g e e e

0
l’

| =
W N
| w

(f) Let W ::= N U F be the set consisting of the nonnegative integers along with
all the fractions of the form n/(n + 1). Describe a length 5 decreasing sequence of
elements of W starting with 1,...length 50 decreasing sequence,. . . length 500.

Problem 2.20.
Use the Well Ordering Principle to prove that every finite, nonempty set of real
numbers has a minimum element.

Class Problems

Problem 2.21.
Prove that a set, R, of real numbers is well ordered iff there is no infinite decreasing
sequence of numbers R. In other words, there is no set of numbers ; € R such
that

ro>r1>ry>.... (2.14)

“mecs” — 2016/6/16 — 11:14 — page 46 — #54

“mecs” — 2016/6/16 — 11:14 — page 47 — #55

__|]
3 Logical Formulas

It is amazing that people manage to cope with all the ambiguities in the English
language. Here are some sentences that illustrate the issue:

e “You may have cake, or you may have ice cream.”
e “If pigs can fly, then you can understand the Chebyshev bound.”

e “If you can solve any problem we come up with, then you get an A for the
course.”

e “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream or
must you choose just one dessert? Pigs can’t fly, so does the second sentence say
anything about your understanding the Chebyshev bound? If you can solve some
problems we come up with, can you get an A for the course? And if you can’t
solve a single one of the problems, does it mean you can’t get an A? Finally, does
the last sentence imply that all Americans have the same dream—say of owning a
house—or might different Americans have different dreams—say, Eric dreams of
designing a killer software application, Tom of being a tennis champion, Albert of
being able to sing?

Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-
cial language for talking about logical relationships. This language mostly uses
ordinary English words and phrases such as “or,” “implies,” and “for all.” But
mathematicians give these words precise and unambiguous definitions.

Surprisingly, in the midst of learning the language of logic, we’ll come across
the most important open problem in computer science—a problem whose solution
could change the world.

“mecs” — 2016/6/16 — 11:14 — page 48 — #56

48

Chapter 3 Logical Formulas

3.1 Propositions from Propositions

In English, we can modify, combine, and relate propositions with words such as
“not,” “and,” “or,” “implies,” and “if-then.” For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So, we’ll frequently use variables such as P and
0 in place of specific propositions such as “All humans are mortal” and “2 4 3 =
5. The understanding is that these propositional variables, like propositions, can
take on only the values T (true) and F (false). Propositional variables are also
called Boolean variables after their inventor, the nineteenth century mathematician
George—you guessed it—Boole.

3.1.1 NOT, AND, and OR

Mathematicians use the words NOT, AND, and OR for operations that change or
combine propositions. The precise mathematical meaning of these special words
can be specified by truth tables. For example, if P is a proposition, then so is
“NOT(P),” and the truth value of the proposition “NOT(P)” is determined by the
truth value of P according to the following truth table:

P | NOT(P)
T F
F T

The first row of the table indicates that when proposition P is true, the proposition
“NOT(P)” is false. The second line indicates that when P is false, “NOT(P)” is
true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible set of truth values for the variables. For example, the truth table for the
proposition “P AND Q” has four lines, since there are four settings of truth values
for the two variables:

P Q|PANDQ
T T T
T F F
F T F
F F F

“mecs” — 2016/6/16 — 11:14 — page 49 — #57

3.1. Propositions from Propositions 49

According to this table, the proposition “P AND Q is true only when P and Q are
both true. This is probably the way you ordinarily think about the word “and.”
There is a subtlety in the truth table for “P OR Q”:

Q| PorQ

CECRERTIEY
e
G

The first row of this table says that “P OR Q” is true even if both P and Q are true.
This isn’t always the intended meaning of “or” in everyday speech, but this is the
standard definition in mathematical writing. So if a mathematician says, “You may
have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of having both cake and ice cream, you
should combine them with the exclusive-or operation, XOR:

P Q| PXORQ
T T F
T F T
F T T
F F F

3.1.2 IMPLIES

The combining operation with the least intuitive technical meaning is “implies.”
Here is its truth table, with the lines labeled so we can refer to them later.

P Q| P IMPLIES O

T T T (tt)
T F F (tf)
F T T (ft)
F F T (ff)

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements
are of the if-then form!

Let’s experiment with this definition. For example, is the following proposition
true or false?

“mecs” — 2016/6/16 — 11:14 — page 50 — #58

50

Chapter 3 Logical Formulas

“If Goldbach’s Conjecture is true, then x> > 0 for every real number x.”

Now, we already mentioned that no one knows whether Goldbach’s Conjecture,
Proposition 1.1.6, is true or false. But that doesn’t prevent you from answering the
question! This proposition has the form P IMPLIES Q where the hypothesis, P,
is “Goldbach’s Conjecture is true” and the conclusion, Q, is “x= > 0 for every
real number x.” Since the conclusion is definitely true, we’re on either line (tt) or
line (ft) of the truth table. Either way, the proposition as a whole is true!

One of our original examples demonstrates an even stranger side of implications.

“If pigs fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is
true or false. Curiously, the answer has nothing to do with whether or not you can
understand the Chebyshev bound. Pigs do not fly, so we’re on either line (ft) or line
(ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.
So we’re on line (tf) of the truth table, and the proposition is false.

False Hypotheses

It often bothers people when they first learn that implications which have false
hypotheses are considered to be true. But implications with false hypotheses hardly
ever come up in ordinary settings, so there’s not much reason to be bothered by
whatever truth assignment logicians and mathematicians choose to give them.
There are, of course, good reasons for the mathematical convention that implica-
tions are true when their hypotheses are false. An illustrative example is a system
specification (see Problem 3.13) which consisted of a series of, say, a dozen rules,

if C;: the system sensors are in condition 7, then A;: the system takes
action i,

or more concisely,
C; IMPLIES A;

for 1 < i < 12. Then the fact that the system obeys the specification would be
expressed by saying that the AND

[C1 IMPLIES A1] AND [C3 IMPLIES A3] AND --- AND [C12 IMPLIES A13] (3.1)

of these rules was always true.

“mecs” — 2016/6/16 — 11:14 — page 51 — #59

3.2. Propositional Logic in Computer Programs 51

For example, suppose only conditions C; and Cs5 are true, and the system indeed
takes the specified actions A, and As. This means that in this case the system is
behaving according to specification, and accordingly we want the formula (3.1) to
come out true. Now the implications C, IMPLIES A, and C5 IMPLIES As are
both true because both their hypotheses and their conclusions are true. But in order
for (3.1) to be true, we need all the other implications with the false hypotheses C;
for i # 2,5 to be true. This is exactly what the rule for implications with false
hypotheses accomplishes.

3.1.3 If and Only If

Mathematicians commonly join propositions in one additional way that doesn’t
arise in ordinary speech. The proposition “P if and only if Q” asserts that P and
0 have the same truth value. Either both are true or both are false.

P Q|PIFFQ
T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number
X:
x2—4>01FF|x| > 2.

For some values of x, both inequalities are true. For other values of x, neither
inequality is true. In every case, however, the IFF proposition as a whole is true.

3.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if (x>0 1] (x <=0 && y > 100))

(further instructions)

Java uses the symbol | | for “OR,” and the symbol && for “AND.” The further
instructions are carried out only if the proposition following the word if is true.
On closer inspection, this big expression is built from two simpler propositions.

“mecs” — 2016/6/16 — 11:14 — page 52 — #60

52

Chapter 3 Logical Formulas

Let A be the proposition that x > 0, and let B be the proposition that y > 100.
Then we can rewrite the condition as

A OR (NOT(A) AND B). 3.2)

3.2.1 Truth Table Calculation

A truth table calculation reveals that the more complicated expression 3.2 always
has the same truth value as
A OR B. 3.3)

We begin with a table with just the truth values of A and B:

A B|A OrR (NOT(4) AND B)| AORB
T T
T F
F T
F F

These values are enough to fill in two more columns:

A B|A OrR (NoT(A) AND B)| AORB
T T F T
T F F T
F T T T
F F T F

Now we have the values needed to fill in the AND column:

A B|A OrR (NoT(A) AND B)| AORB
T T F F T
T F F F T
F T T T T
F F T F F

and this provides the values needed to fill in the remaining column for the first OR:

A B|A orR (NOT(A) AND B)| AORB

T T T F F T
T F T F F T
F T T T T T
F F F T F F

Expressions whose truth values always match are called equivalent. Since the two
emphasized columns of truth values of the two expressions are the same, they are

“mecs” — 2016/6/16 — 11:14 — page 53 — #61

3.2. Propositional Logic in Computer Programs 53

equivalent. So we can simplify the code snippet without changing the program’s
behavior by replacing the complicated expression with an equivalent simpler one:

if (x>0 || y > 100)

(further instructions)
The equivalence of (3.2) and (3.3) can also be confirmed reasoning by cases:

A is T. An expression of the form (T OR anything) is equivalent to T. Since A is T
both (3.2) and (3.3) in this case are of this form, so they have the same truth
value, namely, T.

Ais F. An expression of the form (F OR anything) will have same truth value as
anything. Since A is F, (3.3) has the same truth value as B.

An expression of the form (T AND anything) is equivalent to anything, as is
any expression of the form F OR anything. So in this case A OR (NOT(A) AND
B) is equivalent to (NOT(A) AND B), which in turn is equivalent to B.

Therefore both (3.2) and (3.3) will have the same truth value in this case,
namely, the value of B.

Simplifying logical expressions has real practical importance in computer sci-
ence. Expression simplification in programs like the one above can make a program
easier to read and understand. Simplified programs may also run faster, since they
require fewer operations. In hardware, simplifying expressions can decrease the
number of logic gates on a chip because digital circuits can be described by logical
formulas (see Problems 3.5 and 3.6). Minimizing the logical formulas corresponds
to reducing the number of gates in the circuit. The payoff of gate minimization is
potentially enormous: a chip with fewer gates is smaller, consumes less power, has
a lower defect rate, and is cheaper to manufacture.

3.2.2 Cryptic Notation

Java uses symbols like “&&” and in place of AND and OR. Circuit designers
use “” and “+4,” and actually refer to AND as a product and OR as a sum. Mathe-
maticians use still other symbols, given in the table below.

“||7’

“mecs” — 2016/6/16 — 11:14 — page 54 — #62

54

Chapter 3 Logical Formulas

English Symbolic Notation
NOT(P) —P (alternatively, P)
P AND Q PAOQ

PoOrRQ PvQ

PIMPLIES Q P — O
if P then Q P—Q
P 1FF O P<«~—Q
P XOR Q PO

For example, using this notation, “If P AND NOT(Q), then R” would be written:
(P AQ)— R.

The mathematical notation is concise but cryptic. Words such as “AND” and
“OR” are easier to remember and won’t get confused with operations on numbers.
We will often use P as an abbreviation for NOT(P), but aside from that, we mostly
stick to the words—except when formulas would otherwise run off the page.

3.3 Equivalence and Validity

3.3.1 Implications and Contrapositives

Do these two sentences say the same thing?

If I am hungry, then I am grumpy.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.
Let P be the proposition “I am hungry” and Q be “I am grumpy.” The first sentence
says “P IMPLIES Q7 and the second says “NOT(Q) IMPLIES NOT(P).” Once
more, we can compare these two statements in a truth table:

P | Q| (P IMPLIES Q) | (NOT(Q) IMPLIES NOT(P))
T

T|T F T F
T|F F T F F
F|T T F T T
F|F T T T T

Sure enough, the highlighted columns showing the truth values of these two state-
ments are the same. A statement of the form “NOT(Q) IMPLIES NOT(P)” is called

“mecs” — 2016/6/16 — 11:14 — page 55 — #63

3.3. Equivalence and Validity 55

the contrapositive of the implication “P IMPLIES Q.” The truth table shows that
an implication and its contrapositive are equivalent—they are just different ways of
saying the same thing.

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P.”
The converse to our example is:

If I am grumpy, then I am hungry.
This sounds like a rather different contention, and a truth table confirms this suspi-

cion:
P | Q| PIMPLIES Q | Q IMPLIES P

T|T T T
T|F F T
F|T T F
F|F T T

Now the highlighted columns differ in the second and third row, confirming that an
implication is generally not equivalent to its converse.

One final relationship: an implication and its converse together are equivalent to
an iff statement, specifically, to these two statements together. For example,

If I am grumpy then I am hungry, and if I am hungry then I am grumpy.
are equivalent to the single statement:
I am grumpy iff I am hungry.

Once again, we can verify this with a truth table.

P | Q| (PIMPLIES Q) AND (Q IMPLIES P) | P IFF Q
T[T T T T T
T|F F F T F
F|T T F F F
F|F T T T T

The fourth column giving the truth values of
(P IMPLIES Q) AND (Q IMPLIES P)

is the same as the sixth column giving the truth values of P IFF Q, which confirms
that the AND of the implications is equivalent to the IFF statement.

“mecs” — 2016/6/16 — 11:14 — page 56 — #64

56

Chapter 3 Logical Formulas

3.3.2 Validity and Satisfiability

A valid formula is one which is always true, no matter what truth values its vari-
ables may have. The simplest example is

P OR NOT(P).

You can think about valid formulas as capturing fundamental logical truths. For
example, a property of implication that we take for granted is that if one statement
implies a second one, and the second one implies a third, then the first implies the
third. The following valid formula confirms the truth of this property of implication.

[(P IMPLIES Q) AND (Q IMPLIES R)| IMPLIES (P IMPLIES R).

Equivalence of formulas is really a special case of validity. Namely, statements
F and G are equivalent precisely when the statement (F IFF G) is valid. For
example, the equivalence of the expressions (3.3) and (3.2) means that

(A OR B) IFF (A OR (NOT(A) AND B))

is valid. Of course, validity can also be viewed as an aspect of equivalence. Namely,
a formula is valid iff it is equivalent to T.

A satisfiable formula is one which can sometimes be true—that is, there is some
assignment of truth values to its variables that makes it true. One way satisfiabil-
ity comes up is when there are a collection of system specifications. The job of
the system designer is to come up with a system that follows all the specs. This
means that the AND of all the specs must be satisfiable or the designer’s job will be
impossible (see Problem 3.13).

There is also a close relationship between validity and satisfiability: a statement
P is satisfiable iff its negation NOT(P) is not valid.

3.4 The Algebra of Propositions

3.4.1 Propositions in Normal Form

Every propositional formula is equivalent to a “sum-of-products” or disjunctive
form. More precisely, a disjunctive form is simply an OR of AND-terms, where
each AND-term is an AND of variables or negations of variables, for example,

(A AND B) OR (A AND C). 3.4

“mecs” — 2016/6/16 — 11:14 — page 57 — #65

3.4. The Algebra of Propositions 57
You can read a disjunctive form for any propositional formula directly from its

truth table. For example, the formula
A AND (BORC) 3.5

has truth table:
A AND (BORC)

e = = g |
e s = | S
e e = =] O
CI I R R RE R

The formula (3.5) is true in the first row when A, B, and C are all true, that is, where
A AND B AND C is true. It is also true in the second row where A AND B AND C
is true, and in the third row when A AND B AND C is true, and that’s all. So 3.5
is true exactly when

(A AND B AND C) OR (A AND B AND C) OR (A AND B AND C) (3.6)

is true.

The expression (3.6) is a disjunctive form where each AND-term is an AND of
every one of the variables or their complements in turn. An expression of this form
is called a disjunctive normal form (DNF). A DNF formula can often be simplified
into a smaller disjunctive form. For example, the DNF (3.6) further simplifies to
the equivalent disjunctive form (3.4) above.

Applying the same reasoning to the F entries of a truth table yields a conjunctive
form for any formula—an AND of OR-terms in which the OR-terms are OR’s only
of variables or their negations. For example, formula (3.5) is false in the fourth
row of its truth table (3.4.1) where A is T, B is F and C is F. But this is exactly
the one row where (4 OR B OR C) is F! Likewise, the (3.5) is false in the fifth
row which is exactly where (4 OR B OR C) is F. This means that (3.5) will be F
whenever the AND of these two OR-terms is false. Continuing in this way with the
OR-terms corresponding to the remaining three rows where (3.5) is false, we get a
conjunctive normal form (CNF) that is equivalent to (3.5), namely,

(AOR B OR C) AND (A OR B OR C) AND (A OR B OR C)AND
(AOR B ORC) AND (A OR B OR C)

The methods above can be applied to any truth table, which implies

“mecs” — 2016/6/16 — 11:14 — page 58 — #66

58

Chapter 3 Logical Formulas

Theorem 3.4.1. Every propositional formula is equivalent to both a disjunctive
normal form and a conjunctive normal form.

3.4.2 Proving Equivalences

A check of equivalence or validity by truth table runs out of steam pretty quickly:
a proposition with n variables has a truth table with 2” lines, so the effort required
to check a proposition grows exponentially with the number of variables. For a
proposition with just 30 variables, that’s already over a billion lines to check!

An alternative approach that sometimes helps is to use algebra to prove equiv-
alence. A lot of different operators may appear in a propositional formula, so a
useful first step is to get rid of all but three: AND, OR, and NOT. This is easy
because each of the operators is equivalent to a simple formula using only these
three. For example, A IMPLIES B is equivalent to NOT(A4) OR B. Formulas using
onlyAND, OR, and NOT for the remaining operators are left to Problem 3.14.

We list below a bunch of equivalence axioms with the symbol “ «<— " between
equivalent formulas. These axioms are important because they are all that’s needed
to prove every possible equivalence. We’ll start with some equivalences for AND’s
that look like the familiar ones for multiplication of numbers:

AAND B <— BAND A (commutativity of AND)
(3.7

(AAND B) ANDC <«— A AND (B AND C) (associativity of AND)
(3.8)

TANDA «— A (identity for AND)

FaANDA «— F (zero for AND)

A AND (BORC) «<— (A AND B) OR (A AND C) (distributivity of AND over OR)
(3.9)

Associativity (3.8) justifies writing A AND B AND C without specifying whether
it is parenthesized as A AND (B AND C) or (A AND B) AND C. Both ways of
inserting parentheses yield equivalent formulas.

Unlike arithmetic rules for numbers, there is also a distributivity law for “sums”
over “products:”

AOR(BANDC) «<— (AOR B)AND (AOR C) (distributivity of OR over AND)
(3.10)

“mecs” — 2016/6/16 — 11:14 — page 59 — #67

3.4. The Algebra of Propositions 59

Three more axioms that don’t directly correspond to number properties are

AAND A «— A (idempotence for AND)
AANDA <« F (contradiction for AND) (3.11)
NOT(A) «— A (double negation) 3.12)

There are a corresponding set of equivalences for OR which we won’t bother to
list, except for the OR rule corresponding to contradiction for AND (3.11):

AORA «— T (validity for OR) (3.13)

Finally, there are DeMorgan’s Laws which explain how to distribute NOT’s over
AND’s and OR’s:

NOT(A AND B) <— AORB (DeMorgan for AND) (3.14)
NOT(A OR B) «— A AND B (DeMorgan for OR) (3.15)

All of these axioms can be verified easily with truth tables.

These axioms are all that’s needed to convert any formula to a disjunctive normal
form. We can illustrate how they work by applying them to turn the negation of
formula (3.5),

NOT((A AND B) OR (A AND C)). (3.16)

into disjunctive normal form.
We start by applying DeMorgan’s Law for OR (3.15) to (3.16) in order to move
the NOT deeper into the formula. This gives

NOT(A AND B) AND NOT(A AND C).

Now applying Demorgan’s Law for AND (3.14) to the two innermost AND-terms,
gives
(AOR B) AND (AOR C). 3.17)

At this point NOT only applies to variables, and we won’t need Demorgan’s Laws
any further.

Now we will repeatedly apply (3.9), distributivity of AND over OR, to turn (3.17)
into a disjunctive form. To start, we’ll distribute (4 OR B) over AND to get

((AOR B) AND A) OR ((A OR B) AND C).
Using distributivity over both AND’s we get

((A AND A) OR (B AND A)) OR ((A AND C) OR (B AND C)).

“mecs” — 2016/6/16 — 11:14 — page 60 — #68

60

Chapter 3 Logical Formulas

By the way, we’ve implicitly used commutativity (3.7) here to justify distributing
over an AND from the right. Now applying idempotence to remove the duplicate
occurrence of A we get

(AOR (B AND A)) OR ((A AND C) OR (B AND C)).

Associativity now allows dropping the parentheses around the terms being OR’d to
yield the following disjunctive form for (3.16):

A OR (B AND A) OR (A AND C) OR (B AND C). (3.18)

The last step is to turn each of these AND-terms into a disjunctive normal form
with all three variables A, B, and C. We’ll illustrate how to do this for the second
AND-term (B AND A). This term needs to mention C to be in normal form. To
introduce C, we use validity for OR and identity for AND to conclude that

(B AND A) <> (B AND A) AND (C OR C).
Now distributing (B AND A) over the OR yields the disjunctive normal form
(B AND A AND C) OR (B AND A AND C).

Doing the same thing to the other AND-terms in (3.18) finally gives a disjunctive
normal form for (3.5):

(A AND B AND C) OR (A AND B AND C) OR
(A AND B AND C) OR (4 AND B AND C) OR
(B AND A AND C) OR (B AND A AND C) OR
(A AND C AND B) OR (4 AND C AND B) OR
(B AND C AND A) OR (B AND C AND A).

Using commutativity to sort the term and OR-idempotence to remove duplicates,
finally yields a unique sorted DNF:

(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C).

This example illustrates a strategy for applying these equivalences to convert any
formula into disjunctive normal form, and conversion to conjunctive normal form
works similarly, which explains:

“mecs” — 2016/6/16 — 11:14 — page 61 — #69

3.5. The SAT Problem 61

Theorem 3.4.2. Any propositional formula can be transformed into disjunctive
normal form or a conjunctive normal form using the equivalences listed above.

What has this got to do with equivalence? That’s easy: to prove that two for-
mulas are equivalent, convert them both to disjunctive normal form over the set of
variables that appear in the terms. Then use commutativity to sort the variables and
AND-terms so they all appear in some standard order. We claim the formulas are
equivalent iff they have the same sorted disjunctive normal form. This is obvious
if they do have the same disjunctive normal form. But conversely, the way we read
off a disjunctive normal form from a truth table shows that two different sorted
DNF’s over the same set of variables correspond to different truth tables and hence
to inequivalent formulas. This proves

Theorem 3.4.3 (Completeness of the propositional equivalence axioms). Two propo-
sitional formula are equivalent iff they can be proved equivalent using the equiva-
lence axioms listed above.

The benefit of the axioms is that they leave room for ingeniously applying them
to prove equivalences with less effort than the truth table method. Theorem 3.4.3
then adds the reassurance that the axioms are guaranteed to prove every equiva-
lence, which is a great punchline for this section. But we don’t want to mislead
you: it’s important to realize that using the strategy we gave for applying the ax-
ioms involves essentially the same effort it would take to construct truth tables, and
there is no guarantee that applying the axioms will generally be any easier than
using truth tables.

3.5 The SAT Problem

Determining whether or not a more complicated proposition is satisfiable is not so
easy. How about this one?

(P OR Q OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears, but as with testing validity, this approach quickly bogs down
for formulas with many variables because truth tables grow exponentially with the
number of variables.

Is there a more efficient solution to SAT? In particular, is there some brilliant
procedure that determines SAT in a number of steps that grows polynomially—like

“mecs” — 2016/6/16 — 11:14 — page 62 — #70

62

Chapter 3 Logical Formulas

n? or n'*—instead of exponentially—2"—whether any given proposition of size n

is satisfiable or not? No one knows. And an awful lot hangs on the answer.

The general definition of an “efficient” procedure is one that runs in polynomial
time, that is, that runs in a number of basic steps bounded by a polynomial in s,
where s is the size of an input. It turns out that an efficient solution to SAT would
immediately imply efficient solutions to many other important problems involving
scheduling, routing, resource allocation, and circuit verification across multiple dis-
ciplines including programming, algebra, finance, and political theory. This would
be wonderful, but there would also be worldwide chaos. Decrypting coded mes-
sages would also become an easy task, so online financial transactions would be
insecure and secret communications could be read by everyone. Why this would
happen is explained in Section 9.12.

Of course, the situation is the same for validity checking, since you can check for
validity by checking for satisfiability of a negated formula. This also explains why
the simplification of formulas mentioned in Section 3.2 would be hard—validity
testing is a special case of determining if a formula simplifies to T.

Recently there has been exciting progress on SAT-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to SAT-solver meth-
ods, and for formulas that are unsatisfiable, SAT-solvers generally get nowhere.

So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of
determining whether or not SAT has a polynomial time solution is known as the
“P vs. NP” problem.! It is the outstanding unanswered question in theoretical
computer science. It is also one of the seven Millenium Problems: the Clay Institute
will award you $1,000,000 if you solve the P vs. NP problem.

3.6 Predicate Formulas

3.6.1 Quantifiers

The “for all” notation, V, has already made an early appearance in Section 1.1. For
example, the predicate
éﬁx Z 0’7

P stands for problems whose instances can be solved in time that grows polynomially with the
size of the instance. NP stands for nondeterministtic polynomial time, but we’ll leave an explanation
of what that is to texts on the theory of computational complexity.

http://www.claymath.org/millennium/

“mecs” — 2016/6/16 — 11:14 — page 63 — #71

3.6. Predicate Formulas 63

is always true when x is a real number. That is,
VxeR.x*>0

is a true statement. On the other hand, the predicate
“5x2—7=0"

is only sometimes true; specifically, when x = + \/ﬁ There is a “there exists”
notation, 3, to indicate that a predicate is true for at least one, but not necessarily
all objects. So

IxeR.5x2-7=0

is true, while
Vx eR.5x2—-7=0

is not true.

There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True
For all x € D, P(x) is true. Forall x € R, x2 > 0.
P(x) is true for every x in the set, D. x2 > 0 forevery x € R.

Sometimes True

There is an x € D such that P(x) is true. There is an x € R such that 5x% — 7 = 0.
P (x) is true for some x in the set, D. 5x% —7 = 0 for some x € R.
P(x) is true for at least one x € D. 5x2 —7 = 0 for at least one x € R.

All these sentences “quantify” how often the predicate is true. Specifically, an
assertion that a predicate is always true is called a universal quantification, and an
assertion that a predicate is sometimes true is an existential quantification. Some-
times the English sentences are unclear with respect to quantification:

If you can solve any problem we come up with,
then you get an A for the course. (3.19)

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential quantification:

you can solve every problem we come up with, (3.20)

“mecs” — 2016/6/16 — 11:14 — page 64 — #72

64

Chapter 3 Logical Formulas

or maybe
you can solve at least one problem we come up with. 3.21)

To be precise, let Probs be the set of problems we come up with, Solves(x) be
the predicate “You can solve problem x,” and G be the proposition, “You get an A
for the course.” Then the two different interpretations of (3.19) can be written as
follows:

(Vx € Probs. Solves(x)) IMPLIES G, for (3.20),
(3x € Probs. Solves(x)) IMPLIES G. for (3.21).

3.6.2 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, we al-
ready described

Goldbach’s Conjecture 1.1.6: Every even integer greater than 2 is the
sum of two primes.

Let’s write this out in more detail to be precise about the quantification:

For every even integer n greater than 2, there exist primes p and ¢ such
thatn = p +gq.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

Vn € Evens dp € Primes 3¢ € Primes. n = p 4+ q.

for every even there exist primes
integer n > 2 p and q such that

3.6.3 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H(a, d)
to be “American a has dream d.” Now the sentence could mean there is a single
dream that every American shares—such as the dream of owning their own home:

dd e DVae€ A.H(a,d)

“mecs” — 2016/6/16 — 11:14 — page 65 — #73

3.6. Predicate Formulas 65

Or it could mean that every American has a personal dream:
Yae A3d € D.H(a,d)

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think about work at all.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement
that every even number > 2 is the sum of the same two primes:

dp € Primes g € Primes. Yn € Evens n = p 4 q.

there exist primes for every even
p and g such that integern > 2

3.6.4 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
Vx € D3y € D. Q(x, y) we’d write Yx3y. Q(x, y). The unnamed nonempty set
that x and y range over is called the domain of discourse, or just plain domain, of
the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

Vn.n € Evens IMPLIES (3 p3q. p € Primes AND g € Primes AND#n = p + ¢q).

3.6.5 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

Not everyone likes ice cream.

There is someone who does not like ice cream.

The equivalence of these sentences is a instance of a general equivalence that holds
between predicate formulas:

NOT(Vx. P(x)) isequivalentto 3Ix. NOT(P(x)). (3.22)

Similarly, these sentences mean the same thing:

There is no one who likes being mocked.

Everyone dislikes being mocked.

“mecs” — 2016/6/16 — 11:14 — page 66 — #74

66

Chapter 3 Logical Formulas

The corresponding predicate formula equivalence is
NOT(3x. P(x)) isequivalentto Vx. NOT(P(x)). (3.23)

Note that the equivalence (3.23) follows directly by negating both sides the equiv-
alence (3.22).

The general principle is that moving a NOT across a quantifier changes the kind
of quantifier.

These equivalences are called De Morgan’s Laws for Quantifiers because they
correspond directly to De Morgan’s Laws for propositional formulas if we rewrite
Vx.P(x) as a (possibly infinite) conjunction AND,.P(x) and Ix. NOT(P(x)) as
the disjunction OR. NOT(P(x)).

3.6.6 Validity for Predicate Formulas

The idea of validity extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what the domain of discourse may be, no matter
what values its variables may take over the domain, and no matter what interpreta-
tions its predicate variables may be given. For example, the equivalence (3.22) that
gives the rule for negating a universal quantifier means that the following formula
is valid:

NOT(Vx. P(x)) IFF 3x. NOT(P(x)). (3.24)

Another useful example of a valid assertion is
dxVy. P(x,y) IMPLIES Vydx. P(x, y). (3.25)
Here’s an explanation why this is valid:

Let D be the domain for the variables and Py be some binary predi-
cate” on D. We need to show that if

dx € D.Vy € D. Py(x,y) (3.26)
holds under this interpretation, then so does
Vy € D3x € D. Py(x,y). (3.27)

So suppose (3.26) is true. Then by definition of 3, this means that some
element dg € D has the property that

Vy e D. P()(d(),y).

2That is, a predicate that depends on two variables.

“mecs” — 2016/6/16 — 11:14 — page 67 — #75

3.7. References 67

By definition of V, this means that
Py(do.d)

is true for all d € D. So given any d € D, there is an element in D,
namely, dy, such that Py(dp, d) is true. But that’s exactly what (3.27)
means, so we’ve proved that (3.27) holds under this interpretation, as
required.

We hope this is helpful as an explanation, but we don’t really want to call it a
“proof.” The problem is that with something as basic as (3.25), it’s hard to see
what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (3.25) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (3.25), the formula

Vy3dx. P(x,y) IMPLIES dxVy. P(x,y). (3.28)

is not valid. We can prove this just by describing an interpretation where the hy-
pothesis, Vy3x. P(x, y), is true but the conclusion, AxVy. P(x, y), is not true. For
example, let the domain be the integers and P(x, y) mean x > y. Then the hy-
pothesis would be true because, given a value, n, for y we could choose the value
of x to be n + 1, for example. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this that falsifies an assertion is called a counter model to that
assertion.

3.7 References

[18]

Problems for Section 3.1

Practice Problems

Problem 3.1.

Some people are uncomfortable with the idea that from a false hypothesis you can
prove everything, and instead of having P IMPLIES Q be true when P is false,
they want P IMPLIES Q to be false when P is false. This would lead to IMPLIES
having the same truth table as what propositional connective?

“mecs” — 2016/6/16 — 11:14 — page 68 — #76

68

Chapter 3 Logical Formulas

Problem 3.2.
Your class has a textbook and a final exam. Let P, O, and R be the following
propositions:

P::= You get an A on the final exam.
Q::= You do every exercise in the book.
R::= You get an A in the class.

Translate following assertions into propositional formulas using P, Q, R and
the propositional connectives AND, NOT, IMPLIES.

(a) You get an A in the class, but you do not do every exercise in the book.

(b) You get an A on the final, you do every exercise in the book, and you get an A
in the class.

(c) To get an A in the class, it is necessary for you to get an A on the final.

(d) You get an A on the final, but you don’t do every exercise in this book; never-
theless, you get an A in this class.

Class Problems

Problem 3.3.

When the mathematician says to his student, “If a function is not continuous, then it
is not differentiable,” then letting D stand for “differentiable” and C for continuous,
the only proper translation of the mathematician’s statement would be

NOT(C) IMPLIES NOT(D),

or equivalently,
D 1MmpLIES C.

“mcs” — 2016/6/16 — 11:14 — page 69 — #77

3.7. References 69

But when a mother says to her son, “If you don’t do your homework, then you
can’t watch TV,” then letting 7" stand for “can watch TV” and H for “do your
homework,” a reasonable translation of the mother’s statement would be

NOT(H) IFF NOT(T),

or equivalently,
H 1FF T.

Explain why it is reasonable to translate these two IF-THEN statements in dif-
ferent ways into propositional formulas.

Homework Problems

Problem 3.4.
Describe a simple procedure which, given a positive integer argument, 7, produces
a width n array of truth-values whose rows would be all the possible truth-value

assignments for # propositional variables. For example, for n = 2, the array would
be:

CECEE R
SRR

Your description can be in English, or a simple program in some familiar lan-
guage such as Python or Java. If you do write a program, be sure to include some
sample output.

Problems for Section 3.2

Class Problems

Problem 3.5.
Propositional logic comes up in digital circuit design using the convention that T
corresponds to 1 and F to 0. A simple example is a 2-bit half-adder circuit. This
circuit has 3 binary inputs, a1, ag and b, and 3 binary outputs, c, 51, s9. The 2-bit
word ajag gives the binary representation of an integer, k, between 0 and 3. The
3-bit word cs15¢ gives the binary representation of k + b. The third output bit, c,
is called the final carry bit.

So if k and b were both 1, then the value of a1ag would be 01 and the value of
the output cs159 would 010, namely, the 3-bit binary representation of 1 + 1.

“mecs” — 2016/6/16 — 11:14 — page 70 — #78

70

Chapter 3 Logical Formulas

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is,
when k = 3 and b = 1. In that case, the value of c¢s;5¢ is 100, namely, the binary
representation of 3 + 1.

This 2-bit half-adder could be described by the following formulas:

Cop = b

S0 = agp XOR c¢g

c1 = ag AND co the carry into column 1
S1 = a1 XOR ¢

Ccp = aj AND cj the carry into column 2

Cc = ().

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-
adder with inputs a,,...,a1,ap and b and outputs ¢, sy, ...,S1,S0. That is, give
simple formulas for s; and ¢; for 0 <i < n 4 1, where ¢; is the carry into column
i+ 1l,andc = cp41-

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit
binary numbers a,, ...ajag and by, ... b1by.

Visualized as digital circuits, the above adders consist of a sequence of single-
digit half-adders or adders strung together in series. These circuits mimic ordinary
pencil-and-paper addition, where a carry into a column is calculated directly from
the carry into the previous column, and the carries have to ripple across all the
columns before the carry into the final column is determined. Circuits with this
design are called ripple-carry adders. Ripple-carry adders are easy to understand
and remember and require a nearly minimal number of operations. But the higher-
order output bits and the final carry take time proportional to n to reach their final
values.

(¢) How many of each of the propositional operations does your adder from part (b)
use to calculate the sum?

Homework Problems

Problem 3.6.
As in Problem 3.5, a digital circuit is called an (n + 1)-bit half-adder when it has
with n + 2 inputs

dp,...,d1,00,b

and n + 2 outputs
C,Sn,y...,51,50.

“mecs” — 2016/6/16 — 11:14 — page 71 — #79

3.7. References 71

The input-output specification of the half-adder is that, if the 0-1 values of inputs
an,...,ai,ap are taken to be the (n + 1)-bit binary representation of an integer, k,
then the 0-1 values of the outputs ¢, sy, ..., 51, So are supposed to be the (n + 2)-bit
binary representation of k + b.

For example suppose n = 2 and the values of axajag were 101. This is the
binary representation of k = 5. Now if the value of b was 1, then the output should
be the 4-bit representation of 5 + 1 = 6. Namely, the values of cs2515¢9 would be
0110.

There are many different circuit designs for half adders. The most straighforward
one is the “ripple carry” design described in Problem 3.5. We will now develop
a different design for a half-adder circuit called a parallel-design or “look-ahead
carry” half-adder. This design works by computing the values of higher-order digits
for both a carry of 0 and a carry of 1, in parallel. Then, when the carry from the
low-order digits finally arrives, the pre-computed answer can be quickly selected.

We’ll illustrate this idea by working out a parallel design for an (n + 1)-bit half-
adder.

Parallel-design half-adders are built out of parallel-design circuits called addl-
modules. The input-output behavior of an add1-module is just a special case of a
half-adder, where instead of an adding an input b to the input, the add1-module
always adds 1. That is, an (n 4 1)-bit add1-module has (n + 1) binary inputs

an’---’alsa()v

and n + 2 binary outputs
Cp}’l?---?pl’po'
If a, ...a1ap are taken to be the (n + 1)-bit representation of an integer, k, then

CPn - .. p1Po is supposed to be the (n + 2)-bit binary representation of k + 1.
So a 1-bit add1-module just has input ag and outputs ¢, pg where

Po :=ap XOR 1, (or more simply, po ::= NOT(ag)),
¢ =ap.
In the ripple-carry design, a double-size half-adder with 2(n + 1) inputs takes
twice as long to produce its output values as an (n 4 1)-input ripple-carry circuit.
With parallel-design add1-modules, a double-size add1-module produces its output

values nearly as fast as a single-size add1-modules. To see how this works, suppose
the inputs of the double-size module are

a2n+1’---,a1,aO

and the outputs are
C,P2n+1a ceey pla p0~

“mecs” — 2016/6/16 — 11:14 — page 72 — #80

72

Chapter 3 Logical Formulas

We will build the double-size add1-module by having two single-size add1-modules
work in parallel. The setup is illustrated in Figure 3.1.

Namely, the first single-size add1-module handles the first #» + 1 inputs. The in-
puts to this module are the low-order n + 1 input bits a,, .. ., a1, ag, and its outputs
will serve as the first n + 1 outputs py, ..., p1, po of the double-size module. Let
¢(1) be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order n + 1 input bits
a2p+1,--.,dn+2,dn+1. Callits first n + 1 outputs ry, ..., r1, 7o and let ¢(z) be its
carry.

(a) Write a formula for the carry, ¢, of the double-size add1-module solely in
terms of carries ¢(1) and ¢y of the single-size add1-modules.

(b) Complete the specification of the double-size add1-module by writing propo-
sitional formulas for the remaining outputs, p, i, for 1 <i <n 4 1. The formula
for pp+; should only involve the variables a,+, ri—1, and ¢(y).

(¢) Explain how to build an (n + 1)-bit parallel-design half-adder from an (n + 1)-
bit add1-module by writing a propositional formula for the half-adder output, s;,
using only the variables a;, p;, and b.

(d) The speed or latency of a circuit is determined by the largest number of gates
on any path from an input to an output. In an n-bit ripple carry circuit(Problem 3.5),
there is a path from an input to the final carry output that goes through about 2n
gates. In contrast, parallel half-adders are exponentially faster than ripple-carry
half-adders. Confirm this by determining the largest number of propositional opera-
tions, that is, gates, on any path from an input to an output of an n-bit add1-module.
(You may assume # is a power of 2.)

Exam Problems

Problem 3.7.

Claim. There are exactly two truth environments (assignments) for the variables
M, N, P,Q, R, S that satisfy the following formula:

(P OR Q)AND (Q OR R)AND (R OR S)AND (S OR P)AND M AND N
——— ~———— ——— —_———
clause (1) clause (2) clause (3) clause (4)

(a) This claim could be proved by truth-table. How many rows would the truth
table have?

“mecs” — 2016/6/16 — 11:14 — page 73 — #81

3.7. References 73

| co)=— (n+1)-bitaddl | coy—==— (n+1)-bitaddl

r r Iy

2(n+2)-bit add1 module

__

Ponti Pnt+2 Puti Pn P1 Po

Figure 3.1 Structure of a Double-size add! Module.

“mecs” — 2016/6/16 — 11:14 — page 74 — #82

74

Chapter 3 Logical Formulas

(b) Instead of a truth-table, prove this claim with an argument by cases according
to the truth value of P.

Problems for Section 3.3

Practice Problems

Problem 3.8.

Indicate whether each of the following propositional formulas is valid (V), satis-
fiable but not valid (S), or not satisfiable (N). For the satisfiable ones, indicate a
satisfying truth assignment.

M IMPLIES Q
M IMPLIES (P OR Q)
M TMPLIES [M AND (P IMPLIES M)]
(P OR Q) IMPLIES O
(P OR Q) IMPLIES (P AND Q)
(P OR Q) IMPLIES [M AND (P IMPLIES M)]
(P XOR Q) IMPLIES Q
(P XOR Q) IMPLIES (P OR Q)
(P XOR Q) IMPLIES [M AND (P IMPLIES M)]

Problem 3.9.
Show truth tables that verify the equivalence of the following two propositional
formulas

(P XOR Q),
NOT(P IFF Q).

Problem 3.10.
Prove that the propositional formulas

P OR QORR
and

(P ANDNOT(Q)) OR(Q ANDNOT(R)) OR (RANDNOT(P)) OR (P AND Q AND R).

“mecs” — 2016/6/16 — 11:14 — page 75 — #83

3.7. References 75

are equivalent.

Problem 3.11.
Prove by truth table that OR distributes over AND, namely,

P OR (Q AND R) isequivalentto (P OR Q) AND (P OR R) (3.29)

Class Problems

Problem 3.12. (a) Verity by truth table that
(P IMPLIES Q) OR (Q IMPLIES P)
is valid.

(b) Let P and Q be propositional formulas. Describe a single formula, R, using
only AND’s, OR’s, NOT’s, and copies of P and Q, such that R is valid iff P and Q
are equivalent.

(¢) A propositional formula is satisfiable iff there is an assignment of truth values
to its variables—an environment—which makes it true. Explain why

P isvalid iff NOT(P) is not satisfiable.

(d) A set of propositional formulas P, ..., Py is consistent iff there is an envi-
ronment in which they are all true. Write a formula, S, so that the set Py, ..., Py
is not consistent iff S is valid.

Problem 3.13.
This problem® examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally, and conversely, if the system is
functioning normally, then the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.

3Revised from Rosen, 5th edition, Exercise 1.1.36

“mecs” — 2016/6/16 — 11:14 — page 76 — #84

76

Chapter 3 Logical Formulas

3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using
four propositional variables:
L ::= file system locked,
Q ::= new messages are queued,
B ::= new messages are sent to the message buffer,

N ::= system functioning normally.

(b) Demonstrate that this set of specifications is satisfiable by describing a single
truth assignment for the variables L, @, B, N and verifying that under this assign-
ment, all the specifications are true.

(c) Argue that the assignment determined in part (b) is the only one that does the
job.

Problems for Section 3.4

Practice Problems

Problem 3.14.
A half dozen different operators may appear in propositional formulas, but just
AND, OR, and NOT are enough to do the job. That is because each of the operators
is equivalent to a simple formula using only these three operators. For example,
A IMPLIES B is equivalent to NOT(A) OR B. So all occurences of IMPLIES in a
formula can be replaced using just NOT and OR.

(a) Write formulas using only AND, OR, NOT that are equivalent to each of ATFF B
and A XOR B. Conclude that every propositional formula is equivalent to an AND-
OR-NOT formula.

(b) Explain why you don’t even need AND.
(c) Explain how to get by with the single operator NAND where A NAND B is

equivalent by definition to NOT(A AND B).

Class Problems

Problem 3.15.
The propositional connective NOR is defined by the rule

P NOR Q ::= (NOT(P) AND NOT(Q)).

“mecs” — 2016/6/16 — 11:14 — page 77 — #85

3.7. References 77

Explain why every propositional formula—possibly involving any of the usual op-
erators such as IMPLIES, XOR, ...—is equivalent to one whose only connective is
NOR.

Problem 3.16.
Explain how to read off a conjunctive form for a propositional formula directly
from a disjunctive form for its complement.

Problem 3.17.
Let P be the proposition with truth table given below. Write out both a disjunctive
and a conjunctive normal form for P.

| | | ||| | | | |
o S T T I T TS ST IR T e
I I I e e I I T S e I RS T ST T T K
I T I R I T TSI R T TP T R
e e e s e S e S T T e e e e S T 1R T e TR

Homework Problems

Problem 3.18.
Use the equivalence axioms of Section 3.4.2 to convert the formula

A XOR B XOR C

(a) ...to disjunctive (OR of AND’s) form,

“mecs” — 2016/6/16 — 11:14 — page 78 — #86

78

Chapter 3 Logical Formulas

(b) ...to conjunctive (AND of OR’s) form.

Exam Problems

Problem 3.19.
Let P be a propositional variable.

(a) Show how to express NOT(P) using P and a selection from among the con-
stant True, and the connectives XOR and AND.

(b) Explain why part (a) implies that every propositional formula is equivalent to
one whose only connectives are XOR and AND, along with the constant True.

(c) The constant True is essential for part (b). This follows because every proposi-
tional formula using only P, the connectives XOR and AND, and no constants—call
this a “PXA-formula”—is equivalent to P or to False. Prove this claim.

Hint: Use WOP and look at the shortest PXA-formula that might not be equivalent
to P or False.

Problems for Section 3.5

Class Problems

Problem 3.20.

The circuit-SAT problem is the problem of determining, for any given digital circuit
with one output wire, whether there are truth values that can be fed into the circuit
input wires which will lead the circuit to give output T.

It’s easy to see that any efficient way of solving the circuit-SAT problem would
yield an efficient way to solve the usual SAT problem for propositional formulas
(Section 3.5). Namely, for any formula F, just construct a circuit C using that
computes the values of the formula. Then there are inputs for which Cg gives
output true iff F is satisfiable. Constructing Cr from F is easy, using a binary
gate in Cr for each propositional connective in F. So an efficient circuit-SAT
procedure leads to an efficient SAT procedure.

Conversely, there is a simple recursive procedure that will construct, given C, a
formula E¢ that is equivalent to C in the sense that the truth value E¢ and the out-
put of C are the same for every truth assignment of the variables. The difficulty is
that, in general, the “equivalent” formula E ¢, will be exponentially larger than C.
For the purposes of showing that satifiability of circuits and satisfiability of formu-
las take roughly the same effort to solve, spending an exponential time translating
one problem to the other swamps any benefit in switching from one problem to the

“mecs” — 2016/6/16 — 11:14 — page 79 — #87

3.7. References 79

other.

So instead of a formula, E¢, that is equivalent to C, we aim instead for a formula
Fc that is “equisatisfiable” with C. That is, there will be input values that make
C output True iff there is a truth assignment that satisfies F¢. (In fact, F¢c and C
need not even use the same variables.) But now we make sure that the amount of
computation needed to construct F¢ is not much larger than the size of the circuit
C. In particular, the size of F¢ will also not be much larger than C.

The idea behind the construction of F¢ is that, given any digital circuit C with
binary gates and one output, we can assign a distinct variable to each wire of C.
Then for each gate of C, we can set up a propositional formula that represents the
constraints that the gate places on the values of its input and output wires. For
example, for an AND gate with input wire variables P and Q and output wire
variable R, the constraint proposition would be

(P AND Q) IFF R. (3.30)

(a) Given a circuit C, explain how to easily find a formula F¢ of size proportional
to the number of wires in C such that F¢ is satisfiable iff C gives output T for some
set of input values.

(b) Conclude that any efficient way of solving SAT would yield an efficient way
to solve circuit-SAT.

Homework Problems

Problem 3.21.

A 3-conjunctive form (3CF) formula is a conjunctive form formula in which each
OR-term is an OR of at most 3 variables or negations of variables. Although it
may be hard to tell if a propositional formula, F, is satisfiable, it is always easy to
construct a formula, C(F), that is

e in 3-conjunctive form,
e has at most 24 times as many occurrences of variables as F, and
e is satisfiable iff F' is satisfiable.

To construct C(F'), introduce a different new variables for each operator that
occurs in F. For example, if F' was

((P XOR Q) XOR R) OR (P AND §) (3.31)

“mecs” — 2016/6/16 — 11:14 — page 80 — #88

80

Chapter 3 Logical Formulas

we might use new variables X1, X, O, and A corresponding to the operator oc-
currences as follows:

((P XOR Q) XOR R) OR (P AND S).
X X5 o A

Next we write a formula that constrains each new variable to have the same truth
value as the subformula determined by its corresponding operator. For the example
above, these constraining formulas would be

X1 IFF (P XOR Q),
X, IFF (X1 XOR R),
ATFF (P AND S),
O IFF (X, OR A)

(a) Explain why the AND of the four constraining formulas above along with a
fifth formula consisting of just the variable O will be satisfiable iff (3.31) is satisfi-
able.

(b) Explain why each constraining formula will be equivalent to a 3CF formula
with at most 24 occurrences of variables.

(c¢) Using the ideas illustrated in the previous parts, explain how to construct C(F)
for an arbitrary propositional formula, F'.

Problems for Section 3.6

Practice Problems

Problem 3.22.
For each of the following propositions:

1. Vx3y.2x—y =0

2. Vx3dy.x -2y =0

3. Vx.x < 10 IMPLIES (Vy. y < X IMPLIES y < 9)
4, Vx3y. [y >x Adz. y +z = 100]

determine which propositions are true when the variables range over:

(a) the nonnegative integers.

“mecs” — 2016/6/16 — 11:14 — page 81 — #89

3.7. References 81

(b) the integers.

(¢) the real numbers.

Problem 3.23.
Let Q(x, y) be the statement

“x has been a contestant on television show y.”

The universe of discourse for x is the set of all students at your school and for y is
the set of all quiz shows that have ever been on television.

Determine whether or not each of the following expressions is logically equiva-
lent to the sentence:

“No student at your school has ever been a contestant on a television quiz show.”
(@) VxVy. NOT(Q(x, y))

(b) Ix3y. NOT(Q(x, y))

(¢) NOT(Vx Vy. Q(x,y))

(d) NOoT(3x Jy. Q(x,y))

Problem 3.24.
Find a counter model showing the following is not valid.

Jdx.P(x) IMPLIES Vx.P(x)

(Just define your counter model. You do not need to verify that it is correct.)

Problem 3.25.
Find a counter model showing the following is not valid.

[3x. P(x) AND 3x.Q(x)] IMPLIES dx.[P(x) AND Q(x)]

(Just define your counter model. You do not need to verify that it is correct.)

Problem 3.26.
Which of the following are valid?

“mecs” — 2016/6/16 — 11:14 — page 82 — #90

82 Chapter 3 Logical Formulas

(a) dx3y. P(x, y) IMPLIES dydx. P(x,y)
(b) Vx3y. O(x,y) IMPLIES dyVx. O(x,y)
(¢) IxVy. R(x, y) IMPLIES Vy3dx. R(x, y)
(d) NoT(3x S(x)) IFF Vx NOT(S(x))

Class Problems

Problem 3.27.

A media tycoon has an idea for an all-news television network called LNN: The
Logic News Network. Each segment will begin with a definition of the domain of
discourse and a few predicates. The day’s happenings can then be communicated
concisely in logic notation. For example, a broadcast might begin as follows:

THIS IS LNN. The domain of discourse is
{Albert, Ben, Claire, David, Emily}.

Let D(x) be a predicate that is true if x is deceitful. Let L(x, y)
be a predicate that is true if x likes y. Let G(x, y) be a predicate that
is true if x gave gifts to y.

Translate the following broadcasts in logic notation into (English) statements.

(@)
NOT(D(Ben) OR D(David)) IMPLIES
(L(Albert, Ben) AND L(Ben, Albert)).
(b)
Vx. ((x = Claire AND NOT(L (x, Emily))) OR (x # Claire AND L(x, Emily)))
AND

Vx. ((x = David AND L(x, Claire)) OR (x # David AND NOT(L(x, Claire))))

(©
NOT(D(Claire)) IMPLIES (G (Albert, Ben) AND 3x. G(Ben, x))

(d)
Vx3y3z (y # z) AND L(x, y) AND NOT(L(x, 2)).

“mecs” — 2016/6/16 — 11:14 — page 83 — #91

3.7. References 83

(e) How could you express “Everyone except for Claire likes Emily” using just
propositional connectives without using any quantifiers (V, 3)? Can you generalize
to explain how any logical formula over this domain of discourse can be expressed
without quantifiers? How big would the formula in the previous part be if it was
expressed this way?

Problem 3.28.

The goal of this problem is to translate some assertions about binary strings into
logic notation. The domain of discourse is the set of all finite-length binary strings:
A, 0, 1, 00, 01, 10, 11, 000, 001, (Here A denotes the empty string.) In your
translations, you may use all the ordinary logic symbols (including =), variables,
and the binary symbols 0, 1 denoting O, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation
of the symbols and the binary strings represented by the variables. For example, if
the value of x is 011 and the value of y is 1111, then the value of 01x0y is the
binary string 0101101111.

Here are some examples of formulas and their English translations. Names for
these predicates are listed in the third column so that you can reuse them in your
solutions (as we do in the definition of the predicate NO-1S below).

Meaning Formula Name
x is a prefix of y Az (xz = y) PREFIX(X, y)
X is a substring of y Juiv (uxv = y) SUBSTRING(x, y)

x is empty or a string of 0’s NOT(SUBSTRING(1, x)) NO-1S(x)
(a) x consists of three copies of some string.
(b) x is an even-length string of 0’s.
(¢) x does not contain botha O and a 1.
(d) x is the binary representation of 2K 4 1 for some integer k > 0.
(e) An elegant, slightly trickier way to define NO-1S(x) is:
PREFIX(x, 0x). (*)

Explain why (*) is true only when Xx is a string of O’s.

“mecs” — 2016/6/16 — 11:14 — page 84 — #92

84

Chapter 3 Logical Formulas

Problem 3.29.

For each of the logical formulas, indicate whether or not it is true when the do-
main of discourse is N, (the nonnegative integers 0, 1, 2, ...), Z (the integers), Q
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief
explanation to the few cases that merit one.

x.x2 =2
Vxdy.x2 =y
‘v’y.Elx.x2 =y

Vx #0.3dy.xy =1
dxdy.x4+2y =2 AND 2x +4y =5

Problem 3.30.
Show that
(Vx3dy. P(x,y)) — Vz. P(z,2)

is not valid by describing a counter-model.

Problem 3.31.
If the names of procedures or their parameters are used in separate places, it doesn’t
really matter if the same variable name happens to be appear, and it’s always safe
to change a “local” name to something brand new. The same thing happens in
predicate formulas.

For example, we can rename the variable x in “Vx.P(x)” to be “y” to obtain
Vy.P(y) and these two formulas are equivalent. So a formula like

(Vx.P(x)) AND (Vx.0(x)) (3.32)

can be rewritten as the equivalent formula

(Vy.P(y)) AND (Vx.Q(x)), (3.33)

which more clearly shows that the separate occurrences of Vx in (3.32) are unre-
lated.

Renaming variables in this way allows every predicate formula to be converted
into an equivalent formula in which every variable name is used in only one way.
Specifically, a predicate formula satisfies the unique variable convention if

“mecs” — 2016/6/16 — 11:14 — page 85 — #93

3.7. References 85

o for every variable x, there is at most one quantified occurrence of x, that is, at
most one occurrence of either “Vx” or “dx,” and moreover, “Vx” and “Ix”’
don’t both occur, and

e if there is a subformula of the form Vx.F or the form 3dx.F, then all the
occurrences of x that appear anywhere in the whole formula are within the
formula F'.

So formula (3.32) violates the unique variable convention because “Vx” occurs
twice, but formula (3.33) is OK.
A further example is the formula

[Vx3y. P(x) AND Q(x,y)] IMPLIES (3.34)
(3x. R(x,z)) OR3Ix Vz. S(x,y,w, z).

Formula (3.34) violates the unique variable convention because there are three
quantified occurrences of x in the formula, namely, the initial “Vx” and then two
occurrences of “Jx” later. It violates the convention in others ways as well. For
instance, there is an occurrence of y that is not inside the subformula 3y. P(x) AND
o).

It turns out that every predicate formula can be changed into an equivalent for-
mula that satisfies the unique variable convention—just by renaming some of the
occurrences of its variables, as we did when we renamed the first two occurrences
of x in (3.32) into y’s to obtain the equivalent formula (3.33).

Rename occurrences of variables in (3.34) to obtain an equivalent formula that
satisfies the unique variable convention. Try to rename as few occurrences as pos-
sible.

A general procedure for converting a predicate formula into unique variable for-
mat is described in Problem 7.26.

Problem 3.32.
A predicate formula is in prenex form when all its quantifiers come at the beginning.
For example,

[Vx3y,Vz,3w. P(x,w) AND (Q(x, y) OR R(z)]

is in prenex form.
It turns out that every formula is equivalent to one in prenex form. Here’s a
simple recipe for converting a formula into an equivalent prenex form:

1. Rename variables to satisfy the variable convention described in Problem 3.31,

“mecs” — 2016/6/16 — 11:14 — page 86 — #94

86 Chapter 3 Logical Formulas

2. Convert all connectives between formulas with a quantifier into AND, OR,
NOT,

3. Use De Morgan Laws for negated quantifiers (Section 3.6.5) to push nega-
tions “below” all quantifiers,

4. Pull out all quantifiers to the front of the formula in any order that preserves
nesting. That is, if Ix occurs in a subformula starting with Vy, then Vy has
to come before 3x when the quantifiers are moved to the front.

Use this method to find a prenex form for

[Vx3y. P(x) AND Q(x,y)] IMPLIES
[(3x. R(x,y)) OR 3z Vx. (S(z) XOR T(x))],

Homework Problems

Problem 3.33.

Express each of the following predicates and propositions in formal logic notation.
The domain of discourse is the nonnegative integers, N. Moreover, in addition to
the propositional operators, variables and quantifiers, you may define predicates
using addition, multiplication, and equality symbols, and nonnegative integer con-
stants (0, 1,...), but no exponentiation (like x”). For example, the predicate “n is
an even number” could be defined by either of the following formulas:

dm. 2m = n), dm. (m + m = n).
(a) m is a divisor of n.
(b) n is a prime number.

(c) n is a power of a prime.

Problem 3.34.
Translate the following sentence into a predicate formula:

There is a student who has e-mailed at most two other people in the
class, besides possibly himself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are

“mecs” — 2016/6/16 — 11:14 — page 87 — #95

3.7. References 87

e cquality, and

e FE(x,y), meaning that “x has sent e-mail to y.”

Problem 3.35.
Translate the following sentence into a predicate formula:

There is a student who has emailed exactly two other people in the
class, besides possibly herself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are

e cquality, and

e F(x,y), meaning that “x has sent e-mail to y.”

Problem 3.36.
Let 0 be a constant symbol, next() and prev() be function symbols taking one
argument.

The aim of this problem is to develop a series of predicate formulas using only
these symbols whose models must contain contain a “copy” of the consecutive
nonnegative integers N. Moreover, the model must assign next() and prev() to be
the plus one and minus one functions on the copy.

To start, we can introduce some abbreviations for certain terms called numerals
built up using these symbols: namely, let

To= next(0)
2= next(T)
3= next(i)

For example, “3” is an abbreviation for the numeral
next(next(next(0))).

Now we will make next act like the “add one” function on values of these terms.
In particular, adding one to two different elements will result in two different ele-
ments:

Vx,y.x # y IMPLIES next(x) # next(y) . (3.35)

“mecs” — 2016/6/16 — 11:14 — page 88 — #96

88

Chapter 3 Logical Formulas

We also make prev act like the “subtract one” function on these values, namely
subtracting one from zero has no effect:

prev(0) = 0, (3.36)

and otherwise adding one undoes subtracting one.

(a) Write a predicate formula expressing the requirement that adding one undoes
subtracting one from nonzero elements.

Now any interpretation that satisifies these formulas must assign different do-
main elements to each of the numerals. (This is not completely obvious, by the
way, but we will take it for granted in the rest of the problem.) Moreover, interpre-
tations of next and prev must act like plus one and minus one on these elements.

But although the values of the numerals in every model satisfying the formulas
of (3.35), (3.36), and part (a) form a copy of N, a model may have other elements
that lead to strange behavior. For example, a model satisfying all the above formu-
las could have fwo copies that act like N, with next and prev acting like add one
and subtract one on each copy. In this model, there would be two elements that act
like zero.

So let’s fix this:

(b) Write a formula that forces there to be only one copy of N in the model.

But there still might be other elements with funny properties. For example, there

might be two elements, each of which was “plus one” of the other:

dx, y.next(x) = y AND next(y) = x.
or a cycle of three:
dx, y,z.next(x) = y AND next(y) = z AND next(z) = x .

We could easily write a formula forbidding such cycles of length three, or forbid-
ding cycles of any given length, but we would need an infinite number of formulas
to forbid cycles of all lengths.

To forbid all finite cycles using only a fixed number of formulas, we will need
something further: we will allow a binary relation symbol less and make it act like
a less-than relation. For this purpose, it’s suggestive to write x less y instead of
less(x, y). Then one requirement will be that for all n,m € N, if n < m, then
T less m must be true. But we also want less to define a relation that has the “less-
than” properties on all domain elements. For example, we will say that adding one
makes numbers bigger with the formula

Vx. x less next(x). (3.37)

“mecs” — 2016/6/16 — 11:14 — page 89 — #97

3.7. References 89

Then we can forbid all finite cycles by requiring
Vx. NOT(x less x) . (3.38)

(c) Write down formulas of predicate calculus with only the symbols above whose
models must have properties as much like N as you can manage. In particular, make
sure that all models of your formulas force less to mean < on the numeral values
and ensure that (3.38) implies there are no finite cycles of next’s. (If you think you
have formulas whose only models are exactly like N, look again, because that is
impossible.)

(d) Describe a model that satisfies all your formulas but has elements that are not
the numeral values.

Exam Problems

Problem 3.37.
For each of the logic formulas below, indicate the smallest domain in which it is
true, among

N(nonnegative integers), Z(integers), Q(rationals), R(reals), C(complex numbers),
or write “none” if it is not true in any of them. Do not include explanations.
i. Vx3dy.y =3x
ii. Vx3dy.3y =x
iii. Vx3y.y? =x
iv. Vxdy.y <x
v. Vx3y.y3 =x

vi. Vx #0.3y,z.y # z AND y? = x = z2

Problem 3.38.
The following predicate logic formula is invalid:

Vx,3y.P(x,y) — 3y, Vx.P(x,y)

Which of the following are counter models for it?

“mecs” — 2016/6/16 — 11:14 — page 90 — #98

90 Chapter 3 Logical Formulas

1. The predicate P(x,y) = ‘y - x = 1’ where the domain of discourse is Q.
2. The predicate P(x,y) = ‘y < x’ where the domain of discourse is R.

3. The predicate P(x,y) = ‘y - x = 2’ where the domain of discourse is R
without 0.

4. The predicate P(x,y) = ‘yxy = x’ where the domain of discourse is the
set of all binary strings, including the empty string.

Problem 3.39.

Some students from a large class will be lined up left to right. There will be at least
two stduents in the line. Translate each of the following assertions into predicate
formulas with the set of students in the class as the domain of discourse. The only
predicates you may use are

e cquality and,

e F(x,y), meaning that “x is somewhere to the left of y in the line.” For
example, in the line “CDA”, both F'(C, A) and F(C, D) are true.

Once you have defined a formula for a predicate P you may use the abbreviation
“P” in further formulas.

(a) Student x is in the line.
(b) Student x is first in line.
(c) Student x is immediately to the right of student y.

(d) Student x is second.

Problem 3.40.
We want to find predicate formulas about the nonnegative integers, N, in which <
is the only predicate that appears, and no constants appear.

For example, there is such a formula defining the equality predicate:

[x =y]l:=[x <y AND y < x].

Once predicate is shown to be expressible solely in terms of <, it may then be used
in subsequent translations. For example,

[x > 0] := Jy. NOT(x = y) AND y < x.

“mecs” — 2016/6/16 — 11:14 — page 91 — #99

3.7. References 91
(a) [x =0].
(b) [x =y +1].

Hint: If an integer is bigger than y, then it must be > x.

(¢c) x =3.

Problem 3.41.
Predicate Formulas whose only predicate symbol is equality are called “pure equal-
ity” formulas. For example,

VxVy.x=y (1-element)

is a pure equality formula. Its meaning is that there is exactly one element in the
domain of discourse.* Another such formula is

JadbVx.x =aORx = b. (< 2-elements)

Its meaning is that there are at most two elements in the domain of discourse.
A formula that is not a pure equality formula is

x < y. (not-pure)

Formula (not-pure) uses the less-than-or-equal predicate < which is not allowed.’

(a) Describe a pure equality formula that means that there are exactly two ele-
ments in the domain of discourse.

(b) Describe a pure equality formula that means that there are exactly three ele-
ments in the domain of discourse.

4Remember, a domain of discourse is not allowed to be empty.
5In fact, formula (not-pure) only makes sense when the domain elements are ordered, while pure
equality formulas make sense over every domain.

“mcs” — 2016/6/16 — 11:14 — page 92 — #100

“mcs” — 2016/6/16 — 11:14 — page 93 — #101

Mathematical Data Types

We have assumed that you’ve already been introduced to the concepts of sets, se-
quences, and functions, and we’ve used them informally several times in previous
sections. In this chapter, we’ll now take a more careful look at these mathemati-
cal data types. We’ll quickly review the basic definitions, add a few more such as
“images” and “inverse images” that may not be familiar, and end the chapter with
some methods for comparing the sizes of sets.

4.1 Sets

Informally, a set is a bunch of objects, which are called the elements of the set.
The elements of a set can be just about anything: numbers, points in space, or even
other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

A = {Alex, Tippy, Shells, Shadow} dead pets
B = {red, blue, yellow} primary colors
C ={{a,b},{a,c}, {b,c}} a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how
to generate a list of them:

D :=1{1,2,4,8,16,...} the powers of 2

The order of elements is not significant, so {x, y} and {y, x} are the same set
written two different ways. Also, any object is, or is not, an element of a given set—
there is no notion of an element appearing more than once in a set.! So, writing
{x, x} is just indicating the same thing twice: that x is in the set. In particular,
{x,x} = {x}.

The expression “e € S asserts that e is an element of set S. For example,
32 € D and blue € B, but Tailspin ¢ A—yet.

Sets are simple, flexible, and everywhere. You’ll find some set mentioned in
nearly every section of this text.

!1t’s not hard to develop a notion of multisets in which elements can occur more than once, but
multisets are not ordinary sets and are not covered in this text.

“mecs” — 2016/6/16 — 11:14 — page 94 — #102

94 Chapter 4 Mathematical Data Types

4.1.1 Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements

@ the empty set none

N nonnegative integers {0,1,2,3,...}

Z integers {...,—-3,-2,—-1,0,1,2,3,...}
Q rational numbers %, —%, 16, etc.

R real numbers T, e, —9, \/5, etc.

C complex numbers i 179, V2 —2i, etc.

A superscript “*” restricts a set to its positive elements; for example, R* denotes
the set of positive real numbers. Similarly, Z~ denotes the set of negative integers.

4.1.2 Comparing and Combining Sets

The expression S C T indicates that set S is a subset of set T, which means that
every element of S is also an element of 7. For example, N C 7Z because every
nonnegative integer is an integer; Q € R because every rational number is a real
number, but C € R because not every complex number is a real number.

As a memory trick, think of the “C” symbol as like the “<” sign with the smaller
set or number on the left hand side. Notice that just as n < n for any number 7,
also S C S for any set S.

There is also a relation, C, on sets like the “less than™ relation < on numbers.
S C T means that S is a subset of 7', but the two are not equal. So justasn £ n
for every number n, also A ¢ A, for every set A. “S C T is read as “S is a strict
subset of T'”

There are several basic ways to combine sets. For example, suppose

X ==1{1,2,3},
Y :=1{2,3,4}.

Definition 4.1.1.

e The union of sets A and B, denoted A U B, includes exactly the elements
appearing in A or B or both. That is,

x€eAUB 1IFF x € AORx € B.

SoXUY ={1,2,3,4.

“mecs” — 2016/6/16 — 11:14 — page 95 — #103

4.1. Sets 95
e The intersection of A and B, denoted A N B, consists of all elements that
appear in both A and B. That is,
xX€ANB IFF x € AAND X € B.

So, X NY ={2,3}.
e The set difference of A and B, denoted A — B, consists of all elements that
are in A, but not in B. That is,

xe€eA—B IFF xe€ AANDXx ¢ B.

So,X —Y ={l}and Y — X = {4}.

Often all the sets being considered are subsets of a known domain of discourse,
D. Then for any subset, A, of D, we define A4 to be the set of all elements of D not

in A. That is,
Au=D — A.

The set A is called the complement of A. So
A=0 1FF A= D.
For example, if the domain we’re working with is the integers, the complement
of the nonnegative integers is the set of negative integers:
N=7".
We can use complement to rephrase subset in terms of equality

A C B is equivalentto AN B = 0.

4.1.3 Power Set
The set of all the subsets of a set, A, is called the power set, pow(A), of A. So

B epow(A) 1FF B C A.

For example, the elements of pow({1,2}) are @, {1}, {2} and {1, 2}.
More generally, if A has n elements, then there are 2" sets in pow(A)—see The-

orem 4.5.5. For this reason, some authors use the notation 24 instead of pow(4).

“mecs” — 2016/6/16 — 11:14 — page 96 — #104

96

Chapter 4 Mathematical Data Types

4.1.4 Set Builder Notation

An important use of predicates is in set builder notation. We’ll often want to talk
about sets that cannot be described very well by listing the elements explicitly or
by taking unions, intersections, etc., of easily described sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular,
the set consists of all values that make the predicate true. Here are some examples
of set builder notation:

A:={n e N|nisaprimeand n = 4k + 1 for some integer k},
B:i={xeR|x3-3x+1>0},
C:={a+bi eCla®>+2b*><1},
D ::={L € books | L is cited in this text}.

The set A consists of all nonnegative integers n for which the predicate

“n is a prime and n = 4k + 1 for some integer k”
is true. Thus, the smallest elements of A4 are:
5,13,17,29,37,41,53,61,73,

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious. Similarly, the set B consists
of all real numbers x for which the predicate

x3-3x+1>0

is true. In this case, an explicit description of the set B in terms of intervals would
require solving a cubic equation. Set C consists of all complex numbers a + bi
such that:

a* +2b* <1
This is an oval-shaped region around the origin in the complex plane. Finally, the
members of set D can be determined by filtering out journal articles in from the list
of references in the Bibliography 22.5.

4.1.5 Proving Set Equalities

Two sets are defined to be equal if they have exactly the same elements. That is,
X = Y means that z € X if and only if z € Y, for all elements, z.2 So, set
equalities can be formulated and proved as “iff”” theorems. For example:

2This is actually the first of the ZFC axioms for set theory mentioned at the end of Section 1.3
and discussed further in Section 8.3.2.

“mecs” — 2016/6/16 — 11:14 — page 97 — #105

4.1. Sets 97

Theorem 4.1.2. [Distributive Law for Sets] Let A, B, and C be sets. Then:
ANBUC)=(ANB)UANC) 4.1)
Proof. The equality (4.1) is equivalent to the assertion that
zeAN(BUC) iff ze(ANB)UANC) 4.2)

for all z. Now we’ll prove (4.2) by a chain of iff’s.
Now we have

ze AN(BUC)

iff zeA)AND(ze BUC) (def of N)
iff (zeA)AND(ze€ BOorRz e () (def of U)
iff (zeAANDz € B)OR(z € AANDz € C) (AND distributivity (3.9))
iff zeANB)OR(zeANC) (def of N)
iff ze(ANB)UANC) (def of U)
|

Although the basic set operations and propositional connectives are similar, it’s
important not to confuse one with the other. For example, U resembles OR, and in
fact was defined directly in terms of OR:

x € AU Bisequivalentto (x € A OR x € B).

Similarly, N resembles AND, and complement resembles NOT.

But if A and B are sets, writing A AND B is a type-error, since AND is an op-
eration on truth-values, not sets. Similarly, if P and Q are propositional variables,
writing P U Q is another type-error.

The proof of Theorem 4.1.2 illustrates a general method for proving a set equality
involving the basic set operations by checking that a corresponding propositional
formula is valid. As a further example, from De Morgan’s Law (3.14) for proposi-
tions

NOT(P AND Q) is equivalent to P OR Q

we can derive (Problem 4.5) a corresponding De Morgan’s Law for set equality:

ANB = AUB. 4.3)

Despite this correspondence between two kinds of operations, it’s important not
to confuse propositional operations with set operations. For example, if X and Y

“mecs” — 2016/6/16 — 11:14 — page 98 — #106

98

Chapter 4 Mathematical Data Types

are sets, then it is wrong to write “X AND Y ” instead of “X N Y.” Applying AND
to sets will cause your compiler—or your grader—to throw a type error, because
an operation that is only supposed to be applied to truth values has been applied to
sets. Likewise, if P and Q are propositions, then it is a type error to write “P U Q”
instead of “P OR Q.”

4.2 Sequences

Sets provide one way to group a collection of objects. Another way is in a sequence,
which is a list of objects called its components, members, or elements. Short se-
quences are commonly described by listing the elements between parentheses; for
example, the sequence (a, b, ¢) has three components. It would also be referred to
as a three element sequence or a sequence of length three. These phrases are all
synonyms—sequences are so basic that they appear everywhere and there are a lot
of ways to talk about them.

While both sets and sequences perform a gathering role, there are several differ-
ences.

e The elements of a set are required to be distinct, but elements in a sequence
can be the same. Thus, (a,b,a) is a valid sequence of length three, but
{a,b,a} is a set with two elements, not three.

e The elementsin a sequence have a specified order, but the elements of a set do
not. For example, (a, b, ¢) and (a, c, b) are different sequences, but {a, b, c}
and {a, c, b} are the same set.

e Texts differ on notation for the empty sequence; we use A for the empty
sequence.

The product operation is one link between sets and sequences. A Cartesian
product of sets, S1 X S» x --- X Sy, is a new set consisting of all sequences where
the first component is drawn from S, the second from S5, and so forth. Length two
sequences are called pairs.> For example, N x {a, b} is the set of all pairs whose
first element is a nonnegative integer and whose second element is an g or a b:

N x {a,b} = {(0,a), (0,b), (1,a), (1,b), 2,a), 2, b),.. .}

3Some texts call them ordered pairs.

“mecs” — 2016/6/16 — 11:14 — page 99 — #107

4.3. Functions 99

A product of n copies of a set S is denoted S”. For example, {0, 1}3 is the set of
all 3-bit sequences:

{0,1}* = {(0,0,0), (0,0, 1), (0,1,0), (0,1, 1), (1,0,0), (1,0, 1), (1, 1,0), (1, 1, 1)}

4.3 Functions

4.3.1 Domains and Images

A function assigns an element of one set, called the domain, to an element of an-
other set, called the codomain. The notation

f:A—> B

indicates that f is a function with domain, 4, and codomain, B. The familiar
notation “ f(a) = b” indicates that f assigns the element b € B to a. Here b
would be called the value of f at argument a.

Functions are often defined by formulas, as in:

1
X) = —
fl () xz
where x is a real-valued variable, or

fa(y.z) i=yl0yz
where y and z range over binary strings, or

f3(x,n) ::= the length n sequence (x,...,x)
—_——

nx’s

where n ranges over the nonnegative integers.

A function with a finite domain could be specified by a table that shows the value
of the function at each element of the domain. For example, a function f4(P, Q)
where P and Q are propositional variables is specified by:

P Q| faP,. Q)
T T T
T F F
F T T
F F T

“mecs” — 2016/6/16 — 11:14 — page 100 — #108

100

Chapter 4 Mathematical Data Types

Notice that f4 could also have been described by a formula:

f4(P, Q) ::= [P IMPLIES Q].

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
f5(y) to be the length of a left to right search of the bits in the binary string y until
a 1 appears, so

£5(0010) = 3,

f5(100) = 1,
f5(0000) is undefined.

Notice that f5 does not assign a value to any string of just 0’s. This illustrates an
important fact about functions: they need not assign a value to every element in the
domain. In fact this came up in our first example fi(x) = 1/x2, which does not
assign a value to 0. So in general, functions may be partial functions, meaning that
there may be domain elements for which the function is not defined. If a function
is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. Soif f : A — B, and S is a subset of A, we define
f(S) to be the set of all the values that f takes when it is applied to elements of S.
That is,

f(S):={b e B| f(s) =bforsomes € S}.

For example, if we let [r, s] denote set of numbers in the interval from r to s on the
real line, then f([1,2]) = [1/4,1].

For another example, let’s take the “search for a 1” function, f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5(X) would be the odd nonnegative integers.

Applying f to a set, S, of arguments is referred to as “applying f pointwise to
S”, and the set f(S) is referred to as the image of S under f.* The set of values
that arise from applying f to all possible arguments is called the range of f. That
is,

range(f) ::= f(domain(f)).
Some authors refer to the codomain as the range of a function, but they shouldn’t.
The distinction between the range and codomain will be important later in Sec-
tions 4.5 when we relate sizes of sets to properties of functions between them.

4There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A4, because the domain of f is A, while the domain
of pointwise- f is pow(A). It is usually clear from context whether f or pointwise- f/ is meant, so
there is no harm in overloading the symbol f in this way.

“mes” — 2016/6/16 — 11:14 — page 101 — #109

4.4. Binary Relations 101

4.3.2 Function Composition

Doing things step by step is a universal idea. Taking a walk is a literal example, but
so is cooking from a recipe, executing a computer program, evaluating a formula,
and recovering from substance abuse.

Abstractly, taking a step amounts to applying a function, and going step by step
corresponds to applying functions one after the other. This is captured by the op-
eration of composing functions. Composing the functions f and g means that first
f is applied to some argument, x, to produce f(x), and then g is applied to that
result to produce g(f(x)).

Definition 4.3.1. For functions f : A — B and g : B — C, the composition,
go f,of g with f is defined to be the function from A to C defined by the rule:

(g0 f)x) == g(f(x)),
for all x € A.

Function composition is familiar as a basic concept from elementary calculus,
and it plays an equally basic role in discrete mathematics.

4.4 Binary Relations

Binary relations define relations between two objects. For example, “less-than” on
the real numbers relates every real number, a, to a real number, b, precisely when
a < b. Similarly, the subset relation relates a set, A, to another set, B, precisely
when A € B. A function f : A — B is a special case of binary relation in which
an element a € A is related to an element b € B precisely when b = f(a).

In this section we’ll define some basic vocabulary and properties of binary rela-
tions.

Definition 4.4.1. A binary relation, R, consists of a set, A, called the domain of
R, aset, B, called the codomain of R, and a subset of A x B called the graph of R.

A relation whose domain is A and codomain is B is said to be “between A and
B”, or “from A to B.” As with functions, we write R : A — B to indicate that R
is a relation from A to B. When the domain and codomain are the same set, 4, we
simply say the relation is “on A.” It’s common to use “a R b” to mean that the pair
(a, b) is in the graph of R.}

SWriting the relation or operator symbol between its arguments is called infix notation. Infix
expressions like “m < n” or “m + n” are the usual notation used for things like the less-then relation
or the addition operation rather than prefix notation like “< (m, n)” or “+(m,n).”

“mes” — 2016/6/16 — 11:14 — page 102 — #110

102

Chapter 4 Mathematical Data Types

Notice that Definition 4.4.1 is exactly the same as the definition in Section 4.3
of a function, except that it doesn’t require the functional condition that, for each
domain element, a, there is at most one pair in the graph whose first coordinate is
a. As we said, a function is a special case of a binary relation.

The “in-charge of” relation, Chrg, for MIT in Spring ’10 subjects and instructors
is a handy example of a binary relation. Its domain, Fac, is the names of all the
MIT faculty and instructional staff, and its codomain is the set, SubNums, of subject
numbers in the Fall ’09-Spring *10 MIT subject listing. The graph of Chrg contains
precisely the pairs of the form

({instructor-name) , (subject-num))

such that the faculty member named (instructor-name) is in charge of the subject
with number (subject-num) that was offered in Spring *10. So graph(Chrg) con-
tains pairs like
(T. Eng, 6 .UAT)

(G. Freeman, 6.011)
(G. Freeman, 6.UAT)

6.881)
(G. Freeman, 6.882)
(J. Guttag, 6.00)
(A. R. Meyer, 6.042) (4.4)
(A. R. Meyer, 18.062)
(A. R. Meyer, 6.844)
(T. Leighton, 6.042)
(T. Leighton, 18.062)

(G. Freeman,

Some subjects in the codomain, SubNums, do not appear among this list of
pairs—that is, they are not in range(Chrg). These are the Fall term-only subjects.
Similarly, there are instructors in the domain, Fac, who do not appear in the list
because they are not in charge of any Spring term subjects.

4.4.1 Relation Diagrams

Some standard properties of a relation can be visualized in terms of a diagram. The
diagram for a binary relation, R, has points corresponding to the elements of the
domain appearing in one column (a very long column if domain(R) is infinite). All
the elements of the codomain appear in another column which we’ll usually picture
as being to the right of the domain column. There is an arrow going from a point,
a, in the lefthand, domain column to a point, b, in the righthand, codomain column,

“mcs” — 2016/6/16 — 11:14 — page 103 — #111

4.4. Binary Relations 103

precisely when the corresponding elements are related by R. For example, here are
diagrams for two functions:

A B A B
a ——— 1 a ——— 1
b 2 b 2
c 3 c 3
d 4 d 4
e 5

Being a function is certainly an important property of a binary relation. What it
means is that every point in the domain column has at most one arrow coming out
of it. So we can describe being a function as the “< 1 arrow out” property. There
are four more standard properties of relations that come up all the time. Here are
all five properties defined in terms of arrows:

Definition 4.4.2. A binary relation, R, is:
e a function when it has the [< 1 arrow out] property.

e surjective when it has the [> 1 arrows in] property. That is, every point in
the righthand, codomain column has at least one arrow pointing to it.

e fotal when it has the [> 1 arrows out] property.
e injective when it has the [< 1 arrow in] property.

e bijective when it has both the [= 1 arrow out] and the [= 1 arrow in] prop-
erty.

From here on, we’ll stop mentioning the arrows in these properties and for ex-
ample, just write [< 1 in] instead of [< 1 arrows in].

So in the diagrams above, the relation on the left has the [= 1 out] and [> 1 in]
properties, which means it is a total, surjective function. But it does not have the
[< 1 in] property because element 3 has two arrows going into it; it is not injective.

The relation on the right has the [= 1 out] and [< 1 in] properties, which means
it is a total, injective function. But it does not have the [> 1 in] property because
element 4 has no arrow going into it; it is not surjective.

The arrows in a diagram for R correspond, of course, exactly to the pairs in the
graph of R. Notice that the arrows alone are not enough to determine, for example,

“mes” — 2016/6/16 — 11:14 — page 104 — #112

104

Chapter 4 Mathematical Data Types

if R has the [> 1 out], total, property. If all we knew were the arrows, we wouldn’t
know about any points in the domain column that had no arrows out. In other
words, graph(R) alone does not determine whether R is total: we also need to
know what domain(R) is.

Example 4.4.3. The function defined by the formula 1/x? has the [> 1 out] prop-
erty if its domain is R™, but not if its domain is some set of real numbers including
0. It has the [= 1 in] and [= 1 out] property if its domain and codomain are both
RT, but it has neither the [< 1 in] nor the [> 1 out] property if its domain and
codomain are both R.

4.4.2 Relational Images

The idea of the image of a set under a function extends directly to relations.

Definition 4.4.4. The image of a set, Y, under a relation, R, written R(Y), is the
set of elements of the codomain, B, of R that are related to some element in Y. In
terms of the relation diagram, R(Y) is the set of points with an arrow coming in
that starts from some point in Y.

For example, the set of subject numbers that Meyer is in charge of in Spring *10
is exactly Chrg(A. Meyer). To figure out what this is, we look for all the arrows
in the Chrg diagram that start at “A. Meyer,” and see which subject-numbers are
at the other end of these arrows. Looking at the list (4.4) of pairs in graph(Chrg),
we see that these subject-numbers are {6.042, 18.062, 6.844}. Similarly, to find the
subject numbers that either Freeman or Eng are in charge of, we can collect all the
arrows that start at either “G. Freeman,” or “T. Eng” and, again, see which subject-
numbers are at the other end of these arrows. This is Chrg({G. Freeman, T. Eng}).
Looking again at the list (4.4), we see that

Chrg({G. Freeman, T. Eng}) = {6.011, 6.881, 6.882, 6.UAT}

Finally, Fac is the set of all in-charge instructors, so Chrg(Fac) is the set of all the
subjects listed for Spring *10.

Inverse Relations and Images

Definition 4.4.5. The inverse, R~! of arelation R : A — B is the relation from B
to A defined by the rule
bR Ya IFF aRb.

In other words, R™! is the relation you get by reversing the direction of the
arrows in the diagram of R.

“mcs” — 2016/6/16 — 11:14 — page 105 — #113

4.5. Finite Cardinality 105

Definition 4.4.6. The image of a set under the relation, R, is called the inverse
image of the set. That is, the inverse image of a set, X, under the relation, R, is
defined to be R™1(X).

Continuing with the in-charge example above, the set of instructors in charge
of 6.UAT in Spring ’10 is exactly the inverse image of {6.UAT} under the Chrg
relation. From the list (4.4), we see that Eng and Freeman are both in charge of
6.UAT, that is,

{T. Eng, D. Freeman} C Chrg™ ! ({6.UAT}).

We can’t assert equality here because there may be additional pairs further down
the list showing that additional instructors are co-incharge of 6.UAT.

Now let Intro be the set of introductory course 6 subject numbers. These are the
subject numbers that start with “6.0.” So the set of names of the instructors who
were in-charge of introductory course 6 subjects in Spring 10, is Chrg™ ! (Intro).
From the part of the Chrg list shown in (4.4), we see that Meyer, Leighton, Free-
man, and Guttag were among the instructors in charge of introductory subjects in
Spring *10. That is,

{Meyer, Leighton, Freeman, Guttag} € Chrg™ ' (Intro).

Finally, Chrg~!(SubNums), is the set of all instructors who were in charge of a
subject listed for Spring *10.

4.5 Finite Cardinality

A finite set is one that has only a finite number of elements. This number of ele-
ments is the “size” or cardinality of the set:

Definition 4.5.1. If A is a finite set, the cardinality of A, written | A|, is the number
of elements in A.

A finite set may have no elements (the empty set), or one element, or two ele-
ments,. . ., so the cardinality of finite sets is always a nonnegative integer.

Now suppose R : A — B is a function. This means that every element of A4
contributes at most one arrow to the diagram for R, so the number of arrows is at
most the number of elements in A. That is, if R is a function, then

|A| > #arrows.

“mes” — 2016/6/16 — 11:14 — page 106 — #114

106

Chapter 4 Mathematical Data Types

If R is also surjective, then every element of B has an arrow into it, so there must
be at least as many arrows in the diagram as the size of B. That is,

#arrows > | B]|.

Combining these inequalities implies that if R is a surjective function, then |A| >
|B|.

In short, if we write A surj B to mean that there is a surjective function from
A to B, then we’ve just proved a lemma: if A surj B for finite sets A, B, then
|A| > | B]|. The following definition and lemma lists this statement and three similar
rules relating domain and codomain size to relational properties.

Definition 4.5.2. Let A, B be (not necessarily finite) sets. Then
1. A surj B iff there is a surjective function from A to B.
2. Ainj B iff there is an injective tofal relation from A to B.
3. A bij B iff there is a bijection from A4 to B.

Lemma 4.5.3. For finite sets A, B:
1. If A surj B, then |A| > |B|.
2. If Ainj B, then |A| < |B|.
3. If Abij B, then |A| = |B|.

Proof. We’ve already given an “arrow” proof of implication 1. Implication 2. fol-
lows immediately from the fact that if R has the [< 1 out], function property, and
the [> 1 in], surjective property, then R™! is total and injective, so A surj B iff
B inj A. Finally, since a bijection is both a surjective function and a total injective
relation, implication 3. is an immediate consequence of the first two. |

Lemma 4.5.3.1. has a converse: if the size of a finite set, A, is greater than
or equal to the size of another finite set, B, then it’s always possible to define a
surjective function from A to B. In fact, the surjection can be a total function. To
see how this works, suppose for example that

A ={ap,a1,a2,a3,a4,as}

Then define a total function f : A — B by the rules

f(ao) L= b(), f(al) = bl, f(az) = bz, f(a3) = f(a4) = f(as) L= b3.

“mcs” — 2016/6/16 — 11:14 — page 107 — #115

4.5. Finite Cardinality 107

More concisely,
f(ai) L= bmin(i,3)a
for 0 <i < 5. Since 5 > 3, this f is a surjection.
So we have figured out that if A and B are finite sets, then | A| > | B| if and only if
A surj B. All told, this argument wraps up the proof of a theorem that summarizes
the whole finite cardinality story:

Theorem 4.5.4. [Mapping Rules] For finite sets, A, B,

|A| = |B| iff Asurj B, 4.5)
|A| < |B| iff Ainj B, (4.6)
|A| = |B| iff Abij B, 4.7)

4.5.1 How Many Subsets of a Finite Set?

As an application of the bijection mapping rule (4.7), we can give an easy proof of:
Theorem 4.5.5. There are 2" subsets of an n-element set. That is,
|A| =n implies |pow(A)| =2".
For example, the three-element set {a1, a», a3} has eight different subsets:
Y {a} {az} {ay, a2}
las} {ar,asz} {az.as} {ai,az,as3}

Theorem 4.5.5 follows from the fact that there is a simple bijection from subsets
of A to {0, 1}", the n-bit sequences. Namely, let aj,as,...,a, be the elements
of A. The bijection maps each subset of S C A to the bit sequence (b1,...,by)
defined by the rule that

bi =1 iff a; €8§.

For example, if n = 10, then the subset {a», a3, as,a7,a19} maps to a 10-bit
sequence as follows:

subset: { az, as, as, as, ap
sequence: (O, 1, 1, O, 1, 0, 1, 0, O, 1)

Now by bijection case of the Mapping Rules 4.5.4.(4.7),
| pow(A)[= [{0, 1}"].

But every computer scientist knows® that there are 2 n-bit sequences! So we’ve
proved Theorem 4.5.5!

%In case you’re someone who doesn’t know how many 7-bit sequences there are, you’ll find the
2™ explained in Section 15.2.2.

“mes” — 2016/6/16 — 11:14 — page 108 — #116

108

Chapter 4 Mathematical Data Types

Problems for Section 4.1

Practice Problems

Problem 4.1.
For any set A, let pow(A) be its power set, the set of all its subsets; note that A is
itself a member of pow(A). Let ¥ denote the empty set.

(a) The elements of pow({1, 2}) are:
(b) The elements of pow({d, {@}}) are:

(¢) How many elements are there in pow({1,2,...,8})?

Problem 4.2.

Express each of the following assertions about sets by a formula of set theory.’
Expressions may use abbreviations introduced earlier (so it is now legal to use “="
because we just defined it).

(@) x = 0.
(b) x ={y.z}.

(c) x € y. (x is a subset of y that might equal y.)
Now we can explain how to express “x is a proper subset of y” as a set theory
formula using things we already know how to express. Namely, letting “x # y”
abbreviate NOT(x = y), the expression

(x Sy AND x #),

describes a formula of set theory that means x C y.
From here on, feel free to use any previously expressed property in describing
formulas for the following:

d x=yUz.
() x =y —z.
(f) x = pow(y).
® x =U.¢, 2

This means that y is supposed to be a collection of sets, and x is the union of all of
them. A more concise notation for “_J, y Z' 1s simply “Uy?”

7See Section 8.3.2.

“mecs” — 2016/6/16 — 11:14 — page 109 — #117

4.5. Finite Cardinality 109

Class Problems

Problem 4.3.
Set Formulas and Propositional Formulas. o

(a) Verity that the propositional formula (P AND Q) OR (P AND Q) is equivalent
to P.

(b) Prove that
A=(A-—B)U(ANB)

for all sets, A, B, by showing
x€ AIFFx € (A—B)U(ANB)

for all elements, x, using the equivalence of part (a) in a chain of IFF’s.

Problem 4.4.
Prove

Theorem (Distributivity of union over intersection).
AUBNC)=(AUB)NAUC) (4.8)
for all sets, A, B, C, by using a chain of iff’s to show that
xe€eAUBNC)IFFx e (AUB)N(AUC)

for all elements, x. You may assume the corresponding propositional equiva-
lence 3.10.

Problem 4.5.
Prove De Morgan’s Law for set equality

ANB = AUB. (4.9)

by showing with a chain of IFF’s that x € the left hand side of (4.9) iff x € the right
hand side. You may assume the propositional version (3.14) of De Morgan’s Law.

Problem 4.6.
Powerset Properties.
Let A and B be sets.

“mcs” — 2016/6/16 — 11:14 — page 110 — #118

110

Chapter 4 Mathematical Data Types

(a) Prove that
pow(A N B) = pow(A) N pow(B).

(b) Prove that
(pow(A) U pow(B)) € pow(A U B),

with equality holding iff one of A or B is a subset of the other.

Problem 4.7.

Subset take-away® is a two player game played with a finite set, A, of numbers.
Players alternately choose nonempty subsets of A with the conditions that a player
may not choose

e the whole set A, or
e any set containing a set that was named earlier.

The first player who is unable to move loses the game.

For example, if the size of A is one, then there are no legal moves and the second
player wins. If A has exactly two elements, then the only legal moves are the two
one-element subsets of A. Each is a good reply to the other, and so once again the
second player wins.

The first interesting case is when A has three elements. This time, if the first
player picks a subset with one element, the second player picks the subset with the
other two elements. If the first player picks a subset with two elements, the second
player picks the subset whose sole member is the third element. In both cases, these
moves lead to a situation that is the same as the start of a game on a set with two
elements, and thus leads to a win for the second player.

Verify that when A has four elements, the second player still has a winning strat-

ng.9

Homework Problems

Problem 4.8.
Let A, B, and C be sets. Prove that:

AUBUC =(A-B)UB-C)U(C—-A)UMANBNC). (4.10)

8From Christenson & Tilford, David Gale’s Subset Takeaway Game, American Mathematical
Monthly, Oct. 1997

9David Gale worked out some of the properties of this game and conjectured that the second
player wins the game for any set A. This remains an open problem.

“mes” — 2016/6/16 — 11:14 — page 111 — #119

4.5. Finite Cardinality 111

Hint: P OR Q OR R is equivalent to

(P AND Q) OR (Q AND R) OR (R AND P) OR (P AND Q AND R).

Problem 4.9.
Union distributes over the intersection of two sets:

AU(BNC)=(AUB)N(AUC) 4.11)

(see Problem 4.4).
Use (4.11) and the Well Ordering Principle to prove the Distributive Law of
union over the intersection of n sets:

AU(B1 NN Bu_1 N By)
=(AUB1)N--N(AUBu_1) N (AU By) (4.12)

Extending formulas to an arbitrary number of terms is a common (if mundane)
application of the WOP.

Exam Problems

Problem 4.10.
You’ve seen how certain set identities follow from corresponding propositional
equivalences. For example, you proved by a chain of iff’s that

(A—B)UMANB) =4

using the fact that the propositional formula (P AND Q)OR (P AND Q) is equivalent
to P.

State a similar propositional equivalence that would justify the key step in a proof
for the following set equality organized as a chain of iff’s:

A-B=(A-C)u(BNC)U((AUB)NC) (4.13)

(You are not being asked to write out an iff-proof of the equality or to write out
a proof of the propositional equivalence. Just state the equivalence.)

Problem 4.11.
You’ve seen how certain set identities follow from corresponding propositional
equivalences. For example, you proved by a chain of iff’s that

(A—B)U(ANB)=A

“mes” — 2016/6/16 — 11:14 — page 112 — #120

112

Chapter 4 Mathematical Data Types

using the fact that the propositional formula (P AND Q) OR (P AND Q) is equivalent
to P.

State a similar propositional equivalence that would justify the key step in a proof
for the following set equality organized as a chain of iff’s:

ANBNC=AU(B-A4)UC.

(You are not being asked to write out an iff-proof of the equality or to write out
a proof of the propositional equivalence. Just state the equivalence.)

Problem 4.12.
The set equation
ANB=AUB

follows from a certain equivalence between propositional formulas.

(a) What is the equivalence?

(b) Show how to derive the equation from this equivalence.

Problems for Section 4.2

Homework Problems

Problem 4.13.
Prove that for any sets A, B, C, and D, if the Cartesian products A x B and C x D
are disjoint, then either A and C are disjoint or B and D are disjoint.

Problem 4.14. (a) Give a simple example where the following result fails, and
briefly explain why:
False Theorem. For sets A, B, C, and D, let

L:=(AUB)x(CUD),
R:=(AxC)U(Bx D).

Then L = R.

(b) Identify the mistake in the following proof of the False Theorem.

“mes” — 2016/6/16 — 11:14 — page 113 — #121

4.5. Finite Cardinality 113

Bogus proof. Since L and R are both sets of pairs, it’s sufficient to prove that
(x,y) e L «<— (x,y) € Rforall x, y.

The proof will be a chain of iff implications:

(x,y) € R
iff (x,y)e(AxC)U(BxD)
iff (x,y)e AxC,or(x,y)e BxD
iff (xeAandy e C)orelse(x € Bandy € D)
iff eitherx € Aorx € B,andeithery e Cory € D
iff xeAUBandyeCUD
iff (x,y)elL.

(¢) Fix the proof to show that R € L.

Problems for Section 4.4

Practice Problems

Problem 4.15.
The inverse, R™1, of a binary relation, R, from A to B, is the relation from B to A
defined by:

bR Ya iff aRb.

In other words, you get the diagram for R~! from R by “reversing the arrows” in
the diagram describing R. Now many of the relational properties of R correspond
to different properties of R~1. For example, R is total iff R~ is a surjection.

Fill in the remaining entries is this table:

Ris iff R~ lis
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram
for R.

“mes” — 2016/6/16 — 11:14 — page 114 — #122

114

Chapter 4 Mathematical Data Types

Problem 4.16.
Describe a total injective function [= 1 out], [< 1 in,] from R — R that is not a
bijection.

Problem 4.17.
For a binary relation, R : A — B, some properties of R can be determined from
just the arrows of R, that is, from graph(R), and others require knowing if there are
elements in the domain, A, or the codomain, B, that don’t show up in graph(R).
For each of the following possible properties of R, indicate whether it is always
determined by

1. graph(R) alone,

2. graph(R) and A alone,
3. graph(R) and B alone,
4. all three parts of R.

Properties:

(a) surjective
(b) injective
(c) total

(d) function

(e) bijection

Problem 4.18.

For each of the following real-valued functions on the real numbers, indicate whether
it is a bijection, a surjection but not a bijection, an injection but not a bijection, or
neither an injection nor a surjection.

@ x—>x+2
(b) x — 2x

() x —> x2

(d) x - x3

“mcs” — 2016/6/16 — 11:14 — page 115 — #123

4.5. Finite Cardinality 115

(e) x — sinx
f) x — xsinx

@ x —>e*

Problem 4.19.

Let f: A— Bandg: B — C be functions and & : A — C be their composition,
namely, h(a) ::= g(f(a)) foralla € A.

(a) Prove thatif f and g are surjections, then so is /.

(b) Prove that if f and g are bijections, then so is 4.

(¢) If f is a bijection, then sois f 1.

Problem 4.20.
Give an example of a relation R that is a total injective function from a set A to
itself but is not a bijection.

Problem 4.21.
Let R : A — B be a binary relation. Each of the following formulas expresses
the fact that R has a familiar relational “arrow” property such as being surjective
or being a function.

Identify the relational property expressed by each of the following relational
expressions. Explain your reasoning.

(@) RoR™! C1dp

(b) R"'o R CIdy

(¢) R"-1oRDIdy

(d) RoR™!'DIdp

Class Problems

Problem 4.22. (a) Prove that if A surj B and B surj C, then A surj C.
(b) Explain why A surj B iff B inj A.

(¢) Conclude from (a) and (b) that if A inj B and B inj C, then 4 inj C.

“mes” — 2016/6/16 — 11:14 — page 116 — #124

116 Chapter 4 Mathematical Data Types

(d) Explain why A inj B iff there is a total injective function ([= 1 out, < 1 in])
from A to B. 1°

Problem 4.23.
Five basic properties of binary relations R : A — B are:

1. R is a surjection [> 1 in]
2. R is an injection [< 1 in]
3. R s a function [> 1 out]
4. Ristotal [> 1 out]

5. Risempty [= 0 out]

Below are some assertions about a relation R. For each assertion, write the
numbers of all the properties above that the relation R must have; write “none” if
R might not have any of these properties. For example, you should write “(1), (4)”
next to the first assertion.

Variables a,ap, ... range over A and b, by, ... range over B.

(@) YaVb.a R b. @1, @
(b) NoT(Va Vb.a R b).

(¢) Ya ¥b. ONOT(a R b).

(d) Va3b.a R b.

(e) Ybda.a R b.

(f) R is abijection.

(g) Ya3dbya R by /\Vb.a R b IMPLIES b = b;.

(h) Ya,b.a RbORa # b.

(i) Vb1,bs,a. (a R by AND a R by) IMPLIES by = bs.

(j) Yai,az,b. (a1 R b ANDay R b) IMPLIES a1 = a5.

(K) Yai,az,b1,b3. (a1 R by ANDaz R by AND a1 # az) IMPLIES by # b;.

() Vay,az,by1,bs. (a1 R by AND ay R by AND by # by) IMPLIES a1 # as.

10The official definition of inj is with a total injective relation ([> 1 out, < 1 in])

“mcs” — 2016/6/16 — 11:14 — page 117 — #125

4.5. Finite Cardinality 117

Homework Problems

Problem 4.24.
Let f : A— Band g : B — C be functions.

(a) Prove that if the composition g o f is a bijection, then f is a total injection
and g is a surjection.

(b) Show there is a total injection, f, and a bijection, g, such that g o f is not a
bijection.

Problem 4.25.
Let A, B, and C be nonempty sets, and let f : B — C and g : A — B be
functions. Let h ::= f o g be the composition function of f and g, namely, the

function with domain A and codomain C such that i(x) = f(g(x)).

(a) Prove that if A is surjective and f is total and injective, then g must be surjec-
tive.

Hint: contradiction.

(b) Suppose that / is injective and f is total. Prove that g must be injective and
provide a counterexample showing how this claim could fail if f was not total.

Problem 4.26.

Let A, B, and C be sets, andlet f : B — C and g : A — B be functions. Let
h : A — C be the composition, f o g, thatis, h(x) ::= f(g(x)) for x € A. Prove
or disprove the following claims:

(a) If & is surjective, then f must be surjective.
(b) If & is surjective, then g must be surjective.
(c) If & is injective, then f must be injective.

(d) If & is injective and f is total, then g must be injective.

Problem 4.27.

Let R be a binary relation on a set D. Let x, y be variables ranging over D. Circle
the expressions below whose meaning is that R is an injection [< 1 in]. Remember
R is a not necessarily total or a function.

“mes” — 2016/6/16 — 11:14 — page 118 — #126

118 Chapter 4 Mathematical Data Types

1. R(x) = R(y) IMPLIES x = y

2. R(x) N R(y) = @ IMPLIES X # y
3. R(x) N R(y) # @ IMPLIES x # y
4. R(x)N R(y) # @ IMPLIES x = y
5. RTH(R(x)) = {x}

6. R™1(R(x)) € {x}

7. RTH(R(x)) 2 {x}

8. R(R'(x)) =x

Problem 4.28.
The language of sets and relations may seem remote from the practical world of
programming, but in fact there is a close connection to relational databases, a
very popular software application building block implemented by such software
packages as MySQL. This problem explores the connection by considering how to
manipulate and analyze a large data set using operators over sets and relations. Sys-
tems like MySQL are able to execute very similar high-level instructions efficiently
on standard computer hardware, which helps programmers focus on high-level de-
sign.

Consider a basic Web search engine, which stores information on Web pages and
processes queries to find pages satisfying conditions provided by users. At a high
level, we can formalize the key information as:

e A set P of pages that the search engine knows about

e A binary relation L (for link) over pages, defined such that p; L p, iff page
p1 links to p»

o A set E of endorsers, people who have recorded their opinions about which
pages are high-quality

e A binary relation R (for recommends) between endorsers and pages, such
that e R p iff person e has recommended page p

o A set W of words that may appear on pages

e A binary relation M (for mentions) between pages and words, where p M w
iff word w appears on page p

“mcs” — 2016/6/16 — 11:14 — page 119 — #127

4.5. Finite Cardinality 119

Each part of this problem describes an intuitive, informal query over the data,
and your job is to produce a single expression using the standard set and relation
operators, such that the expression can be interpreted as answering the query cor-
rectly, for any data set. Your answers should use only the set and relation symbols
given above, in addition to terms standing for constant elements of £ or W, plus
the following operators introduced in the text:

e set union, U.
e set intersection, N.
e set difference, —.

e relational image—for example, R(A) for some set A, or R(a) for some spe-
cific element a.

e relational inverse ~!.

e ...and one extra: relational composition which generalizes composition of

functions
a(RoS)c:=3beB.(aSb)aND (bR c).

In other words, a is related to ¢ in R o S if starting at a you can follow an S
arrow to the start of an R arrow and then follow the R arrow to get to ¢.!!

Here is one worked example to get you started:
e Search description: The set of pages containing the word “logic”
e Solution expression: M ~!(“logic”)

Find similar solutions for each of the following searches:

(a) The set of pages containing the word “logic” but not the word “predicate”

(b) The set of pages containing the word “set” that have been recommended by
LGMeyer9’

(c) The set of endorsers who have recommended pages containing the word “al-
gebra”

(d) The relation that relates endorser e and word w iff e has recommended a page
containing w

Note the reversal of R and S in the definition; this is to make relational composition work like
function composition. For functions, f o g means you apply g first. That is, if we let 2 be f o g,

then h(x) = f(g(x)).

“mcs” — 2016/6/16 — 11:14 — page 120 — #128

120

Chapter 4 Mathematical Data Types

(e) The set of pages that have at least one incoming or outgoing link

(f) The relation that relates word w and page p iff w appears on a page that links
to p

(g) The relation that relates word w and endorser e iff w appears on a page that

links to a page that e recommends

(h) The relation that relates pages p1 and p» iff p» can be reached from p; by
following a sequence of exactly 3 links

Exam Problems

Problem 4.29.

Let A be the set containing the five sets: {a}, {b,c},{b,d},{a,e},{e, f}, and let
B be the set containing the three sets: {a,b},{b,c,d},{e, f}. Let R be the “is
subset of” binary relation from A to B defined by the rule:

XRY 1FF X CY.

(a) Fill in the arrows so the following figure describes the graph of the relation,
R:

A arrows B
la}
la, b}
b, c}
{b,c,d}
b, d}
le. /3
la,e;

le. /'

“mcs” — 2016/6/16 — 11:14 — page 121 — #129

4.5. Finite Cardinality 121

(b) Circle the properties below possessed by the relation R:

function total injective surjective bijective

(¢) Circle the properties below possessed by the relation R™!:

function total injective surjective bijective

Problem 4.30. (a) Five assertions about a binary relation R : A — B are bulleted
below. There are nine predicate formulas that express some of these assertions.
Write the numbers of the formulas next to the assertions they express. For example,
you should write “4” next to the last assertion, since formula (4) expresses the
assertion that R is the identity relation.

Variables @, ay, ... range over the domain A4 and b, by, ... range over the codomain
B. More than one formula may express one assertion.

e R is a surjection

e R is an injection

R is a function

R is total

R is the identity relation.

Vb.Ja.a R b.

Va.3b.a R b.

Va.a R a.

Ya,b.a Rb1FFa = b.

Ya,b.a RbORa # b.

Vbi,by,a. (a R by AND a R by) IMPLIES by = bs.

VYai,az,b. (ay R b AND ay R b) IMPLIES a; = as.

Yai,as,b1,bs. (a1 R by AND az R by AND a1 # ap) IMPLIES by # b;.

O © NN kWD =

Yai,as, by, bs. (a1 R by AND as R by AND by 7é bz) IMPLIES a1 7é aj.

(b) Give an example of a relation R that satisfies three of the properties surjection,
injection, total, and function (you indicate which) but is not a bijection.

“mes” — 2016/6/16 — 11:14 — page 122 — #130

122 Chapter 4 Mathematical Data Types

Problem 4.31.
Prove that if relation R : A — B is a total injection, [> 1 out], [< 1 in], then

R 'oR=1dy,

where Id 4 is the identity function on A.
(A simple argument in terms of “arrows” will do the job.)

Problem 4.32.
Let R : A — B be a binary relation.
(a) Prove that R is a function iff R o R~ C 1dp.
Write similar containment formulas involving R ~1oR, RoR71,1d,,1dp equivalent
to the assertion that R has each of the following properties. No proof is required.

(b) total.
(c) a surjection.

(d) ainjection.

Problem 4.33.
Let R: A — B and S : B — C be binary relations such that S o R is a bijection
and |A| = 2.

Give an example of such R, S where neither R nor § is a function.

Hint: Let |B| = 4.

Problem 4.34.
The set {1, 2, 3}® consists of the infinite sequences of the digits 1,2, and 3, and
likewise {4, 5}? is the set of infinite sequences of the digits 4,5. For example

123123123... €{1,2,3}?,
222222222222 ... €{1,2,3}?,
4554445554444 ... €{4,5}®.

(a) Give an example of a total injective function
f{1,2,3}° —> {4,5}“.
(b) Give an example of a bijection g : ({1, 2, 3}* x {1, 2, 3}*) — {1, 2, 3}*.

(c) Explain why there is a bijection between {1, 2, 3}* x {1, 2, 3} and {4, 5}“.
(You need not explicitly define the bijection.)

“mes” — 2016/6/16 — 11:14 — page 123 — #131

4.5. Finite Cardinality 123

Problems for Section 4.5

Practice Problems

Problem 4.35.
Assume f : A — B is total function, and A is finite. Replace the * with one of
<, =, > to produce the strongest correct version of the following statements:

@ [f(A)]*|B].

(b) If f is a surjection, then |A| *x | B].
(c) If f is a surjection, then | f(A)| » | B]|.
(d) If f is an injection, then | f(A)| * |A].
(e) If f is a bijection, then |A| * | B|.

Class Problems

Problem 4.36.

Let A = {a¢,a1,...,an—1} be a set of size n, and B = {bo, b1,...,bm—1} a set
of size m. Prove that |A x B| = mn by defining a simple bijection from A4 x B to
the nonnegative integers from O to mn — 1.

Problem 4.37.
Let R : A — B be a binary relation. Use an arrow counting argument to prove the
following generalization of the Mapping Rule 1.

Lemma. If R is a function, and X C A, then

|X] = [R(X)].

“mes” — 2016/6/16 — 11:14 — page 124 — #132

“mcs” — 2016/6/16 — 11:14 — page 125 — #133

|
5 Induction

Induction is a powerful method for showing a property is true for all nonnegative
integers. Induction plays a central role in discrete mathematics and computer sci-
ence. In fact, its use is a defining characteristic of discrete—as opposed to contin-
uous—mathematics. This chapter introduces two versions of induction, Ordinary
and Strong, and explains why they work and how to use them in proofs. It also
introduces the Invariant Principle, which is a version of induction specially adapted
for reasoning about step-by-step processes.

5.1 Ordinary Induction

To understand how induction works, suppose there is a professor who brings a
bottomless bag of assorted miniature candy bars to her large class. She offers to
share the candy in the following way. First, she lines the students up in order. Next
she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

e If student O gets a candy bar, then student 1 also gets one.
e If student 1 gets a candy bar, then student 2 also gets one.

e If student 2 gets a candy bar, then student 3 also gets one.

Of course, this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n + 1 gets a candy bar, for
all nonnegative integers 7.

“mcs” — 2016/6/16 — 11:14 — page 126 — #134

126

Chapter 5 Induction

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student O gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules really guarantee a candy bar to every
student, no matter how far back in line they may be.

5.1.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.

The Induction Principle.

Let P be a predicate on nonnegative integers. If

e P(0) is true, and

e P(n) IMPLIES P(n + 1) for all nonnegative integers, 7,
then

e P(m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule as in Section 1.4.1, this
would be

Rule. Induction Rule

P(0), VneN.P(n)IMPLIES P(n + 1)
Vm € N. P(m)

This Induction Rule works for the same intuitive reason that all the students get
candy bars, and we hope the explanation using candy bars makes it clear why the
soundness of ordinary induction can be taken for granted. In fact, the rule is so
obvious that it’s hard to see what more basic principle could be used to justify it.!
What’s not so obvious is how much mileage we get by using it.

IBut see Section 5.3.

“mcs” — 2016/6/16 — 11:14 — page 127 — #135

5.1. Ordinary Induction 127

5.1.2 A Familiar Example

Below is the formula (5.1) for the sum of the nonnegative integers up to n. The
formula holds for all nonnegative integers, so it is the kind of statement to which
induction applies directly. We’ve already proved this formula using the Well Or-
dering Principle (Theorem 2.2.1), but now we’ll prove it by induction, that is, using
the Induction Principle.

Theorem 5.1.1. Foralln € N,

1
1+2+3+---+n:@ 5.1)

To prove the theorem by induction, define predicate P (n) to be the equation (5.1).
Now the theorem can be restated as the claim that P () is true for all n € N. This
is great, because the Induction Principle lets us reach precisely that conclusion,
provided we establish two simpler facts:

e P(0) is true.
e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements.

The first statement follows because of the convention that a sum of zero terms
is equal to 0. So P(0) is the true assertion that a sum of zero terms is equal to
000+ 1)/2=0.

The second statement is more complicated. But remember the basic plan from
Section 1.5 for proving the validity of any implication: assume the statement on
the left and then prove the statement on the right. In this case, we assume P (n)—
namely, equation (5.1)—in order to prove P(n + 1), which is the equation

n+DHn+2)
—

These two equations are quite similar; in fact, adding (n + 1) to both sides of
equation (5.1) and simplifying the right side gives the equation (5.2):
nn+1
1+2+3+---+n+(n+1):¥+(n+1)
_ (n+2)(n+1)
B 2

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
proof. Therefore, the Induction Principle says that the predicate P (m) is true for
all nonnegative integers, m. The theorem is proved.

142434 +n+@m+1) = (5.2)

“mes” — 2016/6/16 — 11:14 — page 128 — #136

128

Chapter 5 Induction

5.1.3 A Template for Induction Proofs

The

proof of equation (5.1) was relatively simple, but even the most complicated

induction proof follows exactly the same template. There are five components:

1.

State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps your reader follow your argument.

Define an appropriate predicate P(n). The predicate P(n) is called the
induction hypothesis. The eventual conclusion of the induction argument
will be that P(n) is true for all nonnegative n. A clearly stated induction
hypothesis is often the most important part of an induction proof, and its
omission is the largest source of confused proofs by students.

In the simplest cases, the induction hypothesis can be lifted straight from the
proposition you are trying to prove, as we did with equation (5.1). Sometimes
the induction hypothesis will involve several variables, in which case you
should indicate which variable serves as n.

Prove that P (0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

Prove that P(n) implies P(n + 1) for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P(n) is true and then use this assumption to prove that P(n + 1) is true.
These two statements should be fairly similar, but bridging the gap may re-
quire some ingenuity. Whatever argument you give must be valid for every
nonnegative integer 7, since the goal is to prove that all the following impli-
cations are true:

P(0) — P(1), P(1) = P(2), P(2) = P(3),....

. Invoke induction. Given these facts, the induction principle allows you to

conclude that P(n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. Doing
so will make your proofs clearer and will decrease the chance that you forget a key
step—Ilike checking the base case.

“mecs” — 2016/6/16 — 11:14 — page 129 — #137

5.1. Ordinary Induction 129

5.1.4 A Clean Writeup

The proof of Theorem 5.1.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Revised proof of Theorem 5.1.1. We use induction. The induction hypothesis, P(n),
will be equation (5.1).

Base case: P(0) is true, because both sides of equation (5.1) equal zero when
n=0.

Inductive step: Assume that P(n) is true, that is equation (5.1) holds for some
nonnegative integer n. Then adding n + 1 to both sides of the equation implies that

nn—+1
1+2+3+-~-+n+(n+1)=¥+(n+1)
1 2
= (n—i_)z& (by simple algebra)
which proves P(n + 1).
So it follows by induction that P (n) is true for all nonnegative . |

It probably bothers you that induction led to a proof of this summation formula
but did not provide an intuitive way to understand it nor did it explain where the
formula came from in the first place.? This is both a weakness and a strength. It is a
weakness when a proof does not provide insight. But it is a strength that a proof can
provide a reader with a reliable guarantee of correctness without requiring insight.

5.1.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, some radical fundraising ideas were proposed. One rumored
plan was to install a big square courtyard divided into unit squares. The big square
would be 2" units on a side for some undetermined nonnegative integer n, and
one of the unit squares in the center® occupied by a statue of a wealthy potential
donor—whom the fund raisers privately referred to as “Bill.” The n = 3 case is
shown in Figure 5.1.

A complication was that the building’s unconventional architect, Frank Gehry,
was alleged to require that only special L-shaped tiles (shown in Figure 5.2) be

ZMethods for finding such formulas are covered in Part III of the text.
3In the special case n = 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.

“mcs” — 2016/6/16 — 11:14 — page 130 — #138

130

Chapter 5 Induction

21’[

2)1

Figure 5.1 A 2" x 2" courtyard for n = 3.

Figure 5.2 The special L-shaped tile.

used for the courtyard. For n = 2, a courtyard meeting these constraints is shown
in Figure 5.3. But what about for larger values of n? Is there a way to tile a 2" x 2"
courtyard with L-shaped tiles around a statue in the center? Let’s try to prove that
this is so.

Theorem 5.1.2. For all n > 0 there exists a tiling of a 2" x 2"* courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition
that there exists a tiling of a 2" x 2" courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in the
center for some n > 0. We must prove that there is a way to tile a 271 x 271
courtyard with Bill in the center |

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the

“mcs” — 2016/6/16 — 11:14 — page 131 — #139

5.1. Ordinary Induction 131

Figure 5.3 A tiling using L-shaped tiles for n = 2 with Bill in a center square.

center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P(n) and P(n + 1).

So if we’re going to prove Theorem 5.1.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about n that we’re trying to
prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P (n) the proposition that for every location of Bill in a 2" x 2"
courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove some-
thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P(n) IMPLIES P(n + 1), you're in better shape
because you can assume P(n), which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P(n) be the proposition
that for every location of Bill in a 2" x 2" courtyard, there exists a tiling of the
remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P (n) is true for some n > 0; that is, for every location
of Bill in a 2" x 2" courtyard, there exists a tiling of the remainder. Divide the
2n+1 5 27+ courtyard into four quadrants, each 2” x 2", One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 5.4.

“mes” — 2016/6/16 — 11:14 — page 132 — #140

132

Chapter 5 Induction

2)1

2il

n 2n

Figure 5.4 Using a stronger inductive hypothesis to prove Theorem 5.1.2.

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P(n) implies P(n + 1) for all n > 0. Thus P (m) is true for all m € N,
and the theorem follows as a special case where we put Bill in a central square. W

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually
be true; otherwise, there isn’t much hope of constructing a valid proof. Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that every planar graph is 5-choosable.* Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument was easy!

45-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.

“mes” — 2016/6/16 — 11:14 — page 133 — #141

5.1. Ordinary Induction 133

5.1.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P (0) is true
and that P(n) implies P(n + 1) for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now use induction to “prove” that all horses
are the same color—just when you thought it was safe to skip class and work on
your robot program instead. Sorry!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

False Theorem 5.1.3. In every set of n > 1 horses, all the horses are the same
color.

This is a statement about all integers n > 1 rather > 0, so it’s natural to use a
slight variation on induction: prove P(1) in the base case and then prove that P (n)
implies P(n + 1) for all n > 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis, P (n), will
be
In every set of n horses, all are the same color. (5.3)

Base case: (n = 1). P(1) is true, because in a size-1 set of horses, there’s only one
horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some n > 1. That is, assume that in
every set of n horses, all are the same color. Now suppose we have a set of n + 1
horses:

hi, ha, ..., hy, hpt.

We need to prove these n + 1 horses are all the same color.
By our assumption, the first n horses are the same color:

h]a h2’ ceey hn’hn—i—l
~—_———
same color

Also by our assumption, the last n horses are the same color:

hl, h2, e ooy hn, hn+1

same color

“mes” — 2016/6/16 — 11:14 — page 134 — #142

134

Chapter 5 Induction

So hj is the same color as the remaining horses besides /i, —that s, hs, ..., hy.
Likewise, h,41 is the same color as the remaining horses besides /;—that is,
ha, ..., hy, again. Since Ay and A, are the same color as Ay, ..., Ay, alln + 1
horses must be the same color, and so P(n + 1) is true. Thus, P(n) implies
P(n+1).

By the principle of induction, P (n) is true for all n > 1. |

We’ve proved something false! Does this mean that math broken and we should
all take up poetry instead? Of course not! It just means that this proof has a mistake.
The mistake in this argument is in the sentence that begins “So A is the same

color as the remaining horses besides %, +1—that is ks, ..., h,,....” The ellipis
notation (“...”) in the expression “hy, hs, ..., hy, hy41” creates the impression
that there are some remaining horses—namely A5, ..., h, —besides i1 and /1.
However, this is not true when n = 1. In that case, hy, ha, ..., hy, hy41 is just

h1, hy and there are no “remaining” horses for hy to share a color with. And of
course, in this case /1 and &, really don’t need to be the same color.

This mistake knocks a critical link out of our induction argument. We proved
P (1) and we correctly proved P(2) — P(3), P(3) — P(4), etc. But we failed
to prove P(1) — P(2), and so everything falls apart: we cannot conclude that
P(2), P(3), etc., are true. And naturally, these propositions are all false; there are
sets of n horses of different colors for all n > 2.

Students sometimes explain that the mistake in the proof is because P (n) is false
for n > 2, and the proof assumes something false, P (n), in order to prove P(n+1).
You should think about how to help such a student understand why this explanation
would get no credit on a Math for Computer Science exam.

5.2 Strong Induction

A useful variant of induction is called strong induction. Strong induction and ordi-
nary induction are used for exactly the same thing: proving that a predicate is true
for all nonnegative integers. Strong induction is useful when a simple proof that
the predicate holds for n + 1 does not follow just from the fact that it holds at 7,
but from the fact that it holds for other values < n.

“mcs” — 2016/6/16 — 11:14 — page 135 — #143

5.2. Strong Induction 135

5.2.1 A Rule for Strong Induction

Principle of Strong Induction.

Let P be a predicate on nonnegative integers. If
e P(0) is true, and

e foralln e N, P(0), P(1), ..., P(n) together imply P(n + 1),

then P (m) is true for all m € N.

The only change from the ordinary induction principle is that strong induction
allows you make more assumptions in the inductive step of your proof! In an
ordinary induction argument, you assume that P(#n) is true and try to prove that
P(n + 1) is also true. In a strong induction argument, you may assume that P (0),
P(1),...,and P(n) are all true when you go to prove P(n+1). So you can assume
a stronger set of hypotheses which can make your job easier.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P(0), Vn eN.(P(0)AND P(1) AND ... AND P(n)) IMPLIES P(n + 1)
Vm € N. P(m)

Stated more succintly, the rule is

Rule.
P(0), [Yk <neN.P(k)] IMPLIES P(n + 1)

Vm € N. P(m)

The template for strong induction proofs is identical to the template given in
Section 5.1.3 for ordinary induction except for two things:

e you should state that your proof is by strong induction, and

e you can assume that P(0), P(1), ..., P(n) are all true instead of only P (n)
during the inductive step.

5.2.2 Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 2.3.1 which we
previously proved using Well Ordering.

“mes” — 2016/6/16 — 11:14 — page 136 — #144

136

Chapter 5 Induction

Theorem. Every integer greater than 1 is a product of primes.

Proof. We will prove the Theorem by strong induction, letting the induction hy-
pothesis, P(n), be
n is a product of primes.

So the Theorem will follow if we prove that P(n) holds for all n > 2.

Base Case: (n = 2): P(2) is true because 2 is prime, so it is a length one product
of primes by convention.

Inductive step: Suppose that n > 2 and that every number from 2 to » is a product
of primes. We must show that P(n + 1) holds, namely, that n + 1 is also a product
of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,
and so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = k - m for some
integers k, m between 2 and n. Now by the strong induction hypothesis, we know
that both k and m are products of primes. By multiplying these products, it follows
immediately that k - m = n + 1 is also a product of primes. Therefore, P(n + 1)
holds in this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.

|

5.2.3 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n + 1 > 11, because then (n +
1) — 3 > 8, so by strong induction the Inductians can make change for exactly
(n + 1) — 3 Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P (n) will be:

There is a collection of coins whose value is n 4 8 Strongs.

“mcs” — 2016/6/16 — 11:14 — page 137 — #145

5.2. Strong Induction 137

Figure 5.5 One way to make 26 Sg using Strongian currency

We now proceed with the induction proof:
Base case: P(0) is true because a 3Sg coin together with a 5Sg coin makes 8Sg.

Inductive step: We assume P (k) holds for all k < n, and prove that P(n + 1)
holds. We argue by cases:

Case (n + 1 = 1): We have to make (n + 1) + 8 = 9Sg. We can do this using
three 3Sg coins.

Case (n + 1 =2): We have to make (n + 1) + 8 = 10Sg. Use two 5Sg coins.

Case (n +1 > 3): Then 0 < n — 2 < n, so by the strong induction hypothesis,
the Inductians can make change for (n —2) + 8Sg. Now by adding a 3Sg coin, they
can make change for (n + 1) 4+ 8Sg, so P(n + 1) holds in this case.

Since n > 0, we know that n + 1 > 1 and thus that the three cases cover
every possibility. Since P(n + 1) is true in every case, we can conclude by strong
induction that for all n > 0, the Inductians can make change for n + 8 Strong. That
is, they can make change for any number of eight or more Strong. |

5.2.4 The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each
move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height a + b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

“mes” — 2016/6/16 — 11:14 — page 138 — #146

138

Chapter 5 Induction

Stack Heights Score
10
5 5 25 points
5 32 6
4 3 2 1 4
2 321 2 4
2 221 21 2
1 221 211 1
I 1212111 1
1 11121111 1
1 111 111111 1
Total Score = 45 points

Figure 5.6 An example of the stacking game with n = 10 boxes. On each line,
the underlined stack is divided in the next step.

As an example, suppose that we begin with a stack of » = 10 boxes. Then the
game might proceed as shown in Figure 5.6. Can you find a better strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes—your strategy is irrelevant!

Theorem 5.2.1. Every way of unstacking n blocks gives a score of n(n — 1)/2
points.

There are a couple technical points to notice in the proof:

e The template for a strong induction proof mirrors the one for ordinary induc-
tion.

e As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P (1) in the base case and prove that P(1),..., P(n) imply
P(n + 1) for all n > 1 in the inductive step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every
way of unstacking n blocks gives a score of n(n — 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and so
the total score for the game is 1(1 — 1)/2 = 0. Therefore, P (1) is true.

“mes” — 2016/6/16 — 11:14 — page 139 — #147

5.3. Strong Induction vs. Induction vs. Well Ordering 139

Inductive step: Now we must show that P(1), ..., P(n) imply P(n + 1) for all
n > 1. So assume that P(1), ..., P(n) are all true and that we have a stack of
n + 1 blocks. The first move must split this stack into substacks with positive sizes
a and b wherea +b =n + 1 and 0 < a, b < n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score = (score for 1st move)
+ (score for unstacking a blocks)
+ (score for unstacking b blocks)
a(a—1 bb—1
(a—1) n (b-1)

=ab + 2 7 by P(a) and P(b)
_(a+b?—(a+b) (a+b)((a+b)—1)
B 2 - 2
_(n+ Dn
2
This shows that P(1), P(2), ..., P(n) imply P(n + 1).
Therefore, the claim is true by strong induction. |

5.3 Strong Induction vs. Induction vs. Well Ordering

Strong induction looks genuinely “stronger” than ordinary induction —after all,
you can assume a lot more when proving the induction step. Since ordinary in-
duction is a special case of strong induction, you might wonder why anyone would
bother with the ordinary induction.

But strong induction really isn’t any stronger, because a simple text manipula-
tion program can automatically reformat any proof usin